21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

237<br />

a closed form expression for a particular solution to L n y = f(t). Such an<br />

expression can be found by factor<strong>in</strong>g the differential equation as<br />

L n y = a n (D − r 1 )(D − r 2 ) · · · (D − r n )y (27.71)<br />

where z = (D − r 2 ) · · · (D − r n )y. Then<br />

An <strong>in</strong>tegrat<strong>in</strong>g factor is µ = e −r1t , so that<br />

= a n (D − r 1 )z = f(t) (27.72)<br />

z ′ − r 1 z = (1/a n )f(t) (27.73)<br />

(D − r 2 ) · · · (D − r n )y = z (27.74)<br />

= 1 e r1t e<br />

a n<br />

∫t<br />

−r1s1 f(s 1 )ds 1 = f 1 (t) (27.75)<br />

where the last expression on the right hand side of (27.74) is taken as the<br />

def<strong>in</strong>ition of f 1 (t). We have ignored the constants of <strong>in</strong>tegration because<br />

they will give us the homogeneous solutions.<br />

Def<strong>in</strong><strong>in</strong>g a new z = (D − r 3 ) · · · (D − r n )y gives<br />

z ′ − r 2 z = f 1 (t) (27.76)<br />

An <strong>in</strong>tegrat<strong>in</strong>g factor for (27.76) is µ = e −r2t , so that<br />

(D − r 3 ) · · · (D − r n )y = z = e r2t ∫<br />

t<br />

e −r2s2 f 1 (s 2 )ds 2 = f 2 (t) (27.77)<br />

where the expression on the right hand side of (27.77) is taken as the<br />

def<strong>in</strong>ition of f 2 (t). Substitut<strong>in</strong>g for f 1 (s 2 ) from (27.74) <strong>in</strong>to (27.77) gives<br />

∫<br />

(D − r 3 ) · · · (D − r n )y = e r2t e 1 ∫<br />

−r2s2 e r1s2 e −r1s1 f(s 1 )ds 1 ds 2<br />

a n s 2<br />

t<br />

(27.78)<br />

Repeat<strong>in</strong>g this procedure n times until we have exhausted all of the roots,<br />

y P = ernt<br />

a n<br />

∫t<br />

e (rn−1−rn)sn ∫s n<br />

e (rn−2−rn−1)sn−1 · · ·<br />

(27.79)<br />

· · · e<br />

∫s (r1−r2)s2 e<br />

3<br />

∫s −r1s1 f(s 1 )ds 1 · · · ds n<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!