18.04.2015 Views

Introduction to the nmr-cycling technique and basic instrumentation

Introduction to the nmr-cycling technique and basic instrumentation

Introduction to the nmr-cycling technique and basic instrumentation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INTRODUCTION TO THE NMR<br />

FIELD-CYCLING TECHNIQUE AND<br />

BASIC INSTRUMENTATION<br />

ESTEBAN ANOARDO<br />

anoardo@famaf.unc.edu.ar<br />

FaMAF – UNC<br />

IFFAMAF – CONICET<br />

CORDOBA - ARGENTINA


Relaxometry: Larmor frequency<br />

dependence of a given NMR<br />

relaxation parameter<br />

Example: T 1 =f(ν 0 ) spinlattice<br />

relaxation time<br />

ν 0 = γ.Β/2π


What is field-<strong>cycling</strong>?<br />

Defines ν 0


Why magnetic field <strong>cycling</strong> in NMR<br />

experiments?


Signal <strong>to</strong> noise ratio in<br />

NMR experiments<br />

B(t)<br />

t<br />

B(t)<br />

t


Example 1: field-<strong>cycling</strong> NMR relaxometry<br />

100<br />

100<br />

Bulk 8CB<br />

ISOTROPIC 323K<br />

NEMATIC 309K<br />

T 1<br />

[ms]<br />

90<br />

80<br />

70<br />

8CB+Aerosil<br />

8CB Bulk<br />

T 1<br />

[ms]<br />

10<br />

υ 1/2<br />

60<br />

50<br />

323K<br />

1 10 100 1000 10000<br />

ν 0<br />

[kHz]<br />

0.1 1 10 100 1000 10000<br />

ν 0<br />

[kHz]


Example 2: nuclear quadrupole double<br />

resonance (NQDOR)<br />

Ho<br />

POLARIZATION<br />

DETECTION<br />

100<br />

80<br />

60<br />

IRRADIATION<br />

40<br />

20<br />

0<br />

A<br />

HpAB / 82 o C<br />

SMECTIC<br />

300 400 500 600 700<br />

ωQ<br />

t


Example 3: zero field NMR


Example 4: electron-nuclear double resonance<br />

(ENDOR)<br />

CRITIC FOR ELECTRONS<br />

ZFR<br />

X-BAND


Quadrupole dips<br />

NQR frequencies<br />

I=1<br />

ν +<br />

T CR<br />

H Z<br />

H Q<br />

ν -<br />

ν o<br />

ν -<br />

Larmor<br />

frequency<br />

I=1/2<br />

T Z<br />

Lattice<br />

T Q<br />

DIP<br />

1<br />

DIP<br />

2<br />

External magnetic field<br />

DIP<br />

3


Example 5: field-<strong>cycling</strong> MRI<br />

T 1 dispersion plot of volunteer’s thighs<br />

FC inversion recovery images<br />

T1 (ms)<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

14<br />

N-NQDips<br />

B 0e =<br />

65 mT<br />

150<br />

140<br />

30 40 50 60 70 80<br />

Evolution field (mT)<br />

B 0e =<br />

75 mT<br />

Data acknowledged <strong>to</strong> David Lurie (Aberdeen)


Field-<strong>cycling</strong>: <strong>the</strong> roots<br />

1949-1951:<br />

Turner <strong>and</strong> Sachs, Ramsey <strong>and</strong> Pound<br />

(Cambridge).<br />

Hebel, Slichter <strong>and</strong> Lurie (Illinois).<br />

Hahn @IBM Watson Lab (New York).<br />

1950s:<br />

At IBM: Redfield, Anderson, Kung <strong>and</strong> Genak:<br />

relaxometry.<br />

Hahn: NQR.<br />

1960s:<br />

Fite, Bleich <strong>and</strong> Redfield <strong>and</strong> later Koenig,<br />

Brown <strong>and</strong> Kiselewsky at IBM.<br />

Noack - Kimmich: relaxation spectroscopy<br />

(Stuttgart).<br />

Hahn (Berkeley).<br />

E. M. Purcell<br />

F. Noack<br />

E. L. Hahn<br />

C. P. Slichter


Stelar<br />

1997: first pro<strong>to</strong>type<br />

“Spinmaster FFC”<br />

2000: FFC-2000<br />

2003: 1T magnet<br />

2006: Compact version<br />

2006: SMARtracer


Basic Experiment: measurement<br />

of <strong>the</strong> Larmor frequency<br />

dependence of T 1


T 1<br />

B o<br />

t=0<br />

SAMPLE<br />

M<br />

B o<br />

t=τ


Signal<br />

intensity<br />

MAGNETIZATION DECAY<br />

Magnetic<br />

Field cycle<br />

time<br />

T 1<br />

T 1<br />

Defines de Larmor frequency!<br />

time<br />

frequency


What do we measure?<br />

Magnetization decay<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

Data: D ata1_B<br />

M odel: ExpD ec1<br />

y0+A1e^(-x/t1)<br />

Chi^2 = 0.00011<br />

R^2 = 0.99905<br />

y0 0.19773 ±0.00563<br />

A1 0.99187 ±0.01106<br />

t1 0.99018 ±0.026<br />

∆t1=2,6%<br />

T 1 or 1/T 1 = R 1 ?<br />

Y0+A1e^(-r1x)<br />

0,2<br />

0 1 2 3 4 5 6<br />

Effective relaxation delay


About <strong>the</strong> magnetic field sequence<br />

1,2<br />

1,0<br />

Magnetization decay<br />

0,8<br />

0,6<br />

0,4<br />

Data: Data1_C<br />

Model: ExpDec1<br />

y0+A1e^(-x/t1)<br />

Chi^2 = 7.7417E-6<br />

R^2 = 0.99327<br />

y0 0.99729 ±0.00151<br />

A1 0.09907 ±0.00294<br />

t1 1.00385 ±0.07037<br />

∆t1=7%<br />

0,2<br />

0 1 2 3 4 5 6<br />

Effective relaxation delay


Magnetization evolutions with same T 1<br />

Relaxation field level<br />

Zero field level


Signal<br />

intensity<br />

MAGNETIZATION GROW<br />

Magnetic<br />

Field cycle<br />

time<br />

T 1<br />

Etc<br />

T 1<br />

Defines de Larmor frequency!<br />

time<br />

frequency


PP sequence


NP sequence


B a s ic p r e p o la r is e d s e q u e n c e<br />

B p<br />

B d<br />

B r<br />

P W<br />

T x<br />

A c q<br />

How is obtained <strong>the</strong> relaxation curve<br />

EWIB<br />

EWEB<br />

d p d f d r d o<br />

B a s ic n o n p o la r is e d s e q u e n c e<br />

Mk<br />

B = 0<br />

T x<br />

A c q<br />

B r<br />

B d<br />

P w<br />

EWIP EWEP<br />

τ<br />

Fitted<br />

curve<br />

d p d f d r d o<br />

Source: Stelar


Switching times<br />

Magnetization decay<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

Data: Data1_B<br />

Model: ExpDec1<br />

y0+A1e^(-x/t1)<br />

Chi^2 = 0.00011<br />

R^2 = 0.99905<br />

y0 0.19773 ±0.00563<br />

A1 0.99187 ±0.01106<br />

t1 0.99018 ±0.026<br />

0,2<br />

0 1 2 3 4 5 6<br />

Effective relaxation delay


T 1 relaxation<br />

dispersion [s]<br />

T 1 profile<br />

Relaxation rate (1/T 1<br />

- 1 1 or R 1 ) dispersion [s ]<br />

NMRD: nuclear<br />

magnetic relaxation<br />

dispersion<br />

NMRD profile<br />

Glossary<br />

T 1<br />

[ms]<br />

T 1<br />

-1<br />

[s<br />

-1<br />

]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

8CB+Aerosil<br />

8CB Bulk<br />

323K<br />

10 100 1000 10000<br />

ν 0 [kHz]<br />

T=323K<br />

8CB+AEROSIL<br />

8CB BULK<br />

10 1<br />

Relaxivity: relaxation rate<br />

for a given concentration<br />

in a solution [mM -1 s -1 ]<br />

10 0 10 1 10 2 10 3 10 4<br />

ν 0<br />

[kHz]


Hardware


Different approaches<br />

High detection field<br />

Superconducting magnet<br />

Keep spectroscopic<br />

resolution<br />

Typical switching times<br />

50ms – 500ms<br />

Movable sample<br />

Pneumatic or mechanic<br />

system<br />

Moderate detection field<br />

Air-cored electromagnet<br />

Low resolution, relaxation<br />

applications<br />

Typical switching times<br />

0.2ms – 2ms.<br />

Sample at fixed position<br />

Power electronics<br />

Fast-Field-Cycling (FFC)


Block-diagram<br />

Cooling<br />

System<br />

Cooling<br />

enclosure<br />

Magnet<br />

Magnet<br />

Power<br />

Supply<br />

Probe<br />

Preamp<br />

VTC<br />

Software<br />

HOST<br />

COMPUTER<br />

AQM<br />

RF unit<br />

PULSER


I- Power network


Basic circuit<br />

R high<br />

L<br />

R low<br />

R<br />

V 0<br />

d I<br />

1<br />

= V<br />

0<br />

I ( t )( R<br />

h ig h<br />

R )<br />

d t L ⎡ − + ⎤<br />

⎣ ⎦ Low-<strong>to</strong>-high


Capaci<strong>to</strong>r assistance<br />

C<br />

LOGIC<br />

R high<br />

V C<br />

Vc » Vo<br />

V 0<br />

L R low<br />

R


Subdamped<br />

i<br />

R high<br />

1,4<br />

1,2<br />

C=0.5<br />

C=1<br />

V 0<br />

L R low<br />

R<br />

i R 0 2 4 6 8 10<br />

R s<br />

C<br />

i C<br />

ion(t) (au)<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

C=0<br />

C=0.25<br />

0,2<br />

0,0<br />

t (atu)


Examples


Mosfet – GTO. Energy-s<strong>to</strong>rage.<br />

GTO<br />

-<br />

V 0<br />

CONTROL<br />

ELECTRONICS<br />

v(t)<br />

+ +<br />

R<br />

M<br />

-<br />

H.V.<br />

r(t)<br />

v(t)<br />

C


+ +<br />

-<br />

-<br />

+ +<br />

-<br />

-


Mosfet-driven network without<br />

energy s<strong>to</strong>rage capaci<strong>to</strong>r<br />

+<br />

V2<br />

-<br />

V 1<br />

v(t)<br />

S<br />

-<br />

+<br />

CONTROL<br />

ELECTRONICS<br />

M<br />

r(t)<br />

v(t)


Typical Mosfet-bank


II- Magnet


Premises of design<br />

Low inductance <strong>and</strong> resistance.<br />

Good magnetic field <strong>to</strong> power ratio (G-fac<strong>to</strong>r).<br />

NMR homogeneity.<br />

Efficient cooling.<br />

Simple mechanical assembly.


Field-<strong>cycling</strong> magnets<br />

z<br />

dr<br />

dB<br />

dz<br />

2l<br />

r 0<br />

r 1


The Dvinskikh-Molchanov<br />

approach (1985)<br />

COOLANT IN<br />

WINDING<br />

COOLANT<br />

OUT<br />

y<br />

x<br />

PROBE


Schweikert-Noack Magnet (1989)


• Inversion of <strong>the</strong> Biot-Savart law<br />

• Lagrange minimization procedure:<br />

• Lagrange minimization procedure:<br />

field <strong>to</strong> power ratio, homogeneity <strong>and</strong> volume


10 layer magnet (Stuttgart-Córdoba, 1992)


Notch-coilcoil<br />

Rommel - Seitter -<br />

MOVABLE<br />

OUTER COILS<br />

Kimmich<br />

(1993-1995) 1995)<br />

VARIABLE<br />

GAP<br />

DOUBLE<br />

WINDING<br />

LAYERS<br />

MAGNET<br />

BORE


Stelar 2L-0.5T system (1997-2000)


Stelar 4L-1T system (2003)


Magnet cooling<br />

45<br />

40<br />

15 o C<br />

18 o C<br />

12MHz<br />

35<br />

C]<br />

Thermal Jump [ o<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

10MHz<br />

8MHz<br />

5MHz<br />

0<br />

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Polarization Time [s]


ULF regime<br />

External magnetic field components:<br />

magnetic field compensation.<br />

Internal magnetic field components: local<br />

fields.


Switching <strong>the</strong> Zeeman Field<br />

z l<br />

z<br />

B 0<br />

(t)+B P<br />

B(t)<br />

B 0<br />

(t)<br />

B P<br />

B<br />

α(t)<br />

y l<br />

y<br />

B N<br />

x l<br />

S<br />

x


Time-dependence of <strong>the</strong> field<br />

12<br />

10<br />

8<br />

B pol<br />

=10MHz<br />

B det<br />

=9.3MHz<br />

B 0<br />

[MHz]<br />

6<br />

4<br />

RELAXATION<br />

DELAY<br />

2<br />

0<br />

A<br />

t sw<br />

B rel<br />

=10kHz<br />

B 0<br />

[kHz]<br />

80<br />

70<br />

60<br />

5 10 15 20 25 30<br />

t [ms]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

16 17 18 19 20 21 22 23<br />

t [ms]<br />

B


30<br />

25<br />

40<br />

20<br />

35<br />

15<br />

Shunt Voltage [mV]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1.6ms<br />

100kHz=10mV<br />

50kHz<br />

Shunt Voltage [mV]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

30<br />

25<br />

20<br />

15<br />

100kHz<br />

Slew Rate 14MHz/ms<br />

0,012 0,013 0,014 0,015 0,016<br />

-5<br />

0,012 0,013 0,014 0,015 0,016 0,017<br />

Sequence Timing [s]<br />

10<br />

5<br />

0<br />

100kHz<br />

Slew Rate 12MHz/ms<br />

-5<br />

-10<br />

0,012 0,013 0,014 0,015 0,016<br />

Sequence Timing [s]


Adiabatic & non-adiabatic<br />

switching<br />

20<br />

Signal Amplitude [au]<br />

15<br />

10<br />

5<br />

B r<br />

=4kHz<br />

B r<br />

=7kHz<br />

0<br />

0.000 0.005 0.010 0.015 0.020 0.025<br />

τ[s]


Magnetic field compensation<br />

GdCl3 2mM 294K<br />

Signal Signed Magnitude [au]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

B offset<br />

= +4.4kHz<br />

A<br />

0,00 0,01 0,02 0,03 0,04<br />

B offset<br />

= 0kHz<br />

B<br />

0,00 0,01 0,02 0,03 0,04<br />

B offset<br />

= -7.8kHz<br />

C<br />

0,00 0,01 0,02 0,03 0,04<br />

NAFID Signal Intensity [au]<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

180<br />

150<br />

210<br />

120<br />

240<br />

90<br />

270<br />

60<br />

300<br />

30<br />

330<br />

τ [s]


Au<strong>to</strong>matic compensation<br />

y (cm)<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

-9 -6 -3 0 3 6 9<br />

x (cm)<br />

G x<br />

(G/cm)<br />

-3E-4<br />

-1.8E-4<br />

-6E-5<br />

6E-5<br />

1.8E-4<br />

3E-4<br />

Amp.[a.u.]<br />

Amp.[a.u.]<br />

Amp.[a.u.]


Plateaus <strong>and</strong> false dispersions<br />

0.1<br />

A<br />

T 1 [s]<br />

0.01<br />

5CB - 303K<br />

13kHz<br />

1E-4 1E-3 0.01 0.1 1 10<br />

0.1<br />

B<br />

0.01<br />

21kHz<br />

5CB - 298K<br />

1E-4 1E-3 0.01 0.1 1 10<br />

ν 0<br />

[MHz]


Sources for low-frequency plateau<br />

Plateau<br />

Cut-off of <strong>the</strong> effective<br />

relaxation mechanism<br />

Hardware<br />

Local Fields<br />

Current Offset in<br />

<strong>the</strong> Magnet<br />

Magnetic Field Offset<br />

Magnetic Field<br />

time dependence<br />

Dipolar<br />

Quadrupolar


Local Field Plateau<br />

T 1<br />

(ν 0<br />

)=A.((ν 0<br />

+ (ν L 2 - ν N 2 ) 1/2 ) 2 + ν N 2 ) 1/2 ν 0<br />

0.5<br />

10<br />

T 1 [a.u]<br />

ν L<br />

20kHz<br />

10kHz<br />

5kHz<br />

ν N<br />

=0<br />

ν N<br />

=ν L<br />

1<br />

0.1 1 10 100 1000<br />

ν 0<br />

[kHz]


Local<br />

fields<br />

• Plateau<br />

• Data scattering<br />

Liposomes<br />

DMPC – D 2 O 100nm


Yesterday <strong>and</strong> <strong>to</strong>day….


R. E. Slusher (1966): “The author is shown in typical<br />

operating position with an instrument used <strong>to</strong> sooth <strong>the</strong><br />

electric apparatus (<strong>and</strong> <strong>the</strong> author)”<br />

Source: Slusher´s Thesis (E. Hahn lab)


Stuttgart Instrument by 1970<br />

Pictures from R. Kimmich


“Relaxometry”<br />

The IBM first<br />

Pro<strong>to</strong>type, as later upgraded<br />

at <strong>the</strong> University of Florence<br />

Alfred Redfield<br />

Relaxation <strong>the</strong>ory 1957<br />

Sorce: internet


Córdoba, 1993


Ulm, 1995-2000


1998


Stelar (Mede – Italy): first pro<strong>to</strong>type FFC-2000


FFC-2000


Compact version


SMARtracer<br />

Stelar Magnetic Relaxation tracer


Basic literature<br />

F. Noack Progr. NMR Spectrosc. 18, 171 (1986).<br />

R. Kimmich, NMR Tomography, Diffusometry,<br />

Relaxometry. Springer. Berlin (1997).<br />

E. Anoardo, G. Galli <strong>and</strong> G. Ferrante, Appl. Magn.<br />

Reson. 20, 365 (2001).<br />

R. Kimmich <strong>and</strong> E. Anoardo, Prog. NMR Spectrosc. 44,<br />

257 (2004).<br />

G. Ferrante <strong>and</strong> S. Sykora, Adv. Inorg. Chem. 57, 405<br />

(2005).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!