21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

176 LESSON 20. THE WRONSKIAN<br />

Multiply the first equation by y 2 and the second equation by y 1 ,<br />

Subtract<strong>in</strong>g the first from the second,<br />

Substitut<strong>in</strong>g (20.45),<br />

y 1 ′′ y 2 + p(t)y 1y ′ 2 + q(t)y 1 y 2 = 0 (20.48)<br />

y 2 ′′ y 1 + p(t)y 2y ′ 1 + q(t)y 1 y 2 = 0 (20.49)<br />

y 1 y ′′<br />

2 − y 2 y ′′<br />

1 + y 1 y ′ 2p(t) − y 2 y ′′<br />

1 p(t) = 0 (20.50)<br />

W ′ (t) = −p(t)W (t) (20.51)<br />

This is a separable differential equation <strong>in</strong> W ; the solution is<br />

( ∫ )<br />

W (t) = Cexp − p(t)dt<br />

(20.52)<br />

This result is know is Abel’s Equation or Abel’s Formula, and we summarize<br />

it <strong>in</strong> the follow<strong>in</strong>g theorem.<br />

Theorem 20.6. Abel’s Formula. Let y 1 and y 2 be solutions of<br />

y ′′ + p(t)y ′ + q(t)y = 0 (20.53)<br />

where p and q are cont<strong>in</strong>uous functions. Then for some constant C,<br />

( ∫ )<br />

W (y 1 , y 2 )(t) = Cexp − p(t)dt<br />

(20.54)<br />

Example 20.5. F<strong>in</strong>d the Wronskian of<br />

y ′′ − 2t s<strong>in</strong>(t 2 )y ′ + y s<strong>in</strong> t = 0 (20.55)<br />

up to a constant multiple.<br />

Us<strong>in</strong>g Abel’s equation,<br />

(∫<br />

W (t) = C exp<br />

)<br />

2t s<strong>in</strong>(t 2 )dt = Ce − cos t2 (20.56)<br />

Note that as a consequence of Abel’s formula, the only way that W can be<br />

zero is if C = 0; <strong>in</strong> this case, it is zero for all t. Thus the Wronskian of<br />

two solutions of an ODE is either always zero or never zero. If<br />

their Wronskian is never zero, by Theorem (20.4), the two solutions must<br />

be l<strong>in</strong>early <strong>in</strong>dependent. On the other hand, if the Wronskian is zero at<br />

some po<strong>in</strong>t t 0 then it is zero at all t, and<br />

W (y 1 , y 2 )(t) =<br />

∣ y 1(t) y 2 (t)<br />

y 1(t)<br />

′ y 2(t)<br />

′ ∣ = 0 (20.57)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!