21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

96 LESSON 11. PICARD ITERATION<br />

Cont<strong>in</strong>u<strong>in</strong>g as before, use φ 3 to calculate f(s, φ 3 (s)) and then φ 4 :<br />

f(s, φ 3 (s)) = −2sφ 3 (s) = −2s<br />

(1 − s 2 + 1 2 s4 − 1 )<br />

6 s6<br />

(11.38)<br />

φ 4 (s) = y 0 +<br />

= 1 − 2<br />

∫ t<br />

0<br />

∫ t<br />

0<br />

f(s, φ 3 (s))ds (11.39)<br />

(s − s 3 + 1 2 s5 − 1 6 s7 )<br />

ds (11.40)<br />

= 1 − t 2 + t2 2 − t6 6 + t8<br />

24<br />

That pattern that appears to be emerg<strong>in</strong>g is that<br />

φ n (t) = t2 · 0<br />

0!<br />

− t2·1<br />

1!<br />

+ t2·2<br />

2!<br />

− t2·3<br />

3!<br />

+ · · · + (−1)n t 2n<br />

n!<br />

=<br />

n∑ (−1) k t 2k<br />

k=0<br />

k!<br />

(11.41)<br />

(11.42)<br />

The only way to know if (11.42) is the correct pattern is to plug it <strong>in</strong> and<br />

see if it works. First of all, it works for all of the n we’ve already calculated,<br />

namely, n = 1, 2, 3, 4. To prove that it works for all n we use the pr<strong>in</strong>cipal<br />

of mathematical <strong>in</strong>duction: A statement P (n) is true for all n if and<br />

only if (a) P (1) is true; and (b) P (n) =⇒ P (n − 1). We’ve already proven<br />

(a). To prove (b), we need to show that<br />

φ n+1 (t) =<br />

n+1<br />

∑<br />

k=0<br />

(−1) k t 2k<br />

k!<br />

(11.43)<br />

logically follows when we plug equation (11.42) <strong>in</strong>to (11.15). The reason for<br />

us<strong>in</strong>g (11.15) is because it gives the general def<strong>in</strong>ition of any Picard iterate<br />

φ n <strong>in</strong> terms of the previous iterate. From (11.15), then<br />

φ n+1 (t) = y 0 +<br />

∫ t<br />

t 0<br />

f(s, φ n (s))ds (11.44)<br />

To evaluate (11.44) we need to know f(s, φ n (s)), based on the expression<br />

for φ n (s) <strong>in</strong> (11.42):<br />

f(s, φ n (s)) = −2sφ n (s) (11.45)<br />

n∑ (−1) k s 2k<br />

= −2s<br />

k!<br />

k=0<br />

(11.46)<br />

n∑ (−1) k s 2k+1<br />

= −2<br />

k!<br />

(11.47)<br />

k=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!