15.04.2015 Views

CITY OF BUCHAREST SEISMIC PROFILE: FROM HAZARD ... - apcmr

CITY OF BUCHAREST SEISMIC PROFILE: FROM HAZARD ... - apcmr

CITY OF BUCHAREST SEISMIC PROFILE: FROM HAZARD ... - apcmr

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SEISMIC</strong> STRENGTHENING <strong>OF</strong> BUILDINGS AND <strong>SEISMIC</strong><br />

INSTRUMENTATION -TWO PRIORITIES FOR <strong>SEISMIC</strong> RISK<br />

REDUCTION IN ROMANIA<br />

D. Lungu 1,2 , A. Aldea 2 , S. Demetriu 2 and I. Craifaleanu 1<br />

Abstract<br />

According to the number of people lost in earthquakes during XX th century as well as<br />

in a single (March 4, 1977) earthquake during this century (1574 people, including 1424 in<br />

Bucharest), Romania can be ranked the 3 rd country in Europe, after Italy and Turkey. Romania<br />

is followed by the former Yugoslavia and by the Greece (Bolt, 1995, Coburn and Spence,<br />

1992).<br />

The World Bank loss estimation after the 1977 earthquake (Report No.P-2240-RO,<br />

1978) indicates that from the total loss (2.05 Billion US $) more than 2/3 was in Bucharest,<br />

where 32 tall buildings collapsed. Half of the total loss was accumulated from buildings<br />

damage. The 1977 direct loss and indirect consequences of loss mark probably the starting<br />

point of economical decay of Romania during the next decade. They also explain the present<br />

concern of civil engineers and Romanian Government for assessment and reduction of<br />

seismic risk in Romania.<br />

The World Map of Natural Hazards prepared by the Münich Re, 1998 indicates for<br />

Bucharest: “Large city with Mexico-city effect”. The map focuses the dangerous phenomenon<br />

of long (1.6s) predominant period of soil vibration in Bucharest during strong Carpathians<br />

Vrancea earthquakes. The Bucharest and Lisbon are the only two European cities falling into<br />

Mexico-city category.<br />

International experts and organizations agreed that Bucharest is the capital city in<br />

Europe characterised by the highest seismic risk.<br />

The paper presents:<br />

Part I, Vrancea Seismic Hazard Assessment in Romania, 1.1 Subcrustal Seismicity of<br />

the Vrancea Region; 1.2 Codes and standards for design of earthquake resistance of structures<br />

1 National Institute for Building Research, Bucharest, Tel.: 0040.21.255.02.70, Fax: 0040.21.255.00.62, E-mail:<br />

lungud@cons.incerc.ro; lungud@incerc2004.ro<br />

2 Technical University of Civil Engineering, Bucharest. Tel.: 0040.21.242.58.04,<br />

E-mail: lungud@mail.utcb.ro


(1940 – 2000); 1.3 Seismic hazard assessment in the draft P 100 2003 seismic code of<br />

Romania.<br />

Part II, Seismic Risk Management, 2.1 The structure of the existing building stock in<br />

Bucharest; 2.2 Fragile residential buildings in Bucharest.<br />

Part I: Vrancea seismic hazard assessment in Romania<br />

1.1 Subcrustal seismicity of the Vrancea region of Romania<br />

The Vrancea region, located where the Carpathians Mountains Arch bends, at about<br />

135 ± 35 km epicentral distance from Bucharest, is a source of subcrustal seismic activity,<br />

which affects ±35 more than 2/3 of the territory of Romania and an important part of the<br />

territories of Republic of Moldova, Bulgaria and Ukraine. The Vrancea source induces the<br />

very high seismic risk in the densely built zones of the South-East of Romania. According to<br />

the 20th century seismicity, the epicentral Vrancea area is confined to a rectangle of<br />

40x80km 2 having the long axis oriented N45E and being centered at about 45.6 o Lat.N and<br />

26.6 o Long. E.<br />

During the last 60 years, Bucharest was threatened by 4 strong Vrancea events: Nov.10,<br />

1940 (moment magnitude M w =7.7, focal depth h=150 km), March 4, 1977 (M w =7.5, h=109<br />

km), Aug 30, 1986 (M w =7.2, h=133km) and May 30/31, 1990 (M w =7.0/6.4, h=91/79 km).<br />

The Catalogues of earthquakes occurred on the territory of Romania were compiled by<br />

Radu (1974, 1980, 1995) and Constantinescu and Marza (1980, 1995).<br />

The most complete Vrancea historical catalogue is Radu Catalogue, even the majority<br />

of significant events are also included in Constantinescu and Marza Catalogue. The Radu<br />

Catalogue is about three times larger than the other Catalogue. The magnitude used in the<br />

Radu catalogue is the Gutenberg-Richter magnitude, M.<br />

Figure 1. Epicenters of earthquakes in Romania, 984 - 2000<br />

For Vrancea subcrustal source, the conversion of Gutenberg-Richter magnitude into<br />

moment magnitude might be approximated by M w = M + 0.3 for 6.5 < M w < 7.8 (Lungu et<br />

al.1999).<br />

From existing catalogues, one may approximately note:<br />

(i) During the time interval 984-1900, one event/century with epicentral intensity<br />

I 0 9.0;


(ii) During the period 1901-2000 the evidence is two events per century of<br />

intensity I 0 9.0 (i.e. M w 7.5), Table 1.<br />

Table 1. 20 th Century catalogue of Vrancea Earthquakes, M GR >6.0<br />

Date<br />

Time<br />

(GMT)<br />

h:m:s<br />

MARZA www.infp.ro<br />

Lat. N o Long. E o RADU Catalogue,<br />

Catalogue, Catalogue,<br />

1994<br />

1980 1998<br />

h, km I 0 M GR M w I 0 M s M w<br />

1903 13 Sept 08:02:7 45.7 26.6 >60 7 6.3 - 6.5 5.7 6.3<br />

1904 6 Feb 02:49:00 45.7 26.6 75 6 5.7 - 6 6.3 6.6<br />

1908 6 Oct 21:39:8 45.7 26.5 150 8 6.8 - 8 6.8 7.1<br />

1912 25 May 18:01:7 45.7 27.2 80 7 6.0 - 7 6.4 6.7<br />

1934 29 March 20:06:51 45.8 26.5 90 7 6.3 - 8 6.3 6.6<br />

1939 5 Sept 06:02:00 45.9 26.7 120 6 5.3 - 6 6.1 6.2<br />

1940 22 Oct 06:37:00 45.8 26.4 122 7 / 8 6.5 - 7 6.2 6.5<br />

1940 10 Nov 01:39:07 45.8 26.7 150 1) 9 7.4 - 9 7.4 7.7<br />

1945 7 Sept 15:48:26 45.9 26.5 75 7 / 8 6.5 - 7.5 6.5 6.8<br />

1945 9 Dec 06:08:45 45.7 26.8 80 7 6.0 - 7 6.2 6.5<br />

1948 29 May 04:48:55 45.8 26.5 130 6 / 7 5.8 - 6.5 6.0 6.3<br />

1977 4 March 2) 19:22:15 45.34 26.30 109 8 / 9 7.2 7.5 9 7.2 7.4<br />

1986 30 Aug 21:28:37 45.53 26.47 133 8 7.0 7.2 - - 7.1<br />

1990 30 May 10:40:06 45.82 26.90 91 8 6.7 7.0 - - 6.9<br />

1990 31 May 00:17:49 45.83 26.89 79 7 6.1 6.4 - - 6.4<br />

The strongest Vrancea earthquake ever occurred is accepted to be the Oct 26, 1802<br />

event (M = 7.5 ….7.7) the most disastrous event is March 4, 1977 earthquake (M=7.2; M w =<br />

7.4 …7.5).<br />

The recurrence-magnitude relationship is determined from Radu’s 20th century<br />

Catalogue of subcrustal magnitudes with threshold lower magnitude M w =6.3. The average<br />

number per year of Vrancea subcrustal earthquakes with magnitude equal to and greater than<br />

M w , as resulting also from Figure 2 is (Lungu, Demetriu, 1995):<br />

log n(>M w ) = 3.76 - 0.73 M w<br />

(1a)<br />

The maximum credible magnitude of the source was estimated using Wells and<br />

Coppersmith (1994) equations. Even those equations are intended for crustal earthquakes, the<br />

experience of recent subcrustal Vrancea events fits approximately the mentioned equations.<br />

According to Romanian geologists Sandulescu & Dinu, in Vrancea subduction zone the<br />

length of the rupture surface is: SRL 150÷200 km and the area of the rupture surface is:<br />

SRA8000 km 2 . Based on this estimation, one might get from Wells and Coppersmith<br />

equations M w,max = 8.0...8.1 (Lungu et al. 1999).<br />

If the source magnitude is limited by an upper bound magnitude M w,max , the recurrence<br />

relationship (1a)can be modified in order to satisfy the property of a probability distribution<br />

(Hwang and Huo 1994). In the case of Vrancea source (Elnashai and Lungu, 1995):<br />

n<br />

1<br />

e<br />

1<br />

e<br />

1.687(8.1M<br />

w<br />

8.6541.687Mw<br />

( M<br />

w<br />

) = e<br />

1.687(8.16.3)<br />

)<br />

(1b)


In Eq.(1), the threshold lower magnitude is M w0 =6.3, the maximum credible magnitude<br />

of the source is M w,max =8.1, and = 3.76 ln10 = 8.654, = 0.73 ln10 =1.687.<br />

1<br />

20 th century Radu's catalogue<br />

Cumulative number, n(>M) per yr<br />

0.1<br />

0.01<br />

n<br />

1.687(8.1<br />

M<br />

1 e<br />

w<br />

8.6541.687M<br />

w<br />

( M w ) = e<br />

1.687(8.1<br />

6.3)<br />

1 e<br />

0.001<br />

6.0 6.3 6.4 6.7 6.8 7.1 7.2 7.5 7.6 7.9 8.38.0<br />

Moment magnitude, M w<br />

)<br />

log n (>M w ) = 3.76 - 0.73M w<br />

M w, m ax = 7.8 8.1<br />

Figure 2. Magnitude recurrence relation for the subcrustal Vrancea source (M w 6.3)<br />

1.2 Codes and standards for design of earthquake resistance of structures (1940 – 2000)<br />

The codes for earthquake resistance of buildings and structures in Romania during the<br />

last 60 years are listed below:<br />

P.I. - 1941 Preliminary instructions (after the 1940 event). Ministry of Public Works and<br />

Communication, Bucharest 1941, 9p.;<br />

I - 1945 Instructions for preventing the damage of buildings due to earthquakes. Ministry<br />

of Public Works and Communication, Bucharest, 1945, 10p.;<br />

P13 - 63 and P13 - 70 Code for (structural) design of buildings in seismic zones. State<br />

Committee for Constructions, Architecture and Urban Planning, CSCAS, Bucharest, 1963,<br />

39p. and 1970, 63p.;<br />

P100 - 78 and P100 - 81 Code for (structural) design of buildings in seismic zones.<br />

Central Institute for Research, Design and Management for Constructions ICCPDC,<br />

Bucharest, 1978, 57p. and 1981, 72p.;<br />

P100 - 90 and P100 - 92 Code for earthquake-resistant design of civil and industrial<br />

buildings. Ministry of Public Works and Land Planning, MLPAT, Bucharest, 1991, 152p. and<br />

1992, 152p (English version 1993, 151p). Chapters 11, 12 were modified in 1996, 50p.<br />

P100 – 2003 - Code for earthquake resistance of buildings and structure (Draft, 2003).


The accompanying standards for seismic zonation of Romania are:<br />

STAS 2923-52 and STAS 2923-63, Macrozonation of the territory of R.S.Romania. State<br />

Office for Standardization, Bucharest, 1952 and 1963;<br />

Decree No. 66/1977 of the Romanian Government, 1977;<br />

STAS 11100/1-77, Macrozonation of the territory of R.S.Romania. Romanian Institute for<br />

Standardization, Bucharest, 1978;<br />

STAS 11100/1-91 and SR 11100/1-93, Macrozonation of the territory of Romania.<br />

Romanian Institute for Standardization, Bucharest, 1991 and 1994.<br />

The contents of the seismic codes and of the standards for seismic zonation of territory<br />

of Romania can be classified in four generations of major developments described in Table 2.<br />

Table 2. Classification of codes for design of earthquake resistance of buildings and<br />

standards for seismic zonation of Romania (1940-2003)<br />

Code for earthquake Seismic<br />

Period<br />

resistance of structures zonation standard*<br />

Prior to the 1940 earthquake<br />

P.I. – 1941<br />

Pre-code,<br />

P.I. - 1941<br />

and<br />

I – 1945<br />

before 1963<br />

I - 1945<br />

Prior to the 1963 code<br />

STAS 2923 - 52<br />

Low-code, Inspired by the Russian P 13 - 63<br />

STAS 2923 - 63<br />

1963-1977<br />

Moderate-code,<br />

1977–1990<br />

Moderate-code to<br />

High-code,<br />

after 1990<br />

seismic practice<br />

After the great 1977<br />

earthquake<br />

After the 1986 and the 1990<br />

earthquakes<br />

P 13 - 70<br />

P 100 - 78<br />

P 100 - 81<br />

P 100 - 90<br />

P 100 - 92<br />

STAS 11100/1 - 77<br />

STAS 11100/1 - 91<br />

SR 11100/1 - 93<br />

High code,<br />

Inspired by Eurocode 8 P100 – 2003 (draft) -<br />

after 2004<br />

*The intensity scale used in Romania is MSK - 64 scale (STAS 3684 - 63, STAS 3684 - 71)<br />

(T )<br />

3.0<br />

2.5<br />

2.0<br />

1.0<br />

0.6<br />

P13-63<br />

7 yr.<br />

0.9/T<br />

0.8/T<br />

3/T<br />

= 0.05<br />

P13-70<br />

6 yr.<br />

P100-78<br />

after March 4, 1977<br />

P100-81<br />

12 yr.<br />

P100-90<br />

after Aug.30, 1986<br />

P100-92<br />

6 yr.<br />

1.0<br />

0.75<br />

0.6<br />

0.0<br />

0 0.3 0.4 0.7 1 1.5 2 2.2 2.5 3 4<br />

Period T , s<br />

Figure 3. Normalised acceleration elastic response spectra in Romanian<br />

seismic codes, from the 1963 to 2002 (Lungu, 1996)<br />

The evolution of normalized acceleration elastic response spectra in design provisions<br />

for earthquake resistance of structures in Bucharest is given in Figure 3 and it is selfexplanatory.<br />

The evolution of seismic design coefficient for computing lateral force (shear) at the<br />

base of building structure in Bucharest is presented in Figure 4. One should note the gap of the


overall coefficient C s for flexible buildings and structures built during the period 1963-1978;<br />

however, even for rigid structures built during that period, the maximum C s was about 2/3 of the<br />

present C s due to reduced MSK intensity (VII) recommended for Bucharest by STAS 2923-63<br />

(Table3).<br />

After the 1977 disaster, ductility rules for reinforced concrete structures were imported<br />

into Romanian codes from American Concrete Institute (ACI) codes of practice. Those<br />

ductility rules were improved in 1990 according to the EUROCODE 8 new requirements.<br />

Evolution of seismic zonation maps in Romania during the last 40 years is illustrated<br />

by Figure 4 and Table 3.<br />

Shear walls<br />

Frames<br />

7.5%<br />

7.5% 7.2%<br />

6.8%<br />

10 %<br />

8%<br />

12.5 %<br />

10%<br />

1.5 s<br />

12<br />

Seismic<br />

design<br />

coefficient<br />

C s , %<br />

5 %<br />

0.3 s<br />

T c =0.4 s<br />

T c =1.5 s<br />

10<br />

8<br />

8-10<br />

6-8<br />

Rigid RIGID 0.1<br />

buildings<br />

0.4<br />

0.7<br />

FLEXIBLE Flexible 1<br />

buildings<br />

buildings<br />

1.3<br />

Building period<br />

T , s<br />

1.6<br />

1.9<br />

1941<br />

1945<br />

2%<br />

1963<br />

2.2%<br />

1.8%<br />

1970<br />

1978<br />

1981<br />

1990<br />

1992<br />

2<br />

0<br />

6<br />

4<br />

Year of code issue<br />

4-6<br />

2-4<br />

Non-ductile buildings<br />

Ductile structures<br />

Figure 4. Evolution of seismic design coefficient in Bucharest during time interval 1940-2000,<br />

(Lungu, Demetriu, 1998)<br />

Table 3. MSK seismic intensity in Bucharest<br />

Time interval Standard MSK intensity<br />

1952 – 1963 STAS 2923-52 VIII<br />

1963 – 1977 STAS 2923-63 VII<br />

1978 – 1991 STAS 11100/1-77 VIII<br />

1991 - present SR 11100/1-91 and 93 VIII<br />

The present conversion of MSK intensity, adopted by Romanian standard SR 11100/1-<br />

93, into peak ground acceleration, a g used by Romanian code for design of earthquake<br />

resistance of structures, is given in Table 4.


Table 4<br />

MSK-64 intensity in SR 11100/1-93 9 8 7 6 5<br />

a g /g in P100-92 code 0.32 0.25 and 0.20 (2 zones) 0.16 0.12 0.08<br />

Figure 5. Evolution of seismic zonation of Romania (from 1963 to 1993 and 2002)<br />

It is emphasized that the present seismic code of Romania, P100-92 defines the<br />

earthquake hazard by 50 yr. mean recurrence interval event (MRI=50yr i.e. 63% exceedance<br />

probability in 50 yr). However, since the American loading code ASCE 7-95, 2000 and<br />

EUROCODE 8 for earthquake resistance of structures define the design earthquake by 475 yr.


mean recurrence interval (MRI=475yr i.e. 10% exceedance probability in 50 years) event, the<br />

level of seismic hazard in present seismic code is now under revision.<br />

A comparison of the max. peak ground acceleration for design (MRI = 50yr. and M g RI<br />

= 475 yr.) in Bucharest, Skopje and other 8 cities around the world is presented in Figure 6.<br />

1.0<br />

Peak Ground Acceleration PGA, g<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.10<br />

0.06<br />

0.20<br />

0.75<br />

Europe Africa Asia America<br />

0.40<br />

0.28<br />

T = 50 yr<br />

0.32<br />

0.12 0.13<br />

Mean recurrence interval<br />

T = 475 yr<br />

0.40<br />

0.13<br />

Rome Bucharest Sofia Skopje Algiers Tehran Katmandu Salvador Santiago Bogota<br />

Figure 6. Seismic hazard around the world – U.N. RADIUS Project,1999<br />

0.33<br />

0.18<br />

0.36<br />

0.14<br />

0.38<br />

0.82<br />

0.30 0.31<br />

0.20<br />

The recorded maximum peak ground acceleration in Romania during in 1977, 1980<br />

and 1990 Vrancea earthquakes in given in Figure 7.<br />

ROMANIA. Maximum peak ground acceleration PGA, cm/s2 recorded during 1977, 1986 and 1990 VRANCEA earthquakes<br />

W<br />

N<br />

S<br />

PGA, cm/s2<br />

#· Epicenters of strong<br />

Vrancea events<br />

(Mw > 6.9)<br />

E<br />

0 - 75<br />

75 - 150<br />

150 - 200<br />

200 - 300<br />

Seismic stations with<br />

free-field records:<br />

# INCERC network<br />

% INFP network<br />

$ GEOTEC network<br />

& R. of Moldova network<br />

& Bulgaria network<br />

March 4, 1977<br />

Mw=7.5<br />

h=109 km<br />

Aug.30, 1986<br />

Mw=7.2<br />

h=133 km<br />

May 30, 1990<br />

Mw=7.0<br />

h=91 km<br />

Mw - moment magnitude<br />

h - focus depth<br />

Lungu, Aldea, 1999<br />

21 22<br />

48<br />

23 24<br />

Ukraine 25 26 27<br />

Figure<br />

Figure 7.<br />

Botosani<br />

#<br />

28 29<br />

Hungary<br />

11.5<br />

Republic of<br />

#<br />

Satu-Mare<br />

Moldova<br />

Moldova<br />

Krasnogorka<br />

Iasi<br />

&<br />

#<br />

Chisinau 82.0<br />

146.4<br />

&<br />

212.8<br />

47<br />

Dochia<br />

#<br />

%<br />

Cris<br />

50.9<br />

Oradea<br />

Cluj-Napoca<br />

#<br />

Bacau<br />

%<br />

132.0<br />

Barlad<br />

Onesti<br />

#<br />

#<br />

Transilvania<br />

232.1 Adjud 168.6<br />

#<br />

86.6<br />

Banat<br />

Cahul<br />

&<br />

Vrancioaia<br />

% 1990<br />

136.6<br />

Mures<br />

157.2 #· #·<br />

46<br />

Focsani<br />

%<br />

Timisoara<br />

Surduc 1940<br />

$<br />

#<br />

97.2 297.1<br />

Muntele Rosu #·<br />

% 1986 Ramnicu Sarat<br />

Vidra Lotru<br />

#<br />

$ Vidraru Arges 79.1<br />

164.0<br />

$<br />

#· 1977 158.6 Carcaliu Tulcea<br />

Valenii de Munte<br />

%<br />

#<br />

14.3<br />

93.6<br />

26.1<br />

186.9 # %<br />

Campina#<br />

Istrita<br />

61.5<br />

# 109.4<br />

Baia<br />

#<br />

45<br />

Pitesti<br />

Ploiesti<br />

#<br />

Valahia 90.8<br />

45.8<br />

Peris<br />

Figure 9 #<br />

Dobrogea<br />

223.8<br />

#<br />

Otopeni 219.8<br />

Bolintin Vale<br />

Fetesti<br />

# Branesti<br />

# #<br />

# Cernavoda<br />

100.4 #<br />

208.6<br />

Craiova<br />

Bucuresti<br />

150.8<br />

107.1<br />

Calarasi<br />

#<br />

#<br />

#<br />

194.9<br />

Constanta<br />

Yugoslavia<br />

Giurgiu114.1<br />

#<br />

44<br />

Danube<br />

Turnu Magurele<br />

& Ruse112.4<br />

#<br />

Shabla 32.9<br />

112.2<br />

&<br />

Kavarna36.2<br />

&<br />

Bulgaria<br />

Varna 33.6<br />

Provadia48.2<br />

&<br />

100 0 100 200 Kilometers<br />

&<br />

Olt<br />

Prut<br />

Black<br />

Sea<br />

ArcView GIS version 3.1, ESRI Inc. CA.<br />

Figure 7


1.3 Draft P 100 2003 seismic code of Romania. Seismic hazard assessment<br />

The present joint map of Vrancea seismic hazard of Romania, Bulgaria and Moldavia.<br />

Figure 8 and Tabel 5 still suggests a need for map improvement by joint regional efforts.<br />

Zaicenco, Lungu, 1999<br />

Figure 8. Seismic zonation maps for countries affected by Vrancea earthquakes<br />

Table 5 for the map in Figure 8.<br />

PGA/g<br />

ROMANIA Rep. of MOLDOVA,<br />

MSK Intensity<br />

BULGARIA<br />

P100-92&<br />

UKRAINE<br />

1987 code<br />

SR 11100/1-93 SNIP II-7-81<br />

IX 0.32 0.40 0.27<br />

VIII<br />

0.25<br />

0.20<br />

0.20 0.15<br />

VII 0.16 0.10 0.10<br />

V<br />

0.12<br />

0.08<br />

- 0.05<br />

Based on the results of probabilistic seismic hazard assessment for Vrancea source<br />

(Lungu et al., 1995...2002) and taking into account the contributions from the crustal seismic<br />

sources around Romania, Figure 8 presents the proposed hazard map for the new code for<br />

design of earthquake resistant buildings in Romania, P100-2003. The map give the design<br />

peak ground acceleration, a g for the MRI=100 yr seismic event.


Figure 9. Peak ground acceleration for design, a g for MRI=100 y., P100-2003 code proposal<br />

The response spectra in Figure 9 is recommended for Romania and Bucharest<br />

locations characterized by various control period of response spectra: T C S0.7s, 0.7s


There is an instrumental evidence, from both the 1977 earthquake and 1986<br />

earthquake that soil condition in Bucharest is characterised by the long predominant period of<br />

ground vibration: T g =1.4-1.6s. That T g explains the long corner period of response spectra<br />

T c =1.6s, in Figure10.<br />

A tentative macrozonation of Tc in Romania teritory is given in Figure 11.<br />

PSD<br />

Densitatea spectrala normalizata<br />

0.35<br />

4 Martie 1977, M=7.2, comp.NS<br />

0.30<br />

30 Aug. 1986, M=7.0, comp. NS<br />

Figure 8. Romania . Control period of response spectra, P100 - 2003<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

p =2 /T p<br />

INCERC Bucuresti<br />

0.00<br />

0 10 20 30 40<br />

Pulsatia , rad/s<br />

Figure 11. INCERC seismic station in Eastern Bucharest. Normalised power spectral density<br />

for the NS comp. of the Mar 4, 1977 and Aug 30, 1986 earthquakes<br />

Figure 12. Romania. Control period of response spectra, P100-2003


Part II. Seismic Risk Management<br />

2.1 The structure of the existing building stock in Bucharest<br />

The structure of the existing building stock in Bucharest is given in Figure 12 and Table<br />

6. The Bucharest population is about 2 million inhabitants. It is almost constant during the last<br />

10 years.<br />

Number of buildings<br />

Number of buildings<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Period of construction<br />

Period of construction<br />

Low-rise buildings<br />

(1-2 storeys)<br />

1900 1929 1945 1963 1970 1977 1990<br />

High-rise buildings<br />

(8 storeys)<br />

Number of buildings<br />

2500<br />

2000<br />

1500<br />

1000<br />

1900 1929 1945 1963 1970 1977<br />

500<br />

0<br />

Period of construction<br />

Mid-rise buildings<br />

(3-7 storeys)<br />

1900 1929 1945 1963 1970 1977 1990<br />

Figure 13. Distribution of Bucharest buildings with period of construction<br />

Table 6. Inventory of existing housing units in Bucharest according to the periods of validity of<br />

various Romanian seismic codes.<br />

Seismic code interbenchmark<br />

periods<br />

Housing units built during interbenchmark<br />

periods<br />

% housing units built during interbenchmark<br />

periods<br />

before 1941 168,556 21.95 ~22%<br />

1941-1963 69,702 9.08<br />

1963-1970 110,669 14.42<br />

1970-1978 119,625 15.57 ~39%<br />

1978-1992 292,594 38.09<br />

1992-1995 6,844 0.89 ~ 39%<br />

Total 768,000 100%


PERI<br />

A CADEMIEI<br />

P ITAR MOS<br />

CAVA FII VECHI<br />

SALIGNY A NGHE L - Inginer<br />

DA<br />

REMUS<br />

2.2 Fragile residential buildings in Bucharest<br />

The List of the vulnerable buildings built in the center of Bucharest before 1940 and<br />

identified as having highest risk of collapse in the case of strong earthquake (comparable to<br />

1977 event) contains 115 fragile mid-rise and high-rise buildings (March 2001/ Jan. 2003).<br />

All those tall buildings listed as very vulnerable were located on the city map using<br />

the Geographic Information System (GIS) infrastructure, Figure 13 and Table 5.<br />

In so called “Test area of central Bucharest” the GIS map (1:500) contains the location<br />

and detailed information on the more than 1700 buildings. All those buildings represented on<br />

map were digitised at Karlsruhe University within the technical cooperation between<br />

Technical University of Civil Engineering Bucharest (UTCB) and Karlsruhe University in the<br />

frame of German Science Foundation Project 461 devoted to Vrancea earthquakes.<br />

The Test area in central Bucharest was selected by UTCB in 1997 based on location of<br />

the collapsed buildings during the 1977 earthquake in Bucharest.<br />

Presently, the central Bucharest test area was extended to about 24000 buildings<br />

within European RISK-UE Project at University of Civil Engineering Bucharest, (UTCB) for<br />

including majority of the building listed as seismically vulnerable in Bucharest.<br />

30<br />

# 83 45 N<br />

106<br />

# # #<br />

96<br />

# 42<br />

# #<br />

W<br />

E<br />

56<br />

50<br />

#<br />

11 43<br />

S<br />

90 # #<br />

26<br />

#<br />

107 28<br />

16<br />

#<br />

#<br />

#<br />

#<br />

49 35<br />

#<br />

6 #<br />

18<br />

76<br />

65<br />

#<br />

#<br />

47<br />

# #<br />

#<br />

68<br />

# 103<br />

# 92<br />

48<br />

10<br />

4 #<br />

#<br />

33<br />

73<br />

#<br />

20 # 86 31<br />

#<br />

93<br />

#<br />

#<br />

58<br />

39<br />

78<br />

#<br />

# 24<br />

94<br />

ARON FLORIAN<br />

40<br />

#<br />

#<br />

8 #<br />

95<br />

# 61<br />

46<br />

1<br />

109110<br />

34<br />

# #<br />

# # 15<br />

#<br />

3<br />

#<br />

52<br />

108 62<br />

23<br />

#<br />

#<br />

#<br />

51 #<br />

63 17<br />

22 44<br />

# 14 54 # #<br />

#<br />

#<br />

#<br />

# 70<br />

72<br />

25 100<br />

#<br />

32<br />

#<br />

#<br />

# 7<br />

69<br />

104<br />

105 # 87 102<br />

# #<br />

# 36<br />

75<br />

#<br />

#<br />

79<br />

#<br />

#<br />

#<br />

55<br />

97 98<br />

#<br />

591<br />

13<br />

64<br />

# #<br />

9<br />

101<br />

#<br />

2 #<br />

#<br />

#<br />

#<br />

19<br />

#<br />

85<br />

#<br />

#<br />

71 88<br />

59 74<br />

ROBESCU F.C.<br />

# # #<br />

#<br />

99<br />

38<br />

57<br />

#<br />

ArcView GIS 3.2 - ESRI California<br />

Lungu & Arion, 2000<br />

80<br />

#<br />

#<br />

0.5 0 0.5 1 Kilometers<br />

# 60 53<br />

12 # 67<br />

UMOASA<br />

ZZAVILLAN LUIGI<br />

IGORE -Prof.<br />

LEMNEA<br />

MOXA MIHAIL<br />

AUR ORA<br />

DONA NICOLAE - General<br />

PROGRESULUI<br />

GRADINA CU CAI<br />

SCHITU MAGUREANU<br />

INDEPENDE NTEI<br />

VICTOR IEI<br />

KOGALNICEANU MIHAIL<br />

NATIUNILOR<br />

PUTIUL -CU-PLOPI<br />

AMMAN<br />

IORGA NICOLAE<br />

TOMESCU TOMA - Doctor<br />

SPIRU HARET<br />

SFINTUL SAVA<br />

B ANULUI<br />

LUTERANA<br />

DR.V.SIMION<br />

SIPOTUL FINTINILOR<br />

GUTEMBERG<br />

URSEANU VASILE - Ami ral<br />

N IC OLAE-IORGA<br />

IORGA NICOLA E<br />

RADU-ILIE<br />

VISARION<br />

CRISTIAN TELL -General<br />

BISERICA AMZEI<br />

BISERICA AMZEI<br />

BRE ZOIANU ION<br />

VIGILENTEI SAPIENTEI<br />

BRUTUS M I<br />

BREZOIANU ION<br />

MARCOVICI ALEXANDRU - Doctor<br />

ZALOMIT ION<br />

POLITIE<br />

ORIZONTUL<br />

PIATA-AMZEI<br />

CRETULE SCU NICOLAE<br />

VRACA GEORGE<br />

MIHA I-VODA<br />

ILFOV<br />

ADEREA BASTILIEI<br />

MENDE LEEV D. I.<br />

MATEI MILLO<br />

DOMNITA ANASTASIA<br />

LIPSCA NI<br />

E NESCU GEORGE<br />

EPISCOPIEI<br />

C-TIN-EXARCU<br />

MILLE CONSTA NTIN<br />

EFORIEI<br />

MIHAI VODA<br />

GOLESCU NICOLAE<br />

FRANK LIN BE NJANIM<br />

RIUREANU - Doctor<br />

GIURESCU DIMITRIE - Maior<br />

BELDIMAN ALEXA NDRU<br />

MAGHERU GH EORGHE - Gen.<br />

ROSETTI C.A.<br />

B OTEANU<br />

ARHITECTURII<br />

POSTEI<br />

URALI<br />

MECHELET<br />

DOBRESCU ION<br />

VICTORIA<br />

BIJUTERIEI<br />

CARADA EU GENIU<br />

STA VROPOLEOS<br />

FILITTI C. IO<br />

COMEDIA<br />

MAJES TIC<br />

DOROBANTI<br />

QU INET EDGAR<br />

MANDINESTI<br />

BROSTENI<br />

G-RAL-GH.MAGHERU<br />

13-DEC EMBRIE<br />

LIPSCANI<br />

30 D ECE<br />

EMINESCU MIHAI<br />

PICTOR-VERONA<br />

S ELARI<br />

CONTA VASILE<br />

SMIRDAN<br />

SLAVES TI<br />

GRIGORESCU<br />

ION NISTOR<br />

BALABAN EMIL - Inginer<br />

LUPU DIONISIE<br />

FILIPESCU NICOLAE<br />

BALCESCU NICOLAE<br />

GHICA ION<br />

ARGHEZI TUDOR<br />

DOAMNEI<br />

COVACI<br />

B LANA RI<br />

B ACAN I<br />

POLONA<br />

GABROVENI<br />

FILIPIDE ALEXANDRU<br />

SAHIA ALE X.(CALDERON JEAN L.)<br />

ICOANEI<br />

XENOPO L ALEXANDRU<br />

SCOALEI<br />

BLA NDUZIEI<br />

UNIVERSITATII<br />

B ATISTEI<br />

LIPSCANI<br />

REPUBLICII<br />

BRATIANU I.C.<br />

DUMBRAVA ROSIE<br />

SLANIC<br />

BARA<br />

COLTEI<br />

MAVROGHENI NICOLAE<br />

PA TRASCU VODA<br />

BANIEI<br />

RO SETTI C.A.<br />

IOANID GHE.-pi ctor<br />

LIPSCANI<br />

DIANEI<br />

DROBETA<br />

S FINTUL SPIRIDON<br />

CARAGIALE ION LUCA<br />

ITALIANA<br />

ROSETTI C.A .<br />

SAHIA ALEX.(CALDERON JEAN L.)<br />

TREI SCAUNE<br />

BAIA DE FIE R<br />

ION-Erou<br />

S CHITU DARVARI<br />

DACIA<br />

BOTEZ CORNELIU<br />

BACALOGU EMANOIL-doctor<br />

SF. VINER<br />

ITALIANA<br />

SPERA NTEI<br />

CAIMATEI<br />

LEON IDA<br />

ROSETTI MARIA<br />

SFINTILOR<br />

RUSSO ALECU<br />

ORBESCU DIMITRIE<br />

H.BOTEV<br />

STELEA SPATARUL<br />

SF.MINA<br />

DONICI ALE XANDRU<br />

SAGETII<br />

MOVILA ION<br />

LASC AR VASILE(FOSTA GALATI)<br />

A RCULUI<br />

ZBORULUI<br />

XANDRA<br />

COMANITA<br />

LUMINEI<br />

DONICI ALEXANDRU<br />

L UCA STROICI - L ogofat<br />

PALEOLOGU<br />

ICOANEI<br />

P OPA RUSU<br />

LOG.STROICI<br />

SE RGHIESCU MARIN<br />

ARMENEASCA<br />

CERNICA<br />

CALA RASI<br />

VERMONT - Pictor<br />

CULMEA VECHE<br />

CALOTESTI<br />

AR MENEASCA<br />

O COLULUI<br />

SEVCENCO TARAS<br />

PASULUI<br />

LATINA<br />

N EGU STORI<br />

PALEOLOGU<br />

LICURG<br />

COLUMB ELOR<br />

R ASURI<br />

PACIUREA DIMITRIE<br />

ROSETTI MARIA<br />

VIITORULUI<br />

FRANZELARILOR<br />

LUCHIAN STEFAN - Pictor<br />

MINTULEASA<br />

TOAMNEI<br />

IONE SCU CRISTEA<br />

VER I<br />

POPA SOARE<br />

UDRISTE LOG<strong>OF</strong>AT<br />

SSIMA - Profesor<br />

URSU ION -Prof.<br />

ARMONIEI<br />

SALCIMILOR<br />

S ILVESTRU<br />

SPATARULUI<br />

CERCULUI<br />

CORBENI<br />

DOMNESTI<br />

ROMANO - Pic tor<br />

ROMULUS<br />

RAMULUS<br />

TOPLICENI<br />

LUNII<br />

POPA PETRE<br />

ARDELE NI<br />

P RE CUPETII VECHI<br />

OLTARULUI<br />

VENEREI<br />

RACOVITA DIMITRIE<br />

M INTULESA<br />

PRISTOLULUI<br />

IULIU<br />

TIBANA<br />

MONUMENTULUI<br />

S UVENIR<br />

MALNAS<br />

PREPELITEI<br />

IPATESCU GRIGORE - General<br />

S FINTUL STEFAN<br />

BOBE ICA<br />

VALORII<br />

VIROAGEI<br />

PRE OT-VA SILE-LUCA CI<br />

LAB IRINT<br />

BASARA B MATEI<br />

COBILITEI<br />

ACELARI<br />

IERNII<br />

D RAGOS VODA<br />

ARGE S<br />

ZECE MESE<br />

SECUREI<br />

ONC IUL DIMITRIE<br />

OLARI<br />

PLANTELOR<br />

MIHAILEANU STEFAN<br />

ZEFIRULUI<br />

BURGH EL EA - Docto r<br />

FETITELOR<br />

ENERGIEI<br />

RUMEOARA<br />

REPUBLICII<br />

AVRAM IANCU<br />

CONSTA NTINESCU MITRITA - Pr of.<br />

General<br />

PESTERII<br />

CAV NIC<br />

RADU - Episcopul<br />

MIHAI BRAVU<br />

TRAIAN<br />

S TUPINEI<br />

MOSILO<br />

VASELO<br />

IANCU C<br />

P<br />

IAN CU CAV<br />

Figure 14. Central Bucharest area with buildings built prior to 1945 and identified as<br />

having high risk of collapse in case of a strong earthquake (M w 7.5)


Table 7. Buildings with more than 5 stories built before 1940 located on the two most<br />

important boulevards of central Bucharest and identified as having highest risk of collapse in<br />

case of strong (comparable to 1977) earthquake 8<br />

No<br />

Address<br />

Year of<br />

building<br />

construction<br />

Commercial<br />

occupancy of<br />

groundfloor<br />

Storeys<br />

No. of<br />

Apt.<br />

Total<br />

area<br />

sqm.<br />

Damages after the 1977<br />

earthquake in structural<br />

elements<br />

Repairing work after the<br />

1977 earthquake<br />

Gulkan<br />

Damage<br />

score<br />

1<br />

4<br />

Balcescu 24<br />

(Pherekide)<br />

Calea Victoriei<br />

101<br />

A-B<br />

1928 Yes 13 61 12197<br />

1937 Yes 11 61 6111<br />

6 Magheru 20 1935 Yes 10 52 5484<br />

11 Magheru 27 1935 Yes 9.5 36 6405<br />

12<br />

16<br />

20<br />

Calea Victoriei<br />

2-4<br />

Calea Victoriei<br />

128A<br />

Calea Victoriei<br />

112<br />

1928 Yes 9 76 12994<br />

1935 Yes 9 22 6675<br />

1939 Yes 9 27 5210<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

-<br />

-<br />

Light<br />

Light<br />

Light<br />

-<br />

-<br />

Light<br />

Medium<br />

-<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Jacketing of columns<br />

and beams<br />

Masonry Repairs<br />

Epoxy resins injections<br />

Mortar injections<br />

Finishes<br />

Jacketing of columns<br />

Masonry Repairs<br />

Epoxy resins injections<br />

Masonry Repairs<br />

Epoxy resins injections<br />

Mortar injections<br />

100<br />

86<br />

11<br />

Jacketing of columns 14<br />

Masonry Repairs<br />

Jacketing of columns and<br />

beams<br />

Masonry Repairs<br />

Jacketing of 4 columns<br />

Masonry Repairs<br />

Epoxy resins injections<br />

29<br />

100<br />

100<br />

27<br />

30<br />

61<br />

65<br />

91<br />

92<br />

94<br />

95<br />

100<br />

104<br />

Calea Victoriei<br />

208<br />

Calea Victoriei<br />

139<br />

Balcescu 25<br />

(Wilson)<br />

Calea Victoriei<br />

124<br />

Calea Victoriei<br />

25<br />

Calea Victoriei<br />

95<br />

Balcescu<br />

32-34<br />

Balcescu<br />

30<br />

Balcescu<br />

7<br />

Calea Victoriei<br />

33-35<br />

1940 Yes 8.5 44 5200<br />

1934 Yes 8 30 1290<br />

1928 Yes 12 93 12287<br />

1900 Yes 6.5 28 3045<br />

1936 Yes 13 49 6078<br />

1938 Yes 10.5 51 4010<br />

1935 Yes 10 41 6996<br />

1936 Yes 9.5 25 2756<br />

1933 Yes 7 15 2730<br />

1930 Yes 6.5 39 4800<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Columns:<br />

Beams :<br />

Masonry:<br />

Extreme<br />

Medium<br />

Extreme<br />

Light<br />

Light<br />

Medium<br />

Extreme<br />

Extreme<br />

Extreme<br />

-<br />

-<br />

Light/<br />

Medium<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Extreme<br />

Light/<br />

Medium<br />

Light/<br />

Medium<br />

-<br />

Extreme<br />

-<br />

Medium<br />

Light<br />

Light<br />

Extreme<br />

Medium<br />

Medium<br />

Medium<br />

Jacketing of beams<br />

Masonry Repairs<br />

Epoxy resins injections<br />

Masonry Repairs<br />

Jacketing of columns and<br />

beams<br />

Masonry Repairs<br />

Epoxy resins injections<br />

Mortar injections<br />

Finishes<br />

*partially collapsed in 1977<br />

Masonry Repairs<br />

86<br />

29<br />

105<br />

37<br />

Jacketing of 6 columns<br />

Epoxy resins injections 100<br />

Jacketing of columns and<br />

beams 100<br />

Masonry Repairs<br />

42.5<br />

Masonry Repairs<br />

Epoxy resins injections 64<br />

Finishes<br />

Masonry Repairs<br />

Epoxy resins injections 36<br />

Jacketing of columns<br />

Masonry Repairs 50<br />

* Classification of damage in 1977 follows vulnerability classes of HAZUS methodology, 1998, (see Lungu, D.,<br />

et al., 2000. Advanced Structural Analysis, Conspress, UTCB, 177p.);


Balcescu 24(Pherekide) Calea Victoriei 101 A-B Magheru 20<br />

Magheru 27 Calea Victoriei 2-4 Calea Victoriei 128A<br />

Calea Victoriei 112 Calea Victorie 208 Calea Victoriei 139<br />

Balcescu 25 (Wilson) Calea Victoriei 124 Calea Victoriei 25


Calea Victoriei 95 Balcescu 32-34 Balcescu 30<br />

Figure 15<br />

Seismic vulnerability class 1<br />

buildings on the most<br />

important two boulevards in<br />

central Bucharest<br />

Balcescu 7 Calea Victoriei 33-35<br />

The damage score for the fragile building structures from the list of 115 buildings in<br />

Bucharest was computed with a simplified version of the damage methodology proposed by<br />

Gulkan (1994), Middle East Technical University, Ankara, Turkey.<br />

The calculation of damage score, SD for a building is based on the level of damage of<br />

the structural members at the most severely damaged story of the buildings (usually the<br />

groundfloor). The damage level of structural member is classified as follows:<br />

No damage MD score = 0 Moderate damage MD score = 2<br />

Light damage MD score = 1 Extreme damage MD score = 4.<br />

The importance factor for structural elements, is selected as follows (Gulkan, 1994):<br />

Columns =2; Beams =1; Infill masonry =0.5.<br />

The building structure damage score, SD can be computed as follows:<br />

SD =<br />

( MD) columns<br />

+ ( MD) beams<br />

+ ( MD)<br />

4 ( ) + ( ) + ( )<br />

[ ]<br />

columns<br />

beams<br />

inf ills<br />

inf ills<br />

100<br />

SD varies from 0 to 100. The vulnerability classes can be selected based on SD score.<br />

The simple criteria might confirm the hierarchy of actual vulnerability of the fragile<br />

buildings in Bucharest in the case of a strong earthquake:<br />

(i) Presence of visible damage after the 1977 earthquake as well as the presence of<br />

visible local repairing made after that earthquake;


(ii) Presence of the soft ground floor due to commercial use of that floor (no<br />

infilled masonry walls);<br />

(iii) Number of storeys of building (taller the building, higher the risk);<br />

(iv) Lack of vertical and horizontal symmetry of the building (setbacks,<br />

asymmetrical architecture of the corner buildings)<br />

as well as unintended local structural damage due to occupancy changes and activities,<br />

corrosion of the reinforcement, low strength concrete (mean compressive strength 100-200<br />

daN/cm 2 ). etc.<br />

Table 5 and Figure 14 give the characteristics and the photos of 17 buildings seismic<br />

vulnerability class 1 located on the two most important boulevards of Bucharest. All of them<br />

were built before WWII (1940).<br />

Seismic "risk class” in present Romanian seismic code (P100-92) is actually seismic<br />

vulnerability class!<br />

That is why the seismic risk matrix presented in Table 8 should be used for the<br />

classification of actual seismic risk of vulnerable buildings in Romania.<br />

Table 8. Seismic risk classes<br />

Seismic<br />

Vulnerability/or I<br />

fragility Essential<br />

class<br />

facilities<br />

Importance and exposure class<br />

II<br />

Hazardous buildings<br />

III<br />

General buildings<br />

IV<br />

Minor buildings<br />

1 1 1 1&2 3<br />

2 1&2 2 3 3<br />

3 3<br />

Recently (Dec 2002/Jan 2003), 42 pre-1977 buildings built during the time interval<br />

1945- 1977 were included into the most dangerous seismic vulnerability class 1 buildings in<br />

Bucharest, Table 9 and Figure 16.<br />

They are tall RC buildings characterised by soft groundfloor located on soft soil<br />

condition of Bucharest city.<br />

Table 9. Fragile tall RC buildings having flexible groundfloor, built prior to 1977 earthquake<br />

in Bucharest<br />

No. Name of street<br />

No. of<br />

buildings<br />

No. of stories Address of buildings<br />

1<br />

Calea Grivitei<br />

18<br />

B * +GF+ (7......12)S No. 3-5, 134, 139, 148,<br />

156, 158, 163, 164, 169,<br />

196, 198, 200, 206, 236,<br />

2<br />

Stefan cel Mare<br />

11<br />

238, 395, 398, 399<br />

B+GF+ (6...8)S No. 5, 15. 17, 27, 28, 31,<br />

33, 40, 42, 128, 188<br />

3 Bd. Mihalache (1 Mai) 4 B+GF+(8...10)S No. 170, 172, 174, 399<br />

4 Gara de Nord 3 B+GF+8S No. 2-4, 6-8, no.2 Piata<br />

5 Dinicu Golescu Bd., 1 B+GF+9S No. 23-25<br />

6 Piata Chibrit –C 1 B+GF+8S<br />

7 Piata Amzei 1 B+GF+7S No. 12-22<br />

8 Bd. N. Balcescu 1 B+GF+9S No. 33<br />

Dorobanti/Stefan cel Mare<br />

B+GF+12S<br />

Blocul Perla<br />

9<br />

1<br />

corner<br />

10 Sos. Mihai Bravu, 1 B+GF+8S No. 107-119<br />

* B – basement. GF – groundfloors, S - stories


Figure 16. Fragile tall RC buildings having flexible groundfloor, built<br />

prior to 1977 earthquake in Bucharest<br />

Table10. List of cities with hospital buildings requiring strengthening work<br />

City<br />

Number of hospitals buildings<br />

Severely damaged. Having a Approved<br />

Requiring immediate technical project for<br />

technical assessment report retrofitting<br />

Retrofitting in<br />

work<br />

Bacau 3<br />

Bucharest 13 16 6 10<br />

Buzau 9<br />

Constanta 7<br />

Craiova 4<br />

Focsani 2<br />

Galati 6 2 1<br />

Giurgiu 1<br />

Iasi 21 17 2 5<br />

Pitesti 2 7<br />

Ploiesti 2<br />

Sibiu 1<br />

Targu-<br />

2<br />

Mures<br />

Vaslui 4 1<br />

Barlad 2


Table 11<br />

Churches damaged by major historical earthquakes in Bucharest<br />

No. Name Address 1802<br />

event<br />

Level of damage<br />

1838 1940<br />

event event<br />

1977<br />

event<br />

1 Manastirea Plumbuita, “de<br />

la Podul Colentinei”<br />

2<br />

Manastirea Marcuta<br />

3 Doamnei (fosta manastire)<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

Sf. Gheorghe-Nou<br />

Manastirea Antim<br />

Sf. Elefterie-Vechi<br />

Oborul-Vechi<br />

Sf. Pantelimon<br />

Popa Rusu<br />

Precupetii Noi<br />

Doamna Ghica-Tei<br />

12 Manastirea<br />

Sf. Spiridon-Nou<br />

13<br />

Sf, Nicolae Tabacu<br />

14 Sf. Nicolae-Selari<br />

15<br />

Sf. Mina (Vergului)<br />

16 Herastrau-Sfintii Apostoli<br />

Petru si Pavel<br />

17<br />

18<br />

Dobroteasa<br />

Amzei<br />

19 Biserica si Scoala<br />

Sf. Silvestru<br />

20<br />

Boteanu (cu Bradu)<br />

21 Popa Nan<br />

Str. Plumbuita 58<br />

Str. Gentianei din Sos. Pantelimon<br />

Intr. Bis. Doamnei 3,<br />

Calea Victoriei 28<br />

Bd. Bratianu 27<br />

Str. Mitropolitul Antim Ivireanu 29<br />

severe<br />

severe<br />

medium<br />

light<br />

medium<br />

Str. Sf. Elefterie 15C medium medium<br />

Str. Traian 204 medium medium<br />

Str. Iancu Capitanu 24<br />

Str. Popa Rusu 13-17<br />

Str. G-ral Ernest Brosteanu 12<br />

Str. Doamna Ghica 2<br />

Calea Serban Voda 29<br />

medium<br />

severe<br />

medium<br />

medium<br />

medium<br />

Calea Victoriei 180 medium medium<br />

Str. Blanari 16 /<br />

Intr. Selari<br />

Str. C. F. Robescu 18A<br />

Str. Nicolae Caranfil 28<br />

Bd. Mircea – Voda 35B<br />

collapse<br />

medium<br />

medium<br />

medium<br />

Str. Biserica Amzei 12 light medium<br />

Str. Silvestru 36<br />

medium<br />

Str. Boteanu 8 medium severe<br />

Str. Popa Nan 47 bis si<br />

Str. Gh. Costa-Foru 5<br />

severe<br />

severe<br />

22 Sfantul Apostol Andrei-<br />

Chitila II<br />

Sos. Chitilei 138<br />

severe<br />

23 Aparatorii Patriei II Str. Lunca Barzesti 3 medium


Hospitals requiring technical assessment and retrofitting works (design, construction,<br />

financing) in various Romanian counties are listed in Figure 17 and Table 10.<br />

Various orthodox churches damaged by major historical earthquake in Bucharest are<br />

listed in Table 11 and in Figure18.<br />

Figure 17<br />

Figure 18


There is a certitude that, for about 50 years recurrence interval Vrancea earthquake,<br />

several dozens of pre-WWII tall RC buildings in Bucharest will collapse (there are about 60-<br />

100 pers/bldg). More than half of those buildings and several pre - 1977, framed RC<br />

structures in are already identified by licensed experts as “seismic risk class 1” buildings.<br />

The governmental action of identification of dangerous buildings in Romania started<br />

in 1994.<br />

In 2001, a new Government Order stated that the Government will 100% advance the<br />

necessary payment, for strengthening of the buildings, to the private owners of apartments in<br />

“seismic risk class 1” buildings (more than 95%of housing units are private in Romania!).<br />

If the owner salary is less then national average, he have to pay back(to the state) nothing. If it<br />

is not, he has to pay the money back in 25 years, with 5% interest.<br />

Anyway, the owner has to agree on the strengthening of its apartment, in case he has<br />

to leave the housing unit during the construction work.<br />

Of course, the owners do not like leaving and the necessity buildings for temporary housing<br />

during strengthening are not yet implemented.<br />

Moreover, if one apartment owner does not like/agree on strengthening of its<br />

apartment, the strengthening of the whole building can not be done!!!<br />

There is a promise of the Ministry of Public Works, during a May, 2003 Seminar, for<br />

promoting a new official act which will make compulsory the strengthening of the building<br />

structure if the majority of private owners will accept the strengthening(in spite of several<br />

owners who would not like to allow strengthening of their apartments).<br />

Distribution per counties of residential buildings, hospital buildings and school<br />

buildings, requiring strengthening/retrofitting works in Romania is presented in Figure 19.<br />

Present stage of construction work of the first 8 buildings under<br />

retrofitting/strengthening in Bucharest is given in Table 12.<br />

Table 12.<br />

Building 1 2 3 4 5 6 7 8<br />

Total area<br />

(sqm)<br />

6050 1831 1615 1750 12313 2013 3706 2271<br />

Height B+GF+8S B+GF+6S B+GF+6S B+GF+6S B+GF+11S B+GF+5S B+GF+8S B+GF+5S<br />

1 ) Present stage of retrofitting work, 20÷70%;<br />

2) Cost of structure strengthening 50 - 150€/ sqm,<br />

3) Duration of construction, 8÷12 month<br />

Figure 19


Seismic instrumentation of Romania and Bucharest<br />

Based on deep recognizance of the extraordinary importance of seismic records for<br />

understanding of the strong motion characteristics, Romania installed in the last 2 years about<br />

50 digital K2 and ETNA, Kinemetrics instruments.<br />

The present seismic instrumentation of Romania is summarized in Table 13 and in the<br />

maps in Figure 20.<br />

Table 13. Seismic networks of Romania, 2003<br />

New digital networks,<br />

installed in 2003<br />

Existing seismic<br />

networks, in 2002<br />

Name of network<br />

INCERC & ISC, State<br />

Inspectorate for<br />

Construction<br />

CNRRS & JICA, Japan<br />

International<br />

Cooperation Agency<br />

Project 1<br />

INCERC<br />

INFP/SFB 461 German<br />

Science Foundation<br />

Project at University of<br />

Karlsruhe<br />

Bucharest<br />

7 ETNA 31 ETNA<br />

11 K2<br />

21 instruments:<br />

-10 SMA-1 (analog)<br />

-9 ADS (digital)<br />

-2 digital stations for<br />

continuous monitoring<br />

15 K2 41 K2<br />

Romania<br />

(including Bucharest)<br />

16 instruments:<br />

-11 K2;<br />

- 5 ETNA<br />

70 instruments:<br />

-58 SMA-1(analog)<br />

-9 ADS (digital)<br />

3 digital station for<br />

continuous monitoring<br />

TOTAL 54 digital instruments 158 instruments<br />

100 digital<br />

1) UTCB & INCERC are partner institutions with CNRRS.<br />

Figure 20


The table indicates 100 Kinemetrics digital instruments in Romania, 54 in Bucharest, as<br />

well as more than 100 instruments in INCERC seismic network, (45 digital) and 41 Kinemetrics<br />

digital instruments in the joint seismic network of SFB 461- Project on Vrancea earthquakes at<br />

Karlsruhe University, and INFP, National Institute for Earth Physics, Bucharest.<br />

The Japan-Romanian Project on Seismic Risk Reduction in Romania, implemented by<br />

JICA & CNRRS in partnership with UTCB & INCERC, installed in 2003 16 instruments in<br />

Romania i.e.:<br />

(i) 7 K2 stations at 7 locations in Bucharest, each with 3 sensors: 1 free field and 2 in<br />

deep boreholes (-30.0 m ÷ -180.0 m);<br />

(ii) 5 ETNA accelerometers outside Bucharest;<br />

(iii) 4 K2 station in four significant buildings in Bucharest.<br />

In addition to the Romanian-Japanese and Romanian-German seismic cooperation<br />

projects, State Inspectorate for Construction of Romania provided 31 ETNA Kinemetrics digital<br />

instruments, which are operated by INCERC in partnership with ISC (10 instruments, still to be<br />

installed).<br />

ACKNOWLEDGEMENT<br />

We would like acknowledge our deep gratitude to:<br />

- ISC, State Inspectorate for Construction, Romania;<br />

- JICA, Japan International Cooperation Agency and<br />

- UTCB, Technical University for Civil Engineering Bucharest and CNRRS,<br />

National Centre for Seismic Risk Reduction joint instrumentation team,<br />

- INCERC seismic network laboratory,<br />

- SFB 461- Project on Vrancea Earthquake at Karlsruhe University<br />

for their sustained efforts during years to complete the present stage of digital seismic<br />

instrumentation of Romania and Bucharest.


REFERENCES<br />

ASCE 7-98, 2000. ASCE Standard: Minimum design loads for buildings and other structures. American Society<br />

of Civil Engineers, New-York, ASCE, SEI<br />

Bolt B., (1995), Earthquakes, W.H. Freeman and Company, New York, 331 p.<br />

Coburn, A., Spence, R., (1992), Earthquake protection, John Wiley & Sons., New York, 355p.<br />

Constantinescu, L, Marza, V., (1980), A computer-compiled and computer-oriented catalogue of Romania’s<br />

earthquakes during a millenium (984-1979), Géophysique, Tome 24, No2, Bucharest, p.193-206.<br />

Elnashai A., Lungu D., 1995. Zonation as a tool for retrofit and design of new facilities. Report of the Session<br />

A.1.2. 5th International Conference on Seismic Zonation, Nice, France, Oct. 16-19, Proceedings Vol.3,<br />

Ouest Editions, Preses Academiques, p.2057-2082.<br />

Eurocode 8 - Design provisions for earthquake resistance of structures, 1994. Part 1-1: General rules - Seismic<br />

actions and general requirements for structures. CEN, European Committee for Standardization, Oct.<br />

Hwang H.H.M., Huo J.R., 1994. Generation of hazard-consistent fragility curves for seismic loss estimation<br />

studies. Technical Report NCEER-94-0015. National Center for Earthquake Engineering Research,<br />

State University of New York at Buffalo, Aug.<br />

Lungu D., Aldea A., Arion, C., Demetriu S.,Cornea T., 2000. Microzonage Sismique de la ville de Bucarest -<br />

Roumanie, Cahier Technique de l’Association Française du Génie Parasismique, No.20, p.31-63<br />

Lungu, D., Vacareanu, R., Aldea, A., Arion, C., 2000. Advanced Structural Analysis, Conspress, UTCB, 177p.<br />

Lungu, D., Arion, C., Baur, M., Aldea, A., 2000. Vulnerability of existing building stock in Bucharest, 6ICSZ Sixth<br />

International Conference on Seismic Zonation, Palm Springs, California, USA, Nov.12-15, p.837-846<br />

Lungu, D., Aldea, A., Arion, C., 2000. "Engineering, state & insurance efforts for reduction of seismic risk in<br />

Romania" In: Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New<br />

Zealand, Jan/Feb.<br />

Lungu D., 1999. Seismic hazard and countermeasures in Bucharest-Romania, Bulletin of the International<br />

Institute of Seismology and Earthquake Engineering IISEE, Tsukuba, Japan, Vol.33, p.341- 373.<br />

Lungu, D. & Aldea, A., 1999. Understanding Urban Risk Around the World. United Nations RADIUS Project at<br />

Geohazards Int., Ca., USA. Document City of Bucharest Seismic Profile, 29p.+25p.+8p.<br />

Lungu, D., Arion, C., Aldea, A., Demetriu, S., 1999, “Assessment of seismic hazard in Romania based on 25 years<br />

of strong ground motion instrumentation”, NATO ARW Conference on strong motion instrumentation for<br />

civil engineering structures, Istanbul, Turkey, June 2-5, 1999.<br />

Lungu, D., Aldea, A., Arion, C., Cornea, T., 1998. "Seismic hazard zonation in Eastern Europe", Second<br />

International Conference on Earthquake Hazard and Seismic Risk Reduction, September 15-21,<br />

Yerevan, Armenia , Kluwer Academic Publisher, 2000, p281-289.<br />

Lungu, D., Demetriu, S., Arion, C. 1998. Seismic vulnerability of buildings exposed to Vrancea earthquakes in<br />

Romania. In Vrancea Earthquakes. Tectonics, Hazard and Risk Mitigation, Kluwer Academic Publishers,<br />

Wenzel F., Lungu D., editors, Proc. of First International Workshop on Vrancea Earthquakes, p.215-224.<br />

Lungu D., Cornea T., Nedelcu C., 1998. Probabilistic hazard assessment and site-dependent response for<br />

Vrancea earthquakes. In Vrancea Earthquakes. Tectonics, Hazard and Risk Mitigation, Kluwer<br />

Academic publishers b.v., Wenzel F., Lungu D., editors, p.251-268<br />

Marza, V.I., Kijko, A., Mäntyniemi, P., (1991), Estimate of earthquake hazard in the Vrancea (Romania) region,<br />

Pageoph, Vol.136, No.1, Birkhäuser Verlag, Basel, p.143-154.<br />

Munich Re, 1998. World Map of Natural Hazards<br />

Radu C. manuscripts, 1994. Catalogues of earthquakes occurred on Romanian territory during the periods 984-<br />

1990 and 1901-1994.<br />

Zanfir A., 2000. Assessment of damage buildings (Master thesis, in Romanian), UTCB, 75p.<br />

Wells D.L., Coppersmith K.J., 1994. New empirical relations among magnitude, rupture length, rupture width,<br />

rupture area, and surface displacement. Bulletin of the Seismological Society of America, Vol.84, No 4,<br />

p. 974-1002.<br />

Cornea T., Vacareanu R. and Lungu D., 2000 Technical Report for Collaborative Research Center (CRC)<br />

461 of SFB, Germany: “Strong Earthquakes: A Challenge for Geosciences and Civil Engineering”, Karlsruhe<br />

University, 64 p.<br />

HAZUS – Technical Manual 1997. Earthquake Loss Estimation Methodology, 3 Vol.<br />

Newmark, N. M., and Hall, W. J. (1982). Earthquake Spectra and Design. Berkeley, Calif. Earthquake<br />

Engineering Research Inst.<br />

V]c]reanu R., Cornea T., Lungu D. Evaluation of seismic fragility of buildings, Earthquake Hazard and<br />

Countermeasures for Existing Fragile Buildings, Editors: Lungu D. & Saito T., Independent Film, Bucharest<br />

Romania.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!