21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

246 LESSON 27. HIGHER ORDER EQUATIONS<br />

0. S<strong>in</strong>ce y 1 , ..., y n form a fundamental set of solutions, any solution to the<br />

<strong>in</strong>itial value problem (27.151) must have the form<br />

φ(t) = C 1 y 1 + C 2 y 2 + · · · + C n y n (27.156)<br />

for some set of constants {C 1 , ..., C n }. Hence there must exist constants<br />

C 1 , ..., C n such that<br />

C 1 y 1 (t 0 ) + · · · + C n y n (t 0 ) = y 0<br />

C 1 y 1(t ′ 0 ) + · · · + C n y n(t ′ 0 ) = y 1<br />

(27.157)<br />

.<br />

C 1 y (n−1)<br />

1 (t 0 ) + · · · + C n y n (n−1) (t 0 ) = y n−1<br />

i.e., there is a solution {C 1 , ..., C n } to<br />

⎛<br />

⎜<br />

⎝<br />

y 1 (t 0 ) · · · y n (t 0 )<br />

⎞ ⎛<br />

.<br />

.<br />

⎟ ⎜<br />

⎠ ⎝<br />

y (n−1)<br />

1 (t 0 ) · · · y n (n−1) (t 0 )<br />

This is only true if the matrix<br />

W[y 1 , ..., y n ](t 0 ) =<br />

⎛<br />

⎜<br />

⎝<br />

C 1<br />

.<br />

C n<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

⎜<br />

⎝<br />

y 1 (t 0 ) · · · y n (t 0 )<br />

y 0<br />

.<br />

y n<br />

.<br />

.<br />

y (n−1)<br />

1 (t 0 ) · · · y n (n−1) (t 0 )<br />

⎞<br />

⎟<br />

⎠ (27.158)<br />

⎞<br />

⎟<br />

⎠ (27.159)<br />

is <strong>in</strong>vertible, which <strong>in</strong> turn is true if and only if its determ<strong>in</strong>ant is nonzero.<br />

But the determ<strong>in</strong>ant is the Wronskian, hence there exists a number t 0 such<br />

that the Wronskian W [y 1 , ..., y n ](t 0 ) ≠ 0.<br />

Theorem 27.9. Suppose y 1 , ..., y n are solutions L n y = 0 on an <strong>in</strong>terval<br />

(a, b), and let their Wronskian be denoted by W [y 1 , ..., y n ](t). Then the<br />

follow<strong>in</strong>g are equivalent:<br />

1. W [y 1 , ..., y n ](t) ≠ 0 ∀t ∈ (a, b)<br />

2. ∃t 0 ∈ (a, b) such that W [y 1 , ..., y n ](t 0 ) ≠ 0<br />

3. y 1 , ..., y n are l<strong>in</strong>early <strong>in</strong>dependent functions on (a, b).<br />

4. y 1 , ..., y n are a fundamental set of solutions to L n y = 0 on (a, b).<br />

Example 27.10. Two solutions of the differential equation 2t 2 y ′′ + 3ty ′ −<br />

y = 0 are y 1 = t 1/2 and y 2 = 1/t; this can be verified by substitution <strong>in</strong>to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!