Higher Maths 2005 Paper 1 Solutions

Higher Maths 2005 Paper 1 Solutions Higher Maths 2005 Paper 1 Solutions

greenfaulds.n.lanark.sch.uk
from greenfaulds.n.lanark.sch.uk More from this publisher
13.04.2015 Views

Higher Maths 2005 Paper 1 Solutions 1. m = tan60° m = 3 y – b = m(x – a) y – 0 = 3 (x – (–2)) y = 3 x + 2 3 2. (a) Congruent circles radii equal (b) AB = P = midpoint of AB = 2 ( 3 − ( −3) + (6 − ( −2)) 2 ( 6) + (8) 2 2 From equations; A(–3, –2) and B(3,6) = 100 P(0,2) = 10 units 2 3. (a) DF = DB (b) AF = AD + DF 3 6 − 6 4 2 DF = 3 AF = 3 + 2 3 − 9 9 − 6 4 − 2 DF = 2 AF = 5 − 6 3 F(10,5,3) 4. (a) h(x) = g(f(x)) (b) (i) Minimum turning point at (,7) = g(3x – 1) (ii) Range: y 7 = (3x – 1) 2 + 7 5. dx d (1 + 2sinx) 4 = 4(1 + 2sinx) 3 .2cosx = 8cosx(1 + 2sinx) 3 Solutions by MAitchison www.mathsroom.co.uk

<strong>Higher</strong> <strong>Maths</strong> <strong>2005</strong><br />

<strong>Paper</strong> 1 <strong>Solutions</strong><br />

1. m = tan60°<br />

m = 3<br />

y – b = m(x – a)<br />

y – 0 = 3 (x – (–2))<br />

y = 3 x + 2 3<br />

2. (a) Congruent circles radii equal (b) AB =<br />

P = midpoint of AB =<br />

2<br />

( 3 − ( −3)<br />

+ (6 − ( −2))<br />

2<br />

( 6) + (8)<br />

2<br />

2<br />

From equations; A(–3, –2) and B(3,6) = 100<br />

P(0,2)<br />

= 10 units<br />

2<br />

3. (a) DF = DB<br />

(b) AF = AD + DF<br />

3<br />

6 <br />

− 6<br />

4 <br />

2 <br />

<br />

DF = 3 <br />

AF = 3 + 2 <br />

3 <br />

−<br />

9<br />

<br />

<br />

9 −<br />

6<br />

4 <br />

− 2<br />

<br />

<br />

DF = 2 <br />

AF = 5 <br />

<br />

−<br />

6<br />

<br />

<br />

3 <br />

F(10,5,3)<br />

4. (a) h(x) = g(f(x)) (b) (i) Minimum turning point at (,7)<br />

= g(3x – 1) (ii) Range: y 7<br />

= (3x – 1) 2 + 7<br />

5.<br />

dx<br />

d (1 + 2sinx) 4 = 4(1 + 2sinx) 3 .2cosx<br />

= 8cosx(1 + 2sinx) 3<br />

<strong>Solutions</strong> by MAitchison www.mathsroom.co.uk


6. (a) u n+1 = ku n + 5 (b) (i) u n+1 = mu n + 5 u o = 3<br />

L = kL + 5 u 1 = 3m + 5<br />

4 = 4k + 5 u 2 = m(3m + 5) + 5<br />

–1 = 4k u 2 = 3m 2 + 5m + 5<br />

1<br />

− = k 4<br />

(ii) 3m 2 + 5m + 5 = 7<br />

3m 2 + 5m – 2 = 0<br />

(3m – 1)(m + 2) = 0<br />

1<br />

m = or m = –2 3<br />

m = –2 produces a sequence with no limit<br />

as –1 < m < 1 for a limit to exist<br />

7. (a) a = 4, b = 5 (b) Domain: x > 4<br />

8. (a)<br />

3 2 –7 0 9<br />

6 –3 –9<br />

2 –1 –3 0<br />

(x – 3) is a factor<br />

Quotient: 2x 2 – x – 3<br />

f(x) = (x – 3)( 2x 2 – x – 3)<br />

= (x – 3)(x + 1)(2x – 3)<br />

(b) f(x) crosses x-axis when y = 0<br />

x = −1,<br />

3<br />

, 3<br />

2<br />

(–1,0) ( 3 / 2 ,0) (3,0)<br />

f(x) crosses y-axis when x = 0<br />

y = 9<br />

(0,9)<br />

<strong>Solutions</strong> by MAitchison www.mathsroom.co.uk


2 −<br />

8. (c) f ′(<br />

x)<br />

= 6x<br />

14x<br />

For stationary points, f ′( x)<br />

= 0<br />

6x 2 – 14x = 0<br />

2x(3x – 7) = 0<br />

x = 0 or<br />

7<br />

x =<br />

3<br />

when x = 0, y = 9<br />

x 0 <br />

7<br />

3<br />

<br />

when<br />

7 7 7 <br />

x = , y = 2<br />

− 7<br />

+ 9<br />

3 3 3 <br />

3<br />

686 343<br />

= − + 9<br />

27 9<br />

=<br />

=<br />

686<br />

27<br />

−100<br />

27<br />

1029<br />

− +<br />

27<br />

243<br />

27<br />

f ′(x)<br />

+ 0 – 0 + Max TP at (0,9)<br />

7 −100<br />

<br />

/ – \ _ / Min TP at , <br />

3 27 <br />

when x = –2, y = 2(–2) 3 – 7(–2) + 9 y = 2(2) 3 – 7(2) + 9<br />

= –16 – 28 + 9 = 16 – 28 + 9<br />

= –35 = –3<br />

(–2, –35) (2, –3)<br />

greatest value of f in the interval –2 x 2 is 9 and least value of f is –35<br />

<strong>Solutions</strong> by MAitchison www.mathsroom.co.uk


7<br />

9. cos2x = 25<br />

7<br />

cos2x = 25<br />

2cos 2 7<br />

x – 1 = 25<br />

1 – 2sin 2 7<br />

x = 25<br />

2cos 2 32<br />

x = 25<br />

– 2sin 2 x =<br />

18<br />

−<br />

25<br />

cos 2 16<br />

x = 25<br />

sin 2 9<br />

x = 25<br />

cosx =<br />

4<br />

± sinx =<br />

5<br />

3<br />

±<br />

5<br />

cosx = 5<br />

4 and sinx = 5<br />

3<br />

for 0 < x < 2<br />

π<br />

(only 1 st quadrant solutions required)<br />

10. (a) sin x − 3 cos x<br />

k sin( x − a)<br />

= k sin x cos a − k cos xsin<br />

a<br />

kcosa = 1 k =<br />

2<br />

2<br />

( 1) + ( 3) tana =<br />

ksina = 3 k = 1+ 3<br />

tana =<br />

k = 4 a =<br />

k = 2<br />

k sin a<br />

k cos a<br />

3<br />

1<br />

π<br />

3<br />

a is in 1 st quadrant so a = 3<br />

π<br />

S<br />

<br />

T<br />

<br />

A<br />

<br />

C<br />

<br />

<br />

π <br />

sin x − 3 cos x = 2sin<br />

x − <br />

3 <br />

(b)<br />

y<br />

5<br />

<br />

y = 2 sin<br />

x − π + 3<br />

3 <br />

1<br />

O<br />

π<br />

2<br />

π<br />

3π<br />

2<br />

2π<br />

x<br />

<strong>Solutions</strong> by MAitchison www.mathsroom.co.uk


11. (a) (x – t) 2 + (y – 0) 2 = (2) 2<br />

(x – t) 2 + y 2 = 4<br />

(b) (x – t) 2 + (2x) 2 = 4<br />

x 2 – 2tx + t 2 + 4x 2 = 4<br />

5x 2 – 2tx + t 2 – 4 = 0<br />

If y = 2x is tangent then b 2 – 4ac = 0<br />

(–2t) 2 – 4(5)(t 2 – 4) = 0<br />

4t 2 – 20t 2 + 80 = 0<br />

80 – 16t 2 = 0<br />

80 = 16t 2<br />

5 = t 2<br />

t = ± 5<br />

t = 5 as t is on positive x-axis in diagram<br />

<strong>Solutions</strong> by MAitchison www.mathsroom.co.uk

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!