21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

259<br />

S<strong>in</strong>ce the first two terms (correspond<strong>in</strong>g to j = −2 and j = −1) <strong>in</strong> the<br />

first sum are zero, we can start the <strong>in</strong>dex at j = 0 rather than j = −2.<br />

Renam<strong>in</strong>g the <strong>in</strong>dex back to k, and comb<strong>in</strong><strong>in</strong>g the two series <strong>in</strong>to a s<strong>in</strong>gle<br />

sum,<br />

∞∑<br />

∞∑<br />

0= (k + 2)(k + 1)c k+2 t k − (k + 1)c k t k (28.33)<br />

k=0<br />

By l<strong>in</strong>ear <strong>in</strong>dependence,<br />

k=0<br />

(k + 2)(k + 1)c k+2 = (k + 1)c k (28.34)<br />

Rearrang<strong>in</strong>g, c k+2 = c k /(k + 2); lett<strong>in</strong>g j = k + 2 and <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>itial<br />

conditions (equation (28.29)), the general recursion relationship is<br />

Therefore<br />

c 0 = 1, c 1 = 1, c k = c k−2 /k (28.35)<br />

c 2 = c 0<br />

2 = 1 2<br />

c 4 = c 2<br />

4 = 1<br />

4 · 2<br />

c 6 = c 4<br />

6 = 1<br />

6 · 4 · 2<br />

.<br />

c 3 = c 1<br />

3 = 1 3<br />

c 5 = c 3<br />

5 = 1<br />

5 · 3<br />

c 7 = c 5<br />

7 = 1<br />

7 · 5 · 3<br />

(28.36)<br />

(28.37)<br />

(28.38)<br />

So the solution of the <strong>in</strong>itial value problem is<br />

y=c 0 + c 1 t + c 2 t 2 + c 3 t 3 + · · · (28.39)<br />

=1 + 1 2 t2 + 1 1<br />

4 · 2 t4 +<br />

6 · 4 · 2 t6 + · · · (28.40)<br />

+t + 1 3 t3 + 1 1<br />

5 · 3 t5 +<br />

7 · 5 · 3 t7 + · · · (28.41)<br />

Example 28.3. Solve the Legendre equation of order 2, given by<br />

⎫<br />

(1 − t 2 )y ′′ − 2ty ′ + 6y = 0⎪⎬<br />

y(0) = 1<br />

(28.42)<br />

⎪⎭<br />

y ′ (0) = 0<br />

We note that “order 2” <strong>in</strong> the name of equation (28.42) is not related to the<br />

order of differential equation, but to the fact that the equation is a member<br />

of a family of equations of the form<br />

(1 − t 2 )y ′′ − 2ty ′ + n(n + 1)y = 0 (28.43)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!