21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

267<br />

Table 28.1: Table of Special Functions def<strong>in</strong>ed by <strong>Differential</strong> <strong>Equations</strong>.<br />

Name<br />

<strong>Differential</strong> Equation<br />

of Equation Names of Solutions<br />

Airy<br />

y ′′ = ty<br />

Equation Airy Functions Ai(t), Bi(t)<br />

Bessel t 2 y ′′ + ty ′ + (t 2 − ν 2 )y = 0, 2ν ∈ Z +<br />

Equation Bessel Functions J ν (t)<br />

Neumann Functions Y ν (t)<br />

Modified t 2 y ′′ + ty ′ − (t 2 + ν 2 )y = 0, ν ∈ Z +<br />

Bessel<br />

Modified Bessel Functions I ν (t), K ν (x)<br />

Equation Hankel Functions H ν (t)<br />

Euler<br />

t 2 y ′′ + αty ′ + βy = 0, α, β ∈ C<br />

Equation t r , where r(r − 1) + αr + β = 0<br />

Hermite y ′′ − 2ty ′ + 2ny = 0, n ∈ Z +<br />

Equation Hermite polynomials H n (t)<br />

Hypergeometric t(1 − t)y ′′ + (c − (a + b + 1)t)y ′ − aby = 0, a, b, c, d ∈ R<br />

Equation Hypergeometric Functions F , 2 F 1<br />

Jacobi<br />

t(1 − t)y ′′ + [q − (p + 1)t]y ′ + n(p + n)y = 0, n ∈ Z, a, b ∈ R<br />

Equation Jacobi Polynomicals J n<br />

Kummer ty ′′ + (b − t)y ′ − ay = 0, a, b ∈ R<br />

Equation Confluent Hypergeometric Functions 1 F 1<br />

Laguerre ty ′′ + (1 − t)y ′ + my = 0, m ∈ Z +<br />

Equation Laguerre Polynomials L m (t)<br />

Associated ty ′′ + (k + 1 − t)y<br />

Laguerre Eqn. Associated Laguerre Polynomials L k m(t)<br />

Legendre (1 − t 2 )y ′′ − 2ty ′ + n(n + 1)y = 0, n ∈ Z +<br />

Equation Legendre Polynomials<br />

[<br />

P n (t)<br />

Associated (1 − t 2 )y ′′ − 2ty ′ + n(n + 1) − m2 y = 0, m, n ∈ Z +<br />

1−t 2 ]<br />

Legendre Eq. Associate Legendre Polynomials Pn m (t)<br />

Tchebysheff (1 − t 2 )y ′′ − ty ′ + n 2 y = 0 (Type I)<br />

Equation (1 − t 2 )y ′′ − 3ty ′ + n(n + 2)y = 0 (Type II)<br />

Tchebysheff Polynomials T n (t), U n (t)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!