19.04.2015 Views

Speckle noise reduction

Speckle noise reduction

Speckle noise reduction

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review<br />

Advances in Seafloor-Mapping Sonar<br />

December 1st, Brest<br />

P. Courmontagne, Senior IEEE<br />

IM2NP / ISEN-Toulon, France


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

2<br />

Synthetic Aperture Sonar<br />

‣ Achieve a good resolution<br />

‣ Drawback: the speckle <strong>noise</strong><br />

Granular <strong>noise</strong> that inherently exists in SAS imagery<br />

By giving a variance to the intensity of each pixel, it reduces<br />

the spatial and radiometric resolutions<br />

Avoids thin interpretation and accurate details perception<br />

<strong>Speckle</strong> <strong>noise</strong> occupies a wider dynamic range than the scene<br />

content itself<br />

Reducing the speckle <strong>noise</strong> enhances radiometric resolution at<br />

the expense of spatial resolution<br />

Compromise speckle <strong>noise</strong> <strong>reduction</strong> / spatial resolution preservation


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

3<br />

Synthetic Aperture Sonar<br />

‣ Example of SAS data<br />

Data acquisition<br />

SHADOWS© [Jean, 2006]<br />

Sea bed (La Ciotat bay – France)<br />

Resolution: 15 cm<br />

2001 801 pixels<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

SAS data


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

4<br />

Filter Assessment methods<br />

‣ <strong>Speckle</strong> Level – Variation Coefficient<br />

Obtained by computing the variation coefficient (C in the<br />

following) for several homogeneous areas of the data.<br />

Let W be the number of homogeneous areas H n , it comes<br />

This one is computed in the same areas before and after process<br />

and allows to compute the <strong>Speckle</strong> Level <strong>reduction</strong><br />

The higher it gets, the better it is


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

5<br />

Filter Assessment methods<br />

‣ Ratio Image [Walessa, 2000; Achim, 2005]<br />

It corresponds to the ratio of the original image (speckled) by<br />

the de-<strong>noise</strong>d image<br />

In areas of the image where the speckle is fully developed, this<br />

ratio should have the characteristics of pure speckle<br />

Any appearing edge or shape in the ratio image reveals a bad<br />

interpretation of the filter<br />

Several assessment methods are based on the ratio image<br />

Mean value (=1), equivalent number of look (SAR images);<br />

Variation coefficient, mean and speckle <strong>noise</strong> distributions


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne 6<br />

‣ Mean filter<br />

Scalar Filters<br />

Each pixel value is replaced by the average value of its neighborhood in a<br />

M × M window<br />

The result quality is M-dependent<br />

‣ Median Filter [Pitas, 1990]<br />

Each pixel is replaced by the median of all pixels in the neighborhood in a<br />

M × M window<br />

D R D<br />

The result quality is M-dependent<br />

D R D<br />

‣ Hybrid Median Filter [Nieminen, 1986]<br />

Use a 2-way hybrid kernel<br />

<br />

Median values<br />

R R C R R<br />

D R D<br />

D R D<br />

Hybrid kernel, M=5


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

Scalar Filters: Mean Filter (M = 5)<br />

7<br />

250<br />

200<br />

Computing Time using<br />

a Mean Filter, M=3<br />

250<br />

200<br />

Computing Time T/T 0 1.2<br />

De-<strong>noise</strong>d SAS data<br />

Variance Reduction 9.3<br />

<strong>Speckle</strong> Level Reduction<br />

4.9<br />

FOM<br />

0.62<br />

150<br />

150<br />

Ratio Image<br />

Variation Coefficient Distribution<br />

100<br />

100<br />

Standard Deviation<br />

0.95<br />

0.046<br />

Mean Distribution<br />

50<br />

50<br />

1<br />

Standard Deviation<br />

0.038<br />

De-<strong>noise</strong>d SAS data<br />

0<br />

Ratio Image<br />

0<br />

<strong>Speckle</strong> Noise Distribution<br />

Correlation Factor<br />

108


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

8<br />

Adaptive Filters<br />

‣ Perform digital signal processing and adapt their<br />

performance based on the input signal<br />

‣ Adaptive filters appear under two forms:<br />

Summation of a weighted noisy data and the mean through the<br />

processed window<br />

performed using a sliding sub-window processing ( p,q and<br />

E{Z p,q } are computed for each window)<br />

Averaging on a part of the pixel values present in the processed<br />

window by the use of masks


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

9<br />

‣ Henri’s filter<br />

Adaptive Filters – 1 st form<br />

Based on the local estimation of the data and <strong>noise</strong> variances<br />

‣ Lee’s filter [Lee, 1981; Lee, 1986]<br />

Signal estimation by mean square error minimization<br />

mean filter in homogeneous area, noisy data in edge area<br />

‣ Modified Lee filter [Lu, 1996]<br />

Performs a speckle <strong>noise</strong> <strong>reduction</strong> in edge area<br />

‣ Enhanced Lee filter [Lopes, 1990]<br />

The SAS image is divided in 3 classes: homogeneous (mean filter),<br />

heterogeneous (Lee’s filter) and strong heterogeneity (pixel value is<br />

preserved)


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

10<br />

‣ Kuan filter [Kuan, 1987]<br />

Adaptive Filters – 1 st form<br />

Multiplicative <strong>noise</strong> model transforms into a signal-dependent additive <strong>noise</strong><br />

model + Minimum mean square error criterion<br />

‣ Modified Kuan filter [Lu, 1996]<br />

The Kuan filter derives from a linear approximation (1 st order Taylor<br />

expansion) Modified Kuan: the approximation is extended to 2 nd order<br />

Taylor expansion<br />

‣ Adaptive Frost filter [Frost, 1982]<br />

Equals to Wiener filter adapted to speckle model<br />

‣ Enhanced Frost filter [Lopes, 1990]<br />

Same approach as for the enhanced Lee filter


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

Adaptive Filters – 1 st form: Enhanced Lee Filter<br />

11<br />

‣ Results (M = 7)<br />

250<br />

200<br />

250<br />

200<br />

Computing Time T/T 0 3.6<br />

De-<strong>noise</strong>d SAS data<br />

Variance Reduction 10.8<br />

<strong>Speckle</strong> Level Reduction<br />

5.9<br />

FOM<br />

0.57<br />

150<br />

150<br />

Ratio Image<br />

Variation Coefficient Distribution<br />

100<br />

100<br />

Standard Deviation<br />

0.92<br />

0.057<br />

Mean Distribution<br />

50<br />

50<br />

1<br />

Standard Deviation<br />

0.040<br />

De-<strong>noise</strong>d SAS data<br />

0<br />

Ratio Image<br />

0<br />

<strong>Speckle</strong> Noise Distribution<br />

Correlation Factor<br />

66


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

12<br />

Adaptive Filters – 2 nd form<br />

‣ Adaptive mean filter [Pomalaza-Raez, 1984]<br />

Removes from the filtering window the pixels that have a too atypical value<br />

‣ Anisotropic diffusion filter [Perona, 1990]<br />

Diffusion process: the diffusion is isotropic in homogeneous regions and<br />

becomes anisotropic when a gradient is encountered.<br />

‣ Adaptive weighted d filter [Issa, 1996]<br />

It aims to smooth the <strong>noise</strong> and simultaneously enhance edges and preserve<br />

thin structures<br />

‣ Autoadaptive mean filter [Courmontagne, 2007]<br />

Based on the Mean Filter using for each pixel the most adequate window<br />

size, conditioned by the estimated signal first order statistics<br />

‣ Non-local mean filter [Buades, 2005]<br />

Based on the fact that images contain an extensive amount of self-similarities


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

Adaptive Filters – 2 nd form: Autoadaptive mean filter<br />

13<br />

‣ Results (circular window, M max = 27)<br />

Computing Time T/T 0 20<br />

250<br />

200<br />

250<br />

200<br />

De-<strong>noise</strong>d SAS data<br />

Variance Reduction 14<br />

<strong>Speckle</strong> Level Reduction<br />

12<br />

FOM<br />

0.04<br />

150<br />

150<br />

Ratio Image<br />

Variation Coefficient Distribution<br />

100<br />

100<br />

Standard Deviation<br />

1.07<br />

0.074<br />

Mean Distribution<br />

50<br />

50<br />

1.03<br />

Standard Deviation<br />

0.060<br />

De-<strong>noise</strong>d SAS data<br />

0<br />

Ratio Image<br />

0<br />

<strong>Speckle</strong> Noise Distribution<br />

Correlation Factor<br />

149


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

14<br />

‣ Principle:<br />

Adaptive Filters in Transform Domain<br />

The idea is to apply different signal decompositions to the SAS<br />

data just followed by a process adapted to the new domain<br />

Two main families of expansion<br />

Discrete Wavelet Transform (Multi-resolution analysis)<br />

Signal expansion in a weighted sum of uncorrelated<br />

random variables, where the basis depends on a priori<br />

knowledge of signal and <strong>noise</strong> statistics


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

15<br />

Adaptive Filters in Transform Domain<br />

‣ Wavelet expansion & soft or hard thresholding<br />

The SAS data is expanded into several complementary sub-spaces (Mallat<br />

[Mallat, 1989], à Trous [Holdschneider, 1989])<br />

Only a few part of the wavelet coefficients are kept (soft and hard<br />

thresholding [Donoho, 1993])<br />

Only available for a Gaussian disturbing signal Ridgelet [Candes, 1998],<br />

Curvelet [Starck, 2002] and Gaussianisation [Mallet, 2000]<br />

‣ Stochastic Matched Filter (SMF, [Cavassilas, 1991])<br />

SAS data expansion onto a basis enhancing the SNR; signal approximation<br />

reconstruction using only a few part of the decomposition coefficients<br />

Mean square error minimization [Chaillan1, 2005], speckle <strong>noise</strong> local<br />

statistics [Courmontagne, 2007], adaptive [Courmontagne, 2006]<br />

Coupled with multi-resolution analysis: à Trous algorithm [Chaillan, 2006],<br />

Mallat algorithm [Chaillan2, 2005]


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

Adaptive Filters in Transform Domain: ASMF<br />

16<br />

‣ Results (M max = 27, M min = 3)<br />

Computing Time T/T 0 13<br />

250<br />

200<br />

250<br />

200<br />

De-<strong>noise</strong>d SAS data<br />

Variance Reduction 17<br />

<strong>Speckle</strong> Level Reduction<br />

15<br />

FOM<br />

0.05<br />

150<br />

150<br />

Ratio Image<br />

Variation Coefficient Distribution<br />

100<br />

100<br />

Standard Deviation<br />

0.93<br />

0.062<br />

Mean Distribution<br />

50<br />

50<br />

1<br />

Standard Deviation<br />

0.063<br />

De-<strong>noise</strong>d SAS data<br />

0<br />

Ratio Image<br />

0<br />

<strong>Speckle</strong> Noise Distribution<br />

Correlation Factor<br />

58


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

17<br />

Maximum A Posteriori (MAP) Filters<br />

‣ Using Bayesian approach, those filters intend to maximize the a<br />

posteriori probability P(S/Z)<br />

‣ Filters’ equations are derived by solving the MAP equation<br />

Assume a non-stationary multiplicative speckle <strong>noise</strong> model<br />

Too small windows introduce a bias<br />

‣ Several approaches depending on the distributions used to<br />

described the signal and P(Z/S)<br />

Kuan MAP filter [Kuan, 1987]<br />

Gamma MAP filter [Lopes, 1993]<br />

Fisher MAP filter [Nicolas, 2003]


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

MAP Filters: Gamma MAP Filter<br />

18<br />

‣ Results (M = 9)<br />

250<br />

200<br />

250<br />

200<br />

Computing Time T/T 0 3.6<br />

De-<strong>noise</strong>d SAS data<br />

Variance Reduction 13.5<br />

<strong>Speckle</strong> Level Reduction<br />

9<br />

FOM<br />

0.49<br />

150<br />

150<br />

Ratio Image<br />

Variation Coefficient Distribution<br />

100<br />

100<br />

Standard Deviation<br />

0.95<br />

0.036<br />

Mean Distribution<br />

50<br />

50<br />

1<br />

Standard Deviation<br />

0.043<br />

De-<strong>noise</strong>d SAS data<br />

0<br />

Ratio Image<br />

0<br />

<strong>Speckle</strong> Noise Distribution<br />

Correlation Factor<br />

144


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

19<br />

Conclusion<br />

‣ What is the best de-noising process ?<br />

Quite difficult question<br />

Depends on the use of the despeckled SAS data (detection,<br />

classification, …)<br />

Adaptive filters seem to be a good compromise<br />

‣ Other approaches<br />

Based on the use of filtering process directly on the received<br />

signals before beamforming<br />

Based on a mixing of known de-noising process


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

20<br />

Bibliography<br />

[Jean, 2006] F. Jean, SHADOWS, by Ixsea, a real-time Synthetic Aperture Sonar system, Electronic Proceedings of OCEANS<br />

2006 - Asia Pacific, Singapore, May 2006.<br />

[Walessa, 2000] M. Walessa and M. Datcu, Model-Based Despeckling and Information Extraction from SAR Images, IEEE<br />

Transactions on Geoscience and Remote Sensing, Vol. 38 (2000), No 5, pp. 2258-2269.<br />

[Achim, 2005] A. Achim, E. Kuruoglu and J. Zerubia, SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model,<br />

Research Report, INRIA, N° 5493, February 2005, FRANCE.<br />

[Pitas, 1990] I. Pitas & A.N. Venetsanopoulos, Nonlinear digital filters, Kluwer Academic Publishers, 1990<br />

[Nieminen, 1986] A. Nieminen, P. Heinonen and Y. Neuvo, 2-D Multilevel FIR-median hybrid filters, Acoustics, Speech and Signal<br />

Processing, IEEE International Conference on ICASSP’86, 11, 1986.<br />

[Lee, 1981]<br />

J.S. Lee, <strong>Speckle</strong> analysis and smoothing of synthetic aperture radar images, Computer graphics and image<br />

processing, n. 17, 1981, pp 24-32<br />

[Lee, 1986] J.S. Lee, <strong>Speckle</strong> suppression and analysis for synthetic aperture radar images, Optical engineering, vol 25 n. 5,<br />

1986, pp 636-643<br />

[Lu, 1996]<br />

Y.H. Lu, S.Y. Tan, T.S. Yeo, W.E. Ng, I. Lim and C.B. Zhang, Adaptive Filtering algorithms for SAR speckle<br />

<strong>reduction</strong>, Geoscience and Remote Sensing Symposium, IGARSS’96, 1 , 1996.<br />

[Lopes, 1990] A. Lopes, R. Touzi, E. Nezry, Adaptive speckle filters and Scene heterogeneity, IEEE Transaction on Geoscience<br />

and Remote Sensing, Vol. 28, No 6, pp. 992-1000, Nov. 1990.<br />

[Lee, 1980]<br />

J.-S. Lee, Digital image enhancement and <strong>noise</strong> filtering by use of local statistics, IEEE Transactions on Pattern<br />

Analysis and Machine Intelligence, PAMI-2, pp. 165-168, 1980.<br />

[Kuan, 1985] D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, Adaptative <strong>noise</strong> smoothing filter for images with signaldependent<br />

<strong>noise</strong>, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No 2, pp. 165-177,<br />

March 1985.<br />

[Kuan, 1987] D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, Adaptative restoration of images with speckle, IEEE<br />

Transactions Acoustic, Speech, Signal Processing, Vol. 35, No 3, pp. 373-383, March 1987.


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

21<br />

Bibliography<br />

[Frost, 1982] V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive<br />

digital filtering of multiplicative <strong>noise</strong>, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 4, No 2, pp.<br />

157-166, March 1982.<br />

[Pomalaza-Raez, 1984] C. A. Pomalaza-Raez et C. D. McGillem, An adaptive non linear edge preserving filter, IEEE Trans. on Acoustics<br />

Speech Signal Processing, Vol. 32, No3, pp. 571-576, 1984.<br />

[Perona, 1990] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. On Pattern<br />

Analysis and Machine Intelligence, Vol.12 n.7, 1980, pp 629-639<br />

[Issa, 1996]<br />

I. Issa, Ph. Bolon, Adaptative weighted dalpha filter, Proc. EUSIPCO’96, Trieste, Italy, september 1996, pp.1921-<br />

1924<br />

[Courmontagne, 2007] Ph. Courmontagne, SAS images denoising: the jointly use of an autoadaptive mean filter and the stochastic<br />

matched filter, Electronic Proceedings of OCEANS’07 Aberdeen, June 2007.<br />

[Buades, 2005] A. Buades, B. Coll and J.M. Morel, A non-local algorithm for image denoising, computer Vision and Pattern<br />

Recognition, 2, 60-65, 2005<br />

[Holdschneider, 1989] M. Holdschneider, R. Kronland-Martinet, J. Morlet and P. Tchamitchian, A real time algorithm for the Signal<br />

Analysis with the help of the wavelet transform, in Wavelets. ed. J.M. Combes et al. Springer-Verlag Berlin,<br />

1989, pp.286-297.<br />

[Mallat, 1989] S. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, Proc. IEEE Trans on<br />

Pattern Anal. and Math. intel., Vol. 11 (1989), No 7, pp. 674-693.<br />

[Donoho, 1993] D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, technical report,<br />

Stanford University ([Online] Available: http://www-stat.stanford.edu/_donoho/reports.html), 1993.<br />

[Candes, 1998] E.J. Candes, Ridgelets: Theory and Applications, PhD Thesis, Stanford University, 1998<br />

[Starck, 2002] J.L. Starck, E. Candes, and D.L. Donoho, The Curvelet Transform for Image Denoising, IEEE Transactions on<br />

Image Processing , 11, 6, pp. 670-684, 2002.<br />

[Mallet, 2006] J. Mallet and P. Courmontagne, A new wavelet thresholding approach for SAS images denoising, OCEANS’06,<br />

Boston, September 2006.


<strong>Speckle</strong> <strong>noise</strong> <strong>reduction</strong>: a review – Ph. Courmontagne<br />

22<br />

Bibliography<br />

[Cavassilas, 1991] J.-F. Cavassilas, Stochastic matched filter, Proceedings of the Institute of Acoustics (International Conference on<br />

Sonar Signal Processing), Vol. 13, Part 9, pp. 194-199, 1991.<br />

[Chaillan1, 2005] F. Chaillan, C. Fraschini and Ph. Courmontagne, Stochastic matched filtering method applied to SAS imagery,<br />

OCEANS’05 Europe, Vol. 1, pp. 233-238, Brest, June 2005.<br />

[Courmontagne, 2006] Ph. Courmontagne and F. Chaillan, The Adaptive Stochastic Matched Filter for SAS images denoising,<br />

OCEANS’06, Boston, September 2006.<br />

[Chaillan, 2006] F. Chaillan and P. Courmontagne, Coupling the Stochastic Matched Filter and the à Trous Algorithm for SAS<br />

Images denoising, Electronic Proceedings of OCEANS 2006 - Asia Pacific, Singapore, May 2006.<br />

[Chaillan2, 2005] F. Chaillan, C. Fraschini, M. Amate and P. Courmontagne, Multiresolution Analysis of SAS Images, Proceedings of<br />

OCEANS 2005 - Europe, Vol. 2, pp. 1127-1132, June 2005.<br />

[Lopes, 1993] A. Lopes, E. Nezry, R. Touzi, H. Laur, Structure detection and statistical adaptive speckle filtering in SAR images,<br />

International Journal of Remote Sensing, Vol. 14, No 9, pp. 1735-1758, 1993.<br />

[Nicolas, 2003] J. M. Nicolas, A Fisher-MAP filter for SAR image processing, Proceedings of IGARSS’03, Vol. 3, pp. 1996-1998,<br />

July 2003.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!