21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

245<br />

Certa<strong>in</strong>ly every φ(t) given by (27.150) satisfies the differential equation; we<br />

need to show that for some set of constants C 1 , ..., C n it also satisfies the<br />

<strong>in</strong>itial conditions.<br />

Differentiat<strong>in</strong>g (27.150) n − 1 times and comb<strong>in</strong><strong>in</strong>g the result <strong>in</strong>to a matrix<br />

equation,<br />

⎛<br />

⎜<br />

⎝<br />

φ(t 0 )<br />

φ ′ (t 0 )<br />

.<br />

φ (n−1) (t 0 )<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

y 1 (t 0 ) y 2 (t 0 ) · · · y n (t 0 )<br />

y 1(t ′ 0 ) y 2(t ′ 0 ) y n(t ′ 0 )<br />

.<br />

.<br />

y (n−1)<br />

1 (t 0 ) y (n−1)<br />

2 (t 0 ) · · · y n (n−1) (t 0 )<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

(27.152)<br />

The matrix on the right hand side of equation (27.152) is W[y 1 , ..., y n ](t 0 ).<br />

By assumption, the determ<strong>in</strong>ant W [y 1 , ..., y n ](t 0 ) ≠ 0, hence the correspond<strong>in</strong>g<br />

matrix W[y 1 , ..., y n ](t 0 ) is <strong>in</strong>vertible. S<strong>in</strong>ce W[y 1 , ..., y n ](t 0 ) is<br />

<strong>in</strong>vertible, there is a solution {C 1 , ..., C n } to the equation<br />

given by<br />

⎛<br />

⎜<br />

⎝<br />

C 1<br />

.<br />

C n<br />

⎛<br />

⎜<br />

⎝<br />

y 0<br />

.<br />

y n<br />

⎞<br />

⎛<br />

⎟<br />

⎜<br />

⎠ = W[y 1 , ..., y n ](t 0 ) ⎝<br />

⎞<br />

⎛<br />

⎟<br />

⎠ = {W[y 1 , .., y n ](t 0 )} −1 ⎜<br />

⎝<br />

C 1<br />

.<br />

C n<br />

y 0<br />

.<br />

y n<br />

⎞<br />

⎞<br />

C 1<br />

C 2<br />

.<br />

C n<br />

⎞<br />

⎟<br />

⎠<br />

⎟<br />

⎠ (27.153)<br />

⎟<br />

⎠ (27.154)<br />

Hence there exists a non-trivial set of numbers {C 1 , ..., C n } such that<br />

φ(t) = C 1 y 1 + C 2 y 2 + · · · + C n y n (27.155)<br />

satisfies the <strong>in</strong>itial value problem (27.151).<br />

By uniqueness, every solution of this <strong>in</strong>itial value problem must be identical<br />

to (27.155), and this means that it must be a l<strong>in</strong>ear comb<strong>in</strong>ation of the<br />

{y 1 , ..., y n }.<br />

Thus every solution of the differential equation is also a l<strong>in</strong>ear comb<strong>in</strong>ation<br />

of the {y 1 , ..., y n }, and hence {y 1 , ..., y n } must form a fundamental set of<br />

solutions.<br />

To prove the converse, suppose that y 1 , ..., y n are a fundamental set of solutions.<br />

We need to show that for some number t 0 ∈ (a, b), W [y 1 , ..., y n ](t 0 ) ≠

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!