21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

175<br />

Example 20.3. Show that y = s<strong>in</strong> t and y = cos t are l<strong>in</strong>early <strong>in</strong>dependent.<br />

Their Wronskian is<br />

W (t) = (s<strong>in</strong> t)(cos t) ′ − (cos t)(s<strong>in</strong> t) ′ (20.37)<br />

= − s<strong>in</strong> 2 t − cos 2 t (20.38)<br />

= −1 (20.39)<br />

S<strong>in</strong>ce W (t) ≠ 0 for all t then if we pick any particular t, e.g., t = 0, we have<br />

W (0) ≠ 0. Hence s<strong>in</strong> t and cos t are l<strong>in</strong>early <strong>in</strong>dependent.<br />

Example 20.4. Show that y = s<strong>in</strong> t and y = t 2 are l<strong>in</strong>early <strong>in</strong>dependent.<br />

Their Wronskian is<br />

At t = π, we have<br />

W (t) = (s<strong>in</strong> t)(t 2 ) ′ − (t 2 )(s<strong>in</strong> t) ′ (20.40)<br />

= 2t s<strong>in</strong> t − t 2 cos t (20.41)<br />

W (π) = 2π s<strong>in</strong> π − π 2 cos π = π 2 ≠ 0 (20.42)<br />

S<strong>in</strong>ce W (π) ≠ 0, the two functions are l<strong>in</strong>early <strong>in</strong>dependent.<br />

Corollary 20.5. If f and g are l<strong>in</strong>early dependent functions, then their<br />

Wronskian must be zero at every po<strong>in</strong>t t.<br />

Proof. If W (f, g)(t 0 ) ≠ 0 at some po<strong>in</strong>t t 0 then theorem (20.4) tells us that<br />

f and g must be l<strong>in</strong>early <strong>in</strong>dependent. But f and g are l<strong>in</strong>early dependent,<br />

so this cannot happen. Hence their Wronskian can never be nonzero.<br />

Suppose that y 1 and y 2 are solutions of y ′′ + p(t)y ′ + q(t)y = 0. Then<br />

Differentiat<strong>in</strong>g,<br />

W (y 1 , y 2 )(t) = y 1 y ′ 2 − y 2 y ′ 1 (20.43)<br />

d<br />

dt W (y 1, y 2 )(t) = y 1 y 2 ′′ + y 1y ′ 2 ′ − y2y 1 ′′ − y 2y ′ 1 ′ (20.44)<br />

= y 1 y 2 ′′ − y 2 y 1 ′′<br />

(20.45)<br />

S<strong>in</strong>ce y 1 and y 2 are both solutions, they each satisfy the differential equation:<br />

y 1 ′′ + p(t)y 1 ′ + q(t)y 1 = 0 (20.46)<br />

y 2 ′′ + p(t)y 2 ′ + q(t)y 2 = 0 (20.47)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!