Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro Lecture Notes in Differential Equations - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

144 LESSON 17. SOME SPECIAL SUBSTITUTIONS Replacing z with its original value of z = y ′ , Hence dy dt = Ce−6t (17.6) ∫ dy y = dt (17.7) dt ∫ = Ce −6t dt = (17.8) = − 1 6 Ce−6t + C ′ (17.9) Since −C/6 is still a constant we can rename it C ′′ = −C/6, then rename C ′′ back to C, giving us Example 17.2. Find the general solution o y = Ce −6t + C ′ (17.10) y ′′ + 6y ′ = t (17.11) We already have solved the homogeneous problem y ′′ + 6y ′ = 0 in example (17.1). From that we expect that where y = Y P + Y H (17.12) Y H = Ce −6t + C ′ (17.13) To see what we get if we substitute z = y ′ into (17.11) and obtain the first order linear equation z ′ + 6z = t (17.14) An integrating factor is µ = exp (∫ 6dt ) = e 6t , so that Integrating, ∫ d ( ze 6t ) = (z ′ + 6t) e 6t = te 6t (17.15) dt d ( ze 6t ) ∫ dt = te 6t dt (17.16) dt ze 6t = 1 36 (6t − 1)e6t + C (17.17) z = 1 6 t − 1 36 + Ce−6t (17.18)

145 Therefore since z = y ′ , Integrating gives dy dt = 1 6 t − 1 36 + Ce−6t (17.19) y = 1 12 t2 − 1 36 t − 1 6 Ce−6t + C ′ (17.20) It is customary to combine the (−1/6)C into a single unknown constant, which we again name C, y = 1 12 t2 − 1 36 t + Ce−6t + C ′ (17.21) Comparing this with (17.12) and (17.13) we see that a particular solution is y P = 1 12 t2 − 1 (17.22) 36 This method also works when b(t) has t dependence. Example 17.3. Solve Substituting z = y ′ gives ⎫ y ′′ + 2ty ′ = t⎪⎬ y(0) = 1 ⎪⎭ y ′ (0) = 0 An integrating factor is exp (∫ 2tdt ) = e t2 . Hence (17.23) z ′ + 2tz = t (17.24) d ( ze t2) = te t2 (17.25) dt ∫ ze t2 = te t2 dt + C = 1 2 et2 + C (17.26) z = 1 2 + Ce−t2 (17.27) From the initial condition y ′ (0) = z(0) = 0, C = −1/2, hence dy dt = 1 2 − 1 2 e−t2 (17.28) Changing the variable from t to s and integrating from t = 0 to t gives ∫ t 0 ∫ dy t ds ds = 1 2 ds − 1 2 0 ∫ t 0 e −s2 ds (17.29)

145<br />

Therefore s<strong>in</strong>ce z = y ′ ,<br />

Integrat<strong>in</strong>g gives<br />

dy<br />

dt = 1 6 t − 1 36 + Ce−6t (17.19)<br />

y = 1<br />

12 t2 − 1 36 t − 1 6 Ce−6t + C ′ (17.20)<br />

It is customary to comb<strong>in</strong>e the (−1/6)C <strong>in</strong>to a s<strong>in</strong>gle unknown constant,<br />

which we aga<strong>in</strong> name C,<br />

y = 1 12 t2 − 1 36 t + Ce−6t + C ′ (17.21)<br />

Compar<strong>in</strong>g this with (17.12) and (17.13) we see that a particular solution<br />

is<br />

y P = 1 12 t2 − 1<br />

(17.22)<br />

36<br />

This method also works when b(t) has t dependence.<br />

Example 17.3. Solve<br />

Substitut<strong>in</strong>g z = y ′ gives<br />

⎫<br />

y ′′ + 2ty ′ = t⎪⎬<br />

y(0) = 1<br />

⎪⎭<br />

y ′ (0) = 0<br />

An <strong>in</strong>tegrat<strong>in</strong>g factor is exp (∫ 2tdt ) = e t2 . Hence<br />

(17.23)<br />

z ′ + 2tz = t (17.24)<br />

d<br />

(<br />

ze t2) = te t2 (17.25)<br />

dt<br />

∫<br />

ze t2 = te t2 dt + C = 1 2 et2 + C (17.26)<br />

z = 1 2 + Ce−t2 (17.27)<br />

From the <strong>in</strong>itial condition y ′ (0) = z(0) = 0, C = −1/2, hence<br />

dy<br />

dt = 1 2 − 1 2 e−t2 (17.28)<br />

Chang<strong>in</strong>g the variable from t to s and <strong>in</strong>tegrat<strong>in</strong>g from t = 0 to t gives<br />

∫ t<br />

0<br />

∫<br />

dy t<br />

ds ds = 1<br />

2 ds − 1 2<br />

0<br />

∫ t<br />

0<br />

e −s2 ds (17.29)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!