06.04.2015 Views

Inverted Pendulum

Inverted Pendulum

Inverted Pendulum

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Problem 10.<br />

<strong>Inverted</strong> <strong>Pendulum</strong>


Problem 10.<br />

It is possible to stabilise an inverted<br />

pendulum. It is even possible to stabilise<br />

inverted multiple pendulum (one pendulum<br />

on the top of the other). Demonstrate the<br />

stabilisation an determine on which<br />

parameters this depends.


Introduction<br />

• <strong>Inverted</strong> pendulum - center of mass is<br />

above its point of suspension<br />

• Achieving stabilisation – pendulum<br />

suspension point vibrating!<br />

• Principal parameters:<br />

• lenght<br />

• frequency<br />

• amplitude


Introduction cont.


Experimental approach<br />

• Apparatus<br />

• Construction<br />

• Measurements:<br />

• <strong>Pendulum</strong> angle in time<br />

• Stabilisation conditions:<br />

amplitude vs. pendulum length<br />

amplitude vs. frequency<br />

• Double pendulum


Apparatus<br />

• Speaker<br />

(subwoofer)<br />

• Function generator<br />

• Amplifier<br />

• Stroboscope<br />

• Pendula (wooden)


Apparatus cont.<br />

• Speaker – low harmonics generation<br />

• Audio range amplifier<br />

• Stroboscope – accurate frequency<br />

measurement<br />

• Point of support amplitude measured with<br />

(šubler)<br />

• Multiple measurements for error<br />

determination


Construction<br />

Lengths [cm]:<br />

4<br />

4.5<br />

5<br />

5.5<br />

6<br />

6.5<br />

7<br />

7.5<br />

Density [kg/m 3 ]:<br />

626


Measurements<br />

• Stability – pendulum returns to upward<br />

orientation<br />

• measurements of boundary conditions:<br />

frequency vs. amplitude<br />

length vs. amplitude<br />

angle in time (two cases);<br />

• inverted pendulum<br />

• “inverted” inverted pendulum –<br />

for drag determination


Double pendulum


Theoretical approach<br />

• <strong>Pendulum</strong> – tends to state of minimal energy<br />

• Upward stabilisation possible if enough energy<br />

is given at the right time<br />

• Formalism – two possibilities:<br />

• equation of motion<br />

• energy equation – Lagrangian formalism<br />

• Forces approach – more intuitive:


Forces on pendulum<br />

l − pendulum lenght<br />

ϕ − angle between<br />

pendulum and y axis<br />

h&<br />

− acceleration of<br />

F<br />

F<br />

r<br />

y<br />

suspension point<br />

− resistance<br />

− inertial force acting<br />

on the center of mass


Equation of motion<br />

• In noninertial pendulum system:<br />

I<br />

s<br />

1<br />

ϕ&= − Fyl<br />

sinϕ<br />

−<br />

2<br />

• Inertial acceleration:<br />

• gravity component<br />

• periodical acceleration of suspension<br />

point<br />

1<br />

2<br />

F l<br />

r<br />

l − pendulum<br />

ϕ − angle<br />

I<br />

s<br />

F<br />

F<br />

r<br />

y<br />

pendulum<br />

− pendulum<br />

inertia<br />

−<br />

resistance<br />

− inertial force acting<br />

on the<br />

lenght<br />

between<br />

and<br />

moment<br />

center of<br />

y axis<br />

of<br />

mass


Equation of motion cont.<br />

• Resistance force – estimated to be linear to<br />

angular velocity<br />

• “inverted” inverted pendulum measurements<br />

30<br />

20<br />

10<br />

eff<br />

−<br />

e 2<br />

ϕ max ~ β<br />

t<br />

angle [°]<br />

0<br />

β<br />

eff<br />

−<br />

damping<br />

coefficien<br />

t<br />

-10<br />

-20<br />

β<br />

ϕ<br />

eff<br />

max<br />

= 3.0 s<br />

-1<br />

− angular<br />

amplitude<br />

-30<br />

-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0<br />

time [s]


Equation of motion cont.<br />

⇒ equation of motion:<br />

2<br />

2⎛ Aω<br />

⎞<br />

& ϕ + β & ϕ + ω0 ⎜1<br />

− sin ω<br />

⎟<br />

eff<br />

t sin ϕ =<br />

⎝ g ⎠<br />

0<br />

ω<br />

2<br />

0<br />

− parameter<br />

A − suspension<br />

ω − suspension<br />

:<br />

ω<br />

2<br />

0<br />

point<br />

point<br />

=<br />

3<br />

2<br />

l<br />

g<br />

amplitude<br />

angular<br />

frequency<br />

• Analytical solution very difficult<br />

• Numerical solution – Euler method


Equation of motion cont.<br />

0,6<br />

0,4<br />

angle [rad]<br />

0,2<br />

0,0<br />

l = 5.0 cm<br />

ω = 685 rad/s<br />

2A<br />

= 4.5 mm<br />

-0,2<br />

-0,4<br />

-0,6<br />

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6<br />

time [s]


Stability conditions<br />

⇒From equation of motion solutions stability<br />

determination:<br />

200<br />

180<br />

l<br />

=<br />

5.0<br />

cm<br />

160<br />

frequency [Hz]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

0,001 0,002 0,003 0,004 0,005 0,006<br />

2A [m]


Stability conditions cont.<br />

9<br />

8<br />

7<br />

length [cm]<br />

6<br />

5<br />

4<br />

freq<br />

= 100<br />

Hz<br />

3<br />

1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4<br />

2A [mm]


Stability conditions cont.<br />

• Agreement between model and measurements<br />

relatively good<br />

• Discrepancies due to:<br />

• errors in small amplitude measurements<br />

• speaker characteristics (higher<br />

harmonics generation)<br />

• nonlinear damping...


Conclusion<br />

• we determined and experimentaly prove<br />

stability parameters<br />

• mass is not a parameter<br />

• theoretical analisis match with results<br />

• we managed to stabilise multiple inverted<br />

pendulum

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!