21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

106 LESSON 12. EXISTENCE OF SOLUTIONS*<br />

which is what we wanted to prove (equation (12.39)).<br />

Lemma 12.7. The series S(t) converges.<br />

Proof. By Lemma (12.6)<br />

∞∑<br />

∞∑<br />

|φ n (t) − φ(t)| ≤ K n−1 M |t − t 0| n<br />

n!<br />

n=1<br />

n=1<br />

= M ∞∑ |K(t − t 0 )| n<br />

K n!<br />

n=1<br />

(<br />

= M ∞<br />

)<br />

∑ |K(t − t 0 )| n<br />

− 1<br />

K<br />

n!<br />

n=0<br />

= M (<br />

)<br />

e K|t−t0| − 1<br />

K<br />

(12.47)<br />

(12.48)<br />

(12.49)<br />

(12.50)<br />

≤ M K eK|t−t0| (12.51)<br />

S<strong>in</strong>ce each term <strong>in</strong> the series for S is absolutely bounded by the correspond<strong>in</strong>g<br />

term <strong>in</strong> the power series for the exponential, the series S converges<br />

absolutely, hence it converges.<br />

Lemma 12.8. The sequence φ 0 , φ 1 , φ 2 , . . . converges to some limit φ(t).<br />

Proof. S<strong>in</strong>ce the series for S(t) converges, then by Lemma (12.5), the sequence<br />

φ 0 , φ 1 , . . . converges to some function φ(t).<br />

Lemma 12.9. φ(t) is def<strong>in</strong>ed and cont<strong>in</strong>ous on R.<br />

Proof. For any s, t,<br />

|φ n (s) − φ n (t)| =<br />

∣<br />

=<br />

∣<br />

≤<br />

∣<br />

Hence tak<strong>in</strong>g the limit,<br />

∫ s<br />

t<br />

∫<br />

0<br />

s<br />

t<br />

∫ s<br />

t<br />

∫ t<br />

f(x, φ n (x))dx − f(x, φ n (x))dx<br />

∣ (12.52)<br />

t 0 f(x, φ n (s))dx<br />

∣ (12.53)<br />

Mdx<br />

∣ (12.54)<br />

= M|s − t| (12.55)<br />

lim |φ n(s) − φ n (t)| ≤ M|s − t| (12.56)<br />

n→∞

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!