04.04.2015 Views

An Overview of One-Sun Solar Thermal Technology

An Overview of One-Sun Solar Thermal Technology

An Overview of One-Sun Solar Thermal Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>Overview</strong> <strong>of</strong><br />

<strong>One</strong>-<strong>Sun</strong> <strong>Solar</strong> <strong>Thermal</strong> <strong>Technology</strong><br />

Jay Burch<br />

National Renewable Energy Laboratory<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Presentation Outline<br />

• <strong>Solar</strong> Basics<br />

• <strong>Technology</strong><br />

• Collectors<br />

• Systems<br />

• Performance<br />

• Economics and markets<br />

• TTF tour<br />

• Future systems<br />

• Cold-climate thermosiphons<br />

• Triple play: water heating, space heating, space cooling<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


The <strong>Sun</strong> = Radiant Energy<br />

Energy in the form <strong>of</strong> electromagnetic waves<br />

Invisible<br />

Travels at “speed <strong>of</strong> light” away from its source<br />

Radiant energy can be converted to other forms <strong>of</strong><br />

energy:<br />

Heat energy: “absorb” the wave<br />

Electrical energy: photons excite electrons into the conduction band in PV<br />

Mechanical energy<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Radiant Energy Sources<br />

<strong>Sun</strong>light (6000 o K)<br />

Q total<br />

=σT 4<br />

“Hot”<br />

Campfire (3000 o K)<br />

Stove burner (600 o K)<br />

“Cool”<br />

Infrared “heat” (330 o K)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Sun</strong>light: Waves or Photons?<br />

• As continuous waves:<br />

λ<br />

E wave = B X E<br />

Good model for thermal<br />

• As discrete photons:<br />

E photon = hν = hc/λ<br />

1<br />

λ<br />

Good model for photovoltaics<br />

0<br />

0 40<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

-1


The <strong>Solar</strong> Resource<br />

• <strong>Solar</strong> constant: 1367 W/m 2<br />

• World energy use: 400 Quads/yr ~ 4*10 20 J/yr<br />

⇓<br />

Irradiance in 40 minutes = world annual energy use!<br />

Irradiance is ~ 10 4 times world energy use rate<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


The <strong>Solar</strong> Spectrum<br />

UV Visible Near Infrared<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Uses <strong>of</strong> <strong>Solar</strong> Energy<br />

• Photovoltaics<br />

• <strong>Thermal</strong> electric<br />

• Building energy<br />

}<br />

Yield electricity<br />

Yields heat/cold (thermal)<br />

• Other:<br />

• Industrial processes<br />

• Desalination<br />

• Water treatment<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Uses <strong>of</strong> <strong>Solar</strong>:<br />

Photovoltaics<br />

PV<br />

Cell<br />

Electricity<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Uses <strong>of</strong> <strong>Solar</strong>:<br />

Concentrating thermal electric<br />

Concentration<br />

High-T<br />

Heat<br />

Steam<br />

turbine<br />

Electricity<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Big electricity-producing plants


Uses <strong>of</strong> <strong>Solar</strong>:<br />

Heat production<br />

Absorber<br />

Heat transfer fluid<br />

<strong>Thermal</strong> end use<br />

Storage<br />

• Residential buildings<br />

• Domestic water heating, space heating, space cooling<br />

•Other:<br />

• Commercial buildings<br />

• Industrial process heat<br />

• Desalination<br />

• Water treatment<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Residential <strong>Solar</strong> Applications<br />

• <strong>Solar</strong> water heating<br />

– Year-round load<br />

– Most common application<br />

• Space heating<br />

– Part-year load<br />

– High need at low sun<br />

• Space cooling/dehumidification<br />

– Emerging hardware: not yet available<br />

– Challenging<br />

• Pool heating<br />

– Swing seasons/summer load<br />

– Most economical application<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH <strong>Technology</strong><br />

Collectors<br />

Many types<br />

Focus on more common<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Unglazed Collectors<br />

Inexpensive unglazed<br />

polymer collectors<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Photovoltaics as Unglazed Collector<br />

Triples PV only gain: Q thermal ~ 2*Q electrical<br />

Air-based<br />

PV panel/thermal absorber<br />

Ro<strong>of</strong><br />

Air gap/passageway<br />

Liquid-based<br />

PV panel/thermal absorber<br />

Ro<strong>of</strong><br />

Tubes w/ ht trsf fluid (typ. glycol)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Flat Plate Collector<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Flat Plate Collector Types<br />

Fin-tube absorber<br />

Fully-wetted Absorber<br />

Metal absorbers<br />

Polymer absorbers<br />

<strong>Sun</strong><br />

Glazing<br />

<strong>Sun</strong><br />

Glazing<br />

Tube<br />

Fin/Conductive metal<br />

Fluid passageways<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Integral-Collector-Storage (ICS)<br />

Today’s ICS: Serpentine Cu tubes under line pressure in a glazed box<br />

Gasket<br />

Glazings<br />

Water Connection<br />

Box<br />

Storage tanks<br />

Insulation<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Evacuated Tube Collector<br />

Fin-tube absorber<br />

Dewar design<br />

Evacuated space<br />

Selective coating<br />

Out<br />

In/out tubes<br />

In<br />

Glass tube<br />

Historically expensive; end seal issues<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Performance<br />

Energy balance:<br />

Q out,loss = UA(T avg –T ambient )<br />

Q in = Q out<br />

(steady state)<br />

T out<br />

Q in = (τα)I sun<br />

<strong>Sun</strong><br />

Q out,to-fluid = mc p (T out –T in )<br />

=Q useful<br />

T in<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Performance<br />

Efficiency (η):<br />

η= Q useful /Q incident<br />

Q out,loss = UA(T avg –T ambient )<br />

T out<br />

Q in = (τα)I sun<br />

<strong>Sun</strong><br />

Q out,to-fluid = mc p (T out –T in )<br />

=Q useful<br />

T in<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Performance<br />

(Q useful )/A coll =F r (τα) n I sun –F r U l (T in –T amb )<br />

Optical Gain<br />

<strong>Thermal</strong> loss<br />

⇓<br />

η=F r (τα) n –F r U l [(T in –T amb )/I sun ]<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Efficiency Equation<br />

Efficiency vs. Temperature Difference<br />

0.9<br />

Efficiency<br />

0.6<br />

0.3<br />

Selective<br />

Un-glazed<br />

Non-selective<br />

Evacuated Tube<br />

0<br />

0 0.05 0.1 0.15<br />

(T_in - T_amb)/I_inc<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Operating parameter<br />

= ∆T/I sun


Collector Efficiency Equation<br />

0.9<br />

Efficiency vs. Temperature Difference<br />

Efficiency<br />

0.6<br />

0.3<br />

Selective<br />

Un-glazed<br />

Non-selective<br />

Evacuated Tube<br />

0<br />

0 20 40 60 80 100 120<br />

T_in, @ I_sun= 800 W/m2<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Water Heater Certification<br />

<strong>Solar</strong> Rating and Certification Corporation<br />

(SRCC)<br />

www.solar-rating.org<br />

Certifies all collectors and systems in U.S.<br />

Publishes all collector test results: OG100<br />

Publishes all system performance ratings: OG300<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


All SRCC Collectors<br />

Collector Summary<br />

9<br />

Fr Ul [W/m2-C]<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Non-selective<br />

Selective<br />

Black Chrome<br />

Black Nickel<br />

Black Paint<br />

Metallic Oxide<br />

Moderately Selective Black Paint<br />

Polyester Flat Black Paint<br />

Selective Coating<br />

Sputtered Aluminium Nitride<br />

Sputtered cermet<br />

Sputtered titanium nitride<br />

Titianium oxide<br />

Vapor Deposition Selective Coating<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Fr Ta<br />

Evacuated tubes<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH <strong>Technology</strong><br />

Systems<br />

Many types<br />

Focus on more common<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Pool System: Simple<br />

Collector<br />

New<br />

Pool<br />

Pump,<br />

Filter<br />

V<br />

Existing<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Pool Collectors/System<br />

Inexpensive unglazed<br />

polymer collectors<br />

Inexpensive balance-<strong>of</strong>system<br />

(uses pool pump,<br />

pool is storage,…)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Pool Heating<br />

Relatively successful market<br />

• Inexpensive system<br />

– Unglazed polymer collectors at 1/10 th glazed cost<br />

– Very inexpensive “balance <strong>of</strong> system” (pool = storage, etc.)<br />

• Good performance<br />

– Low temperature difference in spring/summer/fall<br />

– No reflection losses<br />

Good economics ⇒ Good market<br />

• < ~5 yr payback, > ~20% return on investment<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Water Heaters (SWH)<br />

• Successful market in Europe, China<br />

• Europe: High energy costs, environmentally conscious<br />

• China: low system costs, no other options in many cases<br />

• Poor market in the U.S.<br />

• Robust market (~1B$/yr) during tax credit era 1979-1984<br />

• Market collapse in 1984<br />

• Low energy costs + high system cost:<br />

» 10-50 year paybacks<br />

» Sales: ~ 6K systems/year<br />

» 2005 Energy Policy Act:<br />

Up to $2000 rebate: increased sales?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Basic SWH Classification<br />

Active<br />

Has pump, with sensors,<br />

wires, and controller<br />

Passive<br />

No pump, sensors,<br />

wires, or controller<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH Classification: Active<br />

Active *<br />

Liquid Heat Trsfr Fluid<br />

Air as Heat Trsfr Fluid<br />

Direct Glycol Drainback Front-pass Back-pass Transpired<br />

* Has pump/fan for fluid<br />

circulation, with sensors,<br />

wires, and controller<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH Classification<br />

Passive *<br />

Integral collectorstorage<br />

(ICS)<br />

Irradiated tank <strong>of</strong> water<br />

Thermosiphon<br />

Storage above collector:<br />

hot water rises<br />

Other<br />

Percolation; thermal pump;…<br />

For these system types, storage is on the ro<strong>of</strong><br />

*No pump/fan, sensors,<br />

wires, or controller<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Further Classification Dimensions<br />

• Collector<br />

– Glazings (for flat-plate @ atmospheric pressure)<br />

– Unglazed<br />

» Can be used for pool, domestic hot water, and space heating<br />

» Not common in solar water heaters<br />

– <strong>One</strong> glazing (most common)<br />

– Multiple glazings (rare)<br />

– Surface coatings<br />

– Non-selective: high solar absorption and high infrared loss<br />

– Selective: high solar absorption and low infrared loss<br />

» Thin IR-transparent coating on IR-reflective substrate<br />

» IR-reflective elements in paint mixture<br />

– Evacuated tubes<br />

– Rare in the US; dominant in China<br />

– May become common in US?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Further Classification Dimensions<br />

• <strong>Solar</strong> loop heat exchanger<br />

• Internal/in-the-water<br />

– Immersed coil<br />

– Tank-in-tank<br />

• External to storage<br />

– Wrap-around coil<br />

– Side-arm counterflow<br />

» Only collector side pumped with thermosiphon loop on tank side<br />

» OR: Both sides <strong>of</strong> heat exchanger are pumped<br />

• Storage tank<br />

• Pressurized<br />

» potable water in ceramic-lined steel tanks<br />

• Unpressurized<br />

» Must have load-side heat exchanger carrying potable water<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Further Classification Dimensions<br />

• Controller in active systems<br />

• Active, differential controller<br />

» Pump on when T collector > (T tank-bottom + ~20 o F)<br />

• PV-pump<br />

» DC pump is controlled by PV panel<br />

• Timer<br />

• Overheat protection methods<br />

• None: most common<br />

• Vent the collector<br />

• Evaporate fluid from collector<br />

• Dump storage heat<br />

» boiling, passive radiator, ground loop, night-time circulation<br />

• …<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Active System- Direct<br />

Pressurized potable water<br />

in the collector loop<br />

To aux tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Active System- Indirect<br />

Glycol in this loop<br />

Glycol System<br />

Glycol provides<br />

freeze protection<br />

To aux tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Active System - Drainback<br />

Controller=PV panel<br />

PV Panel<br />

To aux tank<br />

Un-pressurized<br />

solar storage tank<br />

Mains inlet<br />

High-head<br />

DC pump<br />

Heat Exchanger<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>An</strong>other Drainback Design<br />

<strong>Solar</strong><br />

Sensor<br />

PEX<br />

plumbing<br />

Vented<br />

Drainback<br />

Tank with<br />

Level<br />

Indicator<br />

<strong>Solar</strong><br />

Controller<br />

Temperature<br />

Gauges<br />

Drain Valve<br />

Circulation<br />

Module<br />

FAFCO<br />

INCOMING<br />

COLD WATER<br />

HOME HOT<br />

WATER<br />

<strong>Solar</strong><br />

Collector<br />

Mounting<br />

Hardware<br />

Ro<strong>of</strong><br />

Jacks<br />

Bypass Valve<br />

Cold Water<br />

Shut-Off Valve<br />

<strong>An</strong>ti-Scald<br />

Valve<br />

Coaxial tank<br />

adapter<br />

Tank Temperature<br />

Sensor<br />

Storage Tank<br />

Water Heater<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Passive- Thermosiphon<br />

Light, hot water rises<br />

Heavy, cold water sinks<br />

Convection loop schematic<br />

Most popular system worldwide: simple, reliable<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Thermosiphon vs. Active<br />

Thermosiphon<br />

Active<br />

<strong>Solar</strong> tank<br />

Cold In<br />

Collector sensor<br />

Cold In<br />

Wires<br />

Hot Out<br />

Hot Out<br />

Pump<br />

• Thermosiphons:<br />

• Less parts, less cost<br />

• More reliable<br />

• ~Equal performance<br />

Elec.<br />

tank<br />

Inside<br />

<strong>Solar</strong> tank<br />

Tank sensor<br />

Controller<br />

AC Power<br />

Extra hardware vs. thermosiphon<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Thermosiphons: Many varieties possible<br />

Old style: protrusive/ugly?<br />

New style: sleek/aesthetic; “like a skylight”<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Solco/Australian TSiphon<br />

2/3 cost reduction<br />

Cost ~ $400 US<br />

Rotomolded PE Body,<br />

PMMA glazing<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


ICS System: simple<br />

No pump, no<br />

controller, no<br />

separate tank<br />

Mains inlet<br />

Conventional DHW tank<br />

End use<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


ICS Systems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Unpressurized ICS<br />

Immersed heat exchanger<br />

Glazing(s)<br />

Insulation<br />

Supply/Return Piping<br />

Thin-walled polymer<br />

vessel <strong>of</strong> water<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Unpressurized ICS: DEG/SE<br />

Therm<strong>of</strong>ormed<br />

acrylic glazing<br />

Cu Load-side Hx<br />

PE tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


DEG/<strong>Sun</strong>Earth ICS<br />

Glazed version<br />

Unglazed version<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Field Installations<br />

Migrant housing<br />

camp in CA<br />

Glazed units<br />

Unglazed units<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Invisible Collector<br />

Shingles +<br />

Deck<br />

Ht trsfr fluid tubes<br />

Insulation<br />

Conductive fin<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Evacuated Tube Collector<br />

Fin-tube absorber<br />

Dewar design<br />

Evacuated space<br />

Selective coating<br />

Out<br />

In/out tubes<br />

In<br />

Glass tube<br />

Historically expensive; end seal issues<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Variations with Evacuated Tubes<br />

• Passive thermosiphon<br />

• Tubes directly enter storage tank,<br />

thermosiphon loop each tube<br />

• Active system<br />

• Fin-tube heat pipe transfers<br />

heat to condensor in manifold<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Performance Basics<br />

• System efficiency ≡ η sys = Q sav /Q inc<br />

• Q inc ~ 3-6 kWh/m 2 /day, 100-200 kWh/ft 2 /year<br />

• <strong>Solar</strong> Fraction ≡ f sol = Q sav /Q fuel,no-solar<br />

• η sys ≈ constant ≈ 0.4 for active system<br />

1.00<br />

0.80<br />

0.60<br />

Active <strong>Solar</strong> Water Heating<br />

(216 locations in the continental U.S.)<br />

<strong>Solar</strong> Fraction<br />

Efficiency<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.40<br />

0.20<br />

0.20<br />

0.00<br />

0.00<br />

0.0 5.0 10.0 15.0 20.0 25.0 30.0<br />

<strong>An</strong>nual-Average Ambient Temperature ( o C)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Racked/Space Heating System<br />

UGGHH!<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SDHW: Flush-mount<br />

Neat!!<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SDHW: Wide Orientation Range is OK<br />

90%-100%<br />

80%-90%<br />

70%-80%<br />

60%-70%<br />

50%-60%<br />

Collector Orientation Factor<br />

<strong>Solar</strong> Water Heating<br />

(Lat=40 o )<br />

-90<br />

-60<br />

-30<br />

0<br />

30<br />

60<br />

90<br />

Azimuth<br />

90<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

Tilt<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


U.S. Sales by Year<br />

$1 billion/yr @ peak<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


U.S. Collector Area by Year<br />

20 Million ft 2 /yr @ peak<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Market Penetration<br />

Maximum Market Penetration vs. Payback<br />

(avg <strong>of</strong> 3)<br />

Penetration (fraction)<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

Target: 4 yrs (50%) to 7 yrs (10%)<br />

0 2 4 6 8 10<br />

Simple Payback (years)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Cost Goals for SDHW System<br />

Cost <strong>of</strong> 40 ft2 System vs Cost-<strong>of</strong>-elec for spec payback<br />

(Incidence = 5.4 kWh/m2/day; Denver)<br />

Cost_system [$]<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Target<br />

0 5 10 15 20<br />

Payback<br />

4<br />

7<br />

10<br />

13<br />

16<br />

Cost_electricity [c/kWh]<br />

1. Choose mkt. penetration payback (PB line)<br />

2. For site cost <strong>of</strong> fuel, read Cost_System @ PB line (dotted lines)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH and Cost<br />

• Present systems:<br />

– Cost is a barrier<br />

– New construction: $3000 to $5000<br />

– Retr<strong>of</strong>it: $4500 to $10,000<br />

– Need rebates to bring net cost to below $2000<br />

• Future system:<br />

– Cost reduction efforts: bring price under $2000<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Polymer Collector<br />

First Cost<br />

Eliminate one pump<br />

Integrated valve pkg<br />

Integrated piping<br />

$3,500<br />

$3,000<br />

$2,500<br />

$2,000<br />

$1,500<br />

$1,000<br />

Cold Climate Systems:<br />

Cost Reduction Potential<br />

Cost & Cost-<strong>of</strong>-Savings/ Glycol<br />

[COSE = (Cost)/(Savings)]<br />

BOS Variations<br />

1st Cost<br />

COSE<br />

Collector Variations<br />

Base case<br />

<strong>One</strong> pump<br />

Polymer tank + hx<br />

Integrated piping<br />

Valve package<br />

Non-selective mtl-gls<br />

Polymer selective<br />

Polymer non-selective<br />

Polymer unglazed<br />

12<br />

10<br />

8<br />

6<br />

4<br />

COSE [c/kWh]<br />

Film-lined storage<br />

Heat exchanger<br />

Retainer ring<br />

Submersible pump<br />

Polymer film liner<br />

Insulation<br />

Sheet metal cylinder<br />

Rigid foam base<br />

Polymer heat exch.<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Cost ~$12


Key Reliability Issues<br />

• Installation problems<br />

• Leaks in ro<strong>of</strong><br />

• Leaks in piping<br />

• Sloppy installation<br />

• Controller set wrong<br />

• …<br />

• Hardware problems<br />

• Pump, sensor, controller fails<br />

• Storage tanks fails<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation problems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation problems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation problems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation Training<br />

North American Board <strong>of</strong> Certified Energy<br />

Practitioners<br />

(NABCEP)<br />

• Administers tests for certification<br />

• Photovoltaics<br />

• <strong>Solar</strong> thermal<br />

• Many jobs (100,000s) coming<br />

• Qualified/certified installers needed badly<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH Show-and-Tell<br />

Let’s go see a few SWH articles in the TTF<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Future <strong>Solar</strong> <strong>Thermal</strong><br />

• Cold-climate thermosiphons<br />

• Address space heating and cooling also<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Pipe Freeze Problem<br />

Collector<br />

Storage<br />

Pipes in attic can freeze<br />

Supply piping<br />

Mains Inlet<br />

Return piping<br />

House load<br />

Aux<br />

Tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Pipe Freeze Probability<br />

Probability is for at least one<br />

freeze in twenty years<br />

Safe to install passive<br />

systems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Passive Systems and Pipe Freeze<br />

Passive systems:<br />

– Currently: pipe freeze limits markets to mild climates<br />

• Cu piping with insulation<br />

– To extend market, must freeze protect piping<br />

• Circulate warm water through the piping<br />

– Heat from auxiliary tank or interior air heat exchanger<br />

• Circulate warm interior air in duct around piping<br />

• Circulate mains water through piping with Freeze Protection Valve (FPV)<br />

– To prevent catastrophe when freeze protection fails:<br />

• Must have freezable piping ⇒ failure/freeze is minor inconvenience<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Freeze Protection System<br />

Two Levels <strong>of</strong> protection:<br />

1. Primary Freeze Protection<br />

Keeps pipes from freezing (until it fails)<br />

Freeze protection valve<br />

Natural convection loops;…<br />

2. Fail-safe Backup: Freeze-tolerant piping<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Is there a Freeze-tolerant Piping?<br />

• Polybutylene:<br />

• PEX?<br />

• Great freeze tolerance (withstood >700 freeze-thaw cycles)<br />

• Withdrawn from market ~1992<br />

Probable reason: Brass/copper fittings attack the material<br />

• Some manufactures/web sites claim “freeze tolerance”<br />

• No documentation<br />

Goal: determine freeze-tolerance <strong>of</strong> PEX<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Freeze-thaw Test<br />

Freezer<br />

PEX<br />

Result: 2 kinds <strong>of</strong><br />

PEX are freezetolerant<br />

Over 500 cycles <strong>of</strong><br />

freeze-thaw done<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Freeze Protection Valves (FPV)<br />

~ $60<br />

~$100-$200<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


FPV Protecting Piping<br />

Collector<br />

Storage<br />

Freeze Protection<br />

Valve located HERE!<br />

Return piping<br />

House load<br />

To drain<br />

Supply piping<br />

Mains Inlet<br />

Aux<br />

Tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Dole FPV/35 0 F Setpoint<br />

<strong>An</strong>nual Flow (gallons) through Dole FP-35 Freeze Prevention Valve<br />

Using Air Freezing Index Correlation with y-intercept Equal to Zero<br />

flow=0<br />

0


Passive Systems Market Extension?<br />

Safe/Non-wasteful areas=<br />

Freeze Protection Valve +<br />

Insulated copper pipe<br />

freezable piping<br />

Limited by Pipe Freeze<br />

Limited by water consumption<br />

BUT: collector/store freeze?<br />

Untested, other affects?<br />

Market Uptake/Transformation?<br />

Cold Climate Thermosiphons?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Glazed Systems<br />

A natural end-use progression for solar:<br />

Domestic Water Heating<br />

Domestic Water Heating + Space Heating<br />

(Combi-systems)<br />

Domestic Water Heating + Space Heating + Space Cooling<br />

(Triple-play systems)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


100% <strong>Solar</strong> HVAC<br />

<strong>An</strong>other natural progression:<br />

<strong>Solar</strong> System + Standard HVAC<br />

(solar is an “extra”)<br />

100% <strong>Solar</strong><br />

<strong>Solar</strong> “does it all”<br />

Eliminate conventional furnace, air conditioner, water heater<br />

Implies annual storage<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Progressions: Quantitative<br />

End Uses Addressed<br />

Area<br />

m 2<br />

Storage<br />

m 3<br />

Load<br />

GJ<br />

<strong>Solar</strong><br />

Fraction<br />

Water heating (WH) 6 0.3 16 0.6<br />

WH + Space Heating (Htg) (Combi-system) 20 1.5 40 0.3<br />

High sf combi-sys, w/ H2O annual store 1 40 70 40 0.9<br />

2<br />

100% <strong>Solar</strong> WH/Htg/Clg, w/ Des. TCHP 30 14 50 1<br />

1. From (Sillman 1981)<br />

2. Desiccant thermochemical heat pump storage; estimated.<br />

Boston, MA climate<br />

Note on units:<br />

Multiply m 2 times 110 to get ~ ft 2<br />

Divide volume in m 3 by 4 to get ~ kGal<br />

1 GJ ≅ 1 MMBtu<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Combi System Schematic<br />

Compared to <strong>Solar</strong> Water Heaters:<br />

•Larger Collector Area<br />

•Large Storage Tank<br />

•More complex controls<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Combi-System/Diurnal Storage<br />

1= Excess Consumption: load that cannot be met by solar<br />

2 = Potentially Usable <strong>Solar</strong><br />

3 = Excess <strong>Solar</strong><br />

Irradiation<br />

Load<br />

SF max = 2 /( 2 + 1)<br />

1 1<br />

3<br />

Overheating<br />

Potential<br />

2<br />

2<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Architectural/aesthetic issues<br />

Low Winter <strong>Sun</strong> ⇒ High Tilt for Space Heating?<br />

Ugly?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Building-integrated Combi-systems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Combi-System: High <strong>Solar</strong> Fraction<br />

Need large capacity,<br />

low-loss storage<br />

Irradiation<br />

Load<br />

SF max = (A col *H day )/(Load)<br />

1<br />

Store Excess<br />

Summer Heat for<br />

Use in Winter<br />

3<br />

1<br />

2<br />

2<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


High <strong>Solar</strong> Fraction ⇒<strong>An</strong>nual Heat Storage<br />

Heat storage types:<br />

– Sensible: need ~5-30 kGal (w/ efficient house)<br />

– Costly, bulky, “formidable”<br />

– Thermochemical heat pump/liquid desiccants<br />

– High energy density possible (1/6 th that <strong>of</strong> sensible)<br />

– Can use flat-plates at ~160 o F<br />

– Integrates well with solar-driven cooling in summer<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>An</strong>nual Storage<br />

1500<br />

<strong>Solar</strong> Fraction Contours vs (Vstor, Acol)<br />

0.8, super-ins<br />

0.9, super-insul<br />

Acoll [ft2]<br />

1000<br />

500<br />

Unrealistically large<br />

0.8, good passive<br />

0.9, good passive<br />

0.8, ~ '81 code<br />

0.9, ~ '81 code<br />

Reasonable sizes?<br />

0<br />

0 10000 20000 30000 40000<br />

Vstor [gal]<br />

Boston, MA<br />

Flat Plate Collectors<br />

From Sillman 1981 “Trade-<strong>of</strong>f…in <strong>An</strong>nual Storage <strong>Solar</strong> Heating”<br />

2-tank System<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Desiccant Heat Pump Storage<br />

• <strong>Solar</strong> heat in summer:<br />

• Evaporate water out <strong>of</strong> weak desiccant (1250 Btu/lb)<br />

• Makes strong desiccant<br />

– For cooling, and store for winter heat<br />

• Desiccant heat in winter<br />

• Condense water vapor onto strong desiccant (1250 Btu/lb)<br />

• Makes weak desiccant<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Adsorption/Desorption Desiccant Storage Cycle<br />

Q desorption,charge<br />

(from solar)<br />

Summer<br />

Charging<br />

Q condensation,charge<br />

Weak<br />

desiccant<br />

Water vapor, condensed<br />

Ground<br />

Storage<br />

Strong<br />

desiccant<br />

Water vapor, “re-created”<br />

Ground<br />

Storage<br />

Q condensation,discharge<br />

(to load)<br />

High Temperature Processes<br />

Winter<br />

Discharging<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Q desorption, discharge<br />

Low Temperature Processes


Future Residential <strong>Solar</strong> HVAC<br />

Beyond SWH to “triple-play”<br />

100% solar triple play, with desiccant heat pump?<br />

(Stay tuned!)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Thank you for your Attention<br />

• Just skimmed the surface<br />

• Much more to learn<br />

• Viewgraphs/references available to sign-up<br />

e-mail list<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!