21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

240 LESSON 27. HIGHER ORDER EQUATIONS<br />

An <strong>in</strong>tegrat<strong>in</strong>g factor is e 2t so that<br />

y = 1 ∫<br />

4 e−2t e 2t (2t + 1)dt (27.103)<br />

= 1 ∫ ∫ ]<br />

[2<br />

4 e−2t te 2t dt + e 2t dt<br />

(27.104)<br />

= 1 ( t<br />

[2<br />

4 e−2t 2 − 1 e<br />

4) 2t + 1 ]<br />

2 e2t (27.105)<br />

= t 4<br />

(27.106)<br />

Therefore y P = t/4.<br />

Alternatively, us<strong>in</strong>g the method of undeterm<strong>in</strong>ed coefficients, we try y P =<br />

ct <strong>in</strong> the differential equation y (4) − 5y ′′ + 4y = t. S<strong>in</strong>ce y ′ = c and y ′′ =<br />

y (4) = 0 we f<strong>in</strong>d 4ct = t or c = 1/4, aga<strong>in</strong> giv<strong>in</strong>g y P = t/4.<br />

Hence the general solution is<br />

y = y P + y H = 1 4 t + C 1e t + C 2 e −t + C 3 e 2t + C 4 e −2t (27.107)<br />

We also have an addition theorem for higher order equations.<br />

Theorem 27.7. If y P,i , i = 1, 2, ..., k are particular solutions of L n y P,i =<br />

f i (t) then<br />

y P = y P,1 + y P,2 + · · · + y P,k (27.108)<br />

is a particular solution of<br />

L n y = f 1 (t) + f 2 (t) + · · · + f k (t) (27.109)<br />

Example 27.7. F<strong>in</strong>d the general solution of y ′′′ − 4y ′ = t + 3 cos t + e −2t .<br />

The general solution is<br />

where<br />

y = y H + y 1 + y 2 + y 3 (27.110)<br />

y H ′′′ − 4y H ′ = 0 (27.111)<br />

y 1 ′′′ − 4y 1 ′ = t (27.112)<br />

y 2 ′′′ − 4y 2 ′ = 3 cos t (27.113)<br />

y 3 ′′′ − 4y 3 ′ = e −2t (27.114)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!