Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro Lecture Notes in Differential Equations - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

248 LESSON 27. HIGHER ORDER EQUATIONS where min(m ij ) is the minor of the ij th element. Differentiating, dM dt n+1 ∑ n+1 ∑ = (−1) 1+i m ′ 1i min(m 1i ) + (−1) 1+i d m 1i dt min(m 1i) (27.170) i=1 i=1 The first sum is d(M,1). Since (27.166) is true for any n × n matrix, we can apply it to min(m 1i ) in the second sum. dM dt = d(M, 1) + ∑ n+1 i=1 (−1)1+i m 1i ∑ n j=1 d(min(m 1i), j) (27.171) which completes the inductive proof of the lemma. Proof. (Abel’s Formula) (n = 2). Suppose y 1 and y 2 are solutions of (27.165). Their Wronskian is Differentiating, W (t) = y 1 y ′ 2 − y 2 y ′ 1 (27.172) W ′ (x) = y 1 y ′′ 2 + y ′ 1y ′ 2 − y ′ 2y ′ 1 − y 2 y ′′ 1 = y 1 y ′′ 2 − y 2 y ′′ 1 (27.173) Since L 2 y 1 = L 2 y 2 = 0, Hence y ′′ 1 = −p(t)y ′ 1 − q(t)y 1 (27.174) y ′′ 2 = −p(t)y ′ 2 − q(t)y 2 (27.175) W ′ (t) = y 1 (−p(t)y 2 ′ − q(t)y 2 ) − y 2 (−p(t)y 1 ′ − q(t)y 1 ) = −p(t)(y 1 y 2 ′ − y 2 y 1) ′ = −p(t)W (t) Rearranging and integrating gives W (t) = C exp [ − ∫ p(t)dt ] . General Case. The Wronskian is W [y 1 , ..., y n ](t) = ∣ y 1 · · · y n . . y (n−1) 1 · · · y n (n−1) ∣ (27.176) (27.177)

249 By the lemma, to obtain the derivative of a determinant, we differentiate row by row and add the results, hence dW dt = ∣ y 1 ′ · · · y n ′ y 1 ′ y n ′ y 1 ′ · · · y ′ n y 1 ′′ y n ′′ y 1 ′′ y ′′ n + y 1 ′′ y ′′ n . . . . 1 · · · y n (n−1) ∣ ∣y (n−1) 1 · · · y n (n−1) ∣ y 1 · · · y n y 1 ′ y ′ n + · · · + y 1 ′′ y n ′′ . . ∣y (n) 1 · · · y n (n) ∣ y (n−1) (27.178) Every determinant except for the last contains a repeated row, and since the determinant of a matrix with a repeated row is zero, the only nonzero term is the last term. dW dt = ∣ y 1 · · · y n y ′ 1 y ′ n y 1 ′′ y n ′′ . . y (n) 1 · · · y n (n) ∣ (27.179) Since each y j is a solution of the homogeneous equation, y (n) j = − a n−1(t) a n (t) y(n−1) j − a n−2(t) a n (t) y(n−2) j − · · · − a 0(t) a n (t) y j (27.180) = − 1 n−1 ∑ a i (t)y (i) j (27.181) a n (t) i=0 Hence

249<br />

By the lemma, to obta<strong>in</strong> the derivative of a determ<strong>in</strong>ant, we differentiate<br />

row by row and add the results, hence<br />

dW<br />

dt<br />

=<br />

∣<br />

y 1 ′ · · · y n<br />

′ y 1<br />

′ y n<br />

′ y 1 ′ · · · y ′ n<br />

y 1 ′′ y n<br />

′′<br />

y 1 ′′ y ′′<br />

n<br />

+<br />

y 1 ′′ y ′′<br />

n<br />

.<br />

.<br />

.<br />

.<br />

1 · · · y n<br />

(n−1) ∣ ∣y (n−1)<br />

1 · · · y n<br />

(n−1) ∣<br />

y 1 · · · y n<br />

y 1<br />

′ y ′ n<br />

+ · · · +<br />

y 1 ′′ y n<br />

′′<br />

. .<br />

∣y (n)<br />

1 · · · y n<br />

(n) ∣<br />

y (n−1)<br />

(27.178)<br />

Every determ<strong>in</strong>ant except for the last conta<strong>in</strong>s a repeated row, and s<strong>in</strong>ce<br />

the determ<strong>in</strong>ant of a matrix with a repeated row is zero, the only nonzero<br />

term is the last term.<br />

dW<br />

dt<br />

=<br />

∣<br />

y 1 · · · y n<br />

y ′ 1<br />

y ′ n<br />

y 1 ′′ y n<br />

′′<br />

. .<br />

y (n)<br />

1 · · · y n<br />

(n)<br />

∣<br />

(27.179)<br />

S<strong>in</strong>ce each y j is a solution of the homogeneous equation,<br />

y (n)<br />

j<br />

= − a n−1(t)<br />

a n (t) y(n−1) j − a n−2(t)<br />

a n (t) y(n−2) j − · · · − a 0(t)<br />

a n (t) y j (27.180)<br />

= − 1<br />

n−1<br />

∑<br />

a i (t)y (i)<br />

j (27.181)<br />

a n (t)<br />

i=0<br />

Hence

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!