04.04.2015 Views

An Overview of One-Sun Solar Thermal Technology

An Overview of One-Sun Solar Thermal Technology

An Overview of One-Sun Solar Thermal Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>An</strong> <strong>Overview</strong> <strong>of</strong><br />

<strong>One</strong>-<strong>Sun</strong> <strong>Solar</strong> <strong>Thermal</strong> <strong>Technology</strong><br />

Jay Burch<br />

National Renewable Energy Laboratory<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Presentation Outline<br />

• <strong>Solar</strong> Basics<br />

• <strong>Technology</strong><br />

• Collectors<br />

• Systems<br />

• Performance<br />

• Economics and markets<br />

• TTF tour<br />

• Future systems<br />

• Cold-climate thermosiphons<br />

• Triple play: water heating, space heating, space cooling<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


The <strong>Sun</strong> = Radiant Energy<br />

Energy in the form <strong>of</strong> electromagnetic waves<br />

Invisible<br />

Travels at “speed <strong>of</strong> light” away from its source<br />

Radiant energy can be converted to other forms <strong>of</strong><br />

energy:<br />

Heat energy: “absorb” the wave<br />

Electrical energy: photons excite electrons into the conduction band in PV<br />

Mechanical energy<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Radiant Energy Sources<br />

<strong>Sun</strong>light (6000 o K)<br />

Q total<br />

=σT 4<br />

“Hot”<br />

Campfire (3000 o K)<br />

Stove burner (600 o K)<br />

“Cool”<br />

Infrared “heat” (330 o K)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Sun</strong>light: Waves or Photons?<br />

• As continuous waves:<br />

λ<br />

E wave = B X E<br />

Good model for thermal<br />

• As discrete photons:<br />

E photon = hν = hc/λ<br />

1<br />

λ<br />

Good model for photovoltaics<br />

0<br />

0 40<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

-1


The <strong>Solar</strong> Resource<br />

• <strong>Solar</strong> constant: 1367 W/m 2<br />

• World energy use: 400 Quads/yr ~ 4*10 20 J/yr<br />

⇓<br />

Irradiance in 40 minutes = world annual energy use!<br />

Irradiance is ~ 10 4 times world energy use rate<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


The <strong>Solar</strong> Spectrum<br />

UV Visible Near Infrared<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Uses <strong>of</strong> <strong>Solar</strong> Energy<br />

• Photovoltaics<br />

• <strong>Thermal</strong> electric<br />

• Building energy<br />

}<br />

Yield electricity<br />

Yields heat/cold (thermal)<br />

• Other:<br />

• Industrial processes<br />

• Desalination<br />

• Water treatment<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Uses <strong>of</strong> <strong>Solar</strong>:<br />

Photovoltaics<br />

PV<br />

Cell<br />

Electricity<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Uses <strong>of</strong> <strong>Solar</strong>:<br />

Concentrating thermal electric<br />

Concentration<br />

High-T<br />

Heat<br />

Steam<br />

turbine<br />

Electricity<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Big electricity-producing plants


Uses <strong>of</strong> <strong>Solar</strong>:<br />

Heat production<br />

Absorber<br />

Heat transfer fluid<br />

<strong>Thermal</strong> end use<br />

Storage<br />

• Residential buildings<br />

• Domestic water heating, space heating, space cooling<br />

•Other:<br />

• Commercial buildings<br />

• Industrial process heat<br />

• Desalination<br />

• Water treatment<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Residential <strong>Solar</strong> Applications<br />

• <strong>Solar</strong> water heating<br />

– Year-round load<br />

– Most common application<br />

• Space heating<br />

– Part-year load<br />

– High need at low sun<br />

• Space cooling/dehumidification<br />

– Emerging hardware: not yet available<br />

– Challenging<br />

• Pool heating<br />

– Swing seasons/summer load<br />

– Most economical application<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH <strong>Technology</strong><br />

Collectors<br />

Many types<br />

Focus on more common<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Unglazed Collectors<br />

Inexpensive unglazed<br />

polymer collectors<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Photovoltaics as Unglazed Collector<br />

Triples PV only gain: Q thermal ~ 2*Q electrical<br />

Air-based<br />

PV panel/thermal absorber<br />

Ro<strong>of</strong><br />

Air gap/passageway<br />

Liquid-based<br />

PV panel/thermal absorber<br />

Ro<strong>of</strong><br />

Tubes w/ ht trsf fluid (typ. glycol)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Flat Plate Collector<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Flat Plate Collector Types<br />

Fin-tube absorber<br />

Fully-wetted Absorber<br />

Metal absorbers<br />

Polymer absorbers<br />

<strong>Sun</strong><br />

Glazing<br />

<strong>Sun</strong><br />

Glazing<br />

Tube<br />

Fin/Conductive metal<br />

Fluid passageways<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Integral-Collector-Storage (ICS)<br />

Today’s ICS: Serpentine Cu tubes under line pressure in a glazed box<br />

Gasket<br />

Glazings<br />

Water Connection<br />

Box<br />

Storage tanks<br />

Insulation<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Evacuated Tube Collector<br />

Fin-tube absorber<br />

Dewar design<br />

Evacuated space<br />

Selective coating<br />

Out<br />

In/out tubes<br />

In<br />

Glass tube<br />

Historically expensive; end seal issues<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Performance<br />

Energy balance:<br />

Q out,loss = UA(T avg –T ambient )<br />

Q in = Q out<br />

(steady state)<br />

T out<br />

Q in = (τα)I sun<br />

<strong>Sun</strong><br />

Q out,to-fluid = mc p (T out –T in )<br />

=Q useful<br />

T in<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Performance<br />

Efficiency (η):<br />

η= Q useful /Q incident<br />

Q out,loss = UA(T avg –T ambient )<br />

T out<br />

Q in = (τα)I sun<br />

<strong>Sun</strong><br />

Q out,to-fluid = mc p (T out –T in )<br />

=Q useful<br />

T in<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Performance<br />

(Q useful )/A coll =F r (τα) n I sun –F r U l (T in –T amb )<br />

Optical Gain<br />

<strong>Thermal</strong> loss<br />

⇓<br />

η=F r (τα) n –F r U l [(T in –T amb )/I sun ]<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Collector Efficiency Equation<br />

Efficiency vs. Temperature Difference<br />

0.9<br />

Efficiency<br />

0.6<br />

0.3<br />

Selective<br />

Un-glazed<br />

Non-selective<br />

Evacuated Tube<br />

0<br />

0 0.05 0.1 0.15<br />

(T_in - T_amb)/I_inc<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Operating parameter<br />

= ∆T/I sun


Collector Efficiency Equation<br />

0.9<br />

Efficiency vs. Temperature Difference<br />

Efficiency<br />

0.6<br />

0.3<br />

Selective<br />

Un-glazed<br />

Non-selective<br />

Evacuated Tube<br />

0<br />

0 20 40 60 80 100 120<br />

T_in, @ I_sun= 800 W/m2<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Water Heater Certification<br />

<strong>Solar</strong> Rating and Certification Corporation<br />

(SRCC)<br />

www.solar-rating.org<br />

Certifies all collectors and systems in U.S.<br />

Publishes all collector test results: OG100<br />

Publishes all system performance ratings: OG300<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


All SRCC Collectors<br />

Collector Summary<br />

9<br />

Fr Ul [W/m2-C]<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Non-selective<br />

Selective<br />

Black Chrome<br />

Black Nickel<br />

Black Paint<br />

Metallic Oxide<br />

Moderately Selective Black Paint<br />

Polyester Flat Black Paint<br />

Selective Coating<br />

Sputtered Aluminium Nitride<br />

Sputtered cermet<br />

Sputtered titanium nitride<br />

Titianium oxide<br />

Vapor Deposition Selective Coating<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Fr Ta<br />

Evacuated tubes<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH <strong>Technology</strong><br />

Systems<br />

Many types<br />

Focus on more common<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Pool System: Simple<br />

Collector<br />

New<br />

Pool<br />

Pump,<br />

Filter<br />

V<br />

Existing<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Pool Collectors/System<br />

Inexpensive unglazed<br />

polymer collectors<br />

Inexpensive balance-<strong>of</strong>system<br />

(uses pool pump,<br />

pool is storage,…)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Pool Heating<br />

Relatively successful market<br />

• Inexpensive system<br />

– Unglazed polymer collectors at 1/10 th glazed cost<br />

– Very inexpensive “balance <strong>of</strong> system” (pool = storage, etc.)<br />

• Good performance<br />

– Low temperature difference in spring/summer/fall<br />

– No reflection losses<br />

Good economics ⇒ Good market<br />

• < ~5 yr payback, > ~20% return on investment<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Water Heaters (SWH)<br />

• Successful market in Europe, China<br />

• Europe: High energy costs, environmentally conscious<br />

• China: low system costs, no other options in many cases<br />

• Poor market in the U.S.<br />

• Robust market (~1B$/yr) during tax credit era 1979-1984<br />

• Market collapse in 1984<br />

• Low energy costs + high system cost:<br />

» 10-50 year paybacks<br />

» Sales: ~ 6K systems/year<br />

» 2005 Energy Policy Act:<br />

Up to $2000 rebate: increased sales?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Basic SWH Classification<br />

Active<br />

Has pump, with sensors,<br />

wires, and controller<br />

Passive<br />

No pump, sensors,<br />

wires, or controller<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH Classification: Active<br />

Active *<br />

Liquid Heat Trsfr Fluid<br />

Air as Heat Trsfr Fluid<br />

Direct Glycol Drainback Front-pass Back-pass Transpired<br />

* Has pump/fan for fluid<br />

circulation, with sensors,<br />

wires, and controller<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH Classification<br />

Passive *<br />

Integral collectorstorage<br />

(ICS)<br />

Irradiated tank <strong>of</strong> water<br />

Thermosiphon<br />

Storage above collector:<br />

hot water rises<br />

Other<br />

Percolation; thermal pump;…<br />

For these system types, storage is on the ro<strong>of</strong><br />

*No pump/fan, sensors,<br />

wires, or controller<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Further Classification Dimensions<br />

• Collector<br />

– Glazings (for flat-plate @ atmospheric pressure)<br />

– Unglazed<br />

» Can be used for pool, domestic hot water, and space heating<br />

» Not common in solar water heaters<br />

– <strong>One</strong> glazing (most common)<br />

– Multiple glazings (rare)<br />

– Surface coatings<br />

– Non-selective: high solar absorption and high infrared loss<br />

– Selective: high solar absorption and low infrared loss<br />

» Thin IR-transparent coating on IR-reflective substrate<br />

» IR-reflective elements in paint mixture<br />

– Evacuated tubes<br />

– Rare in the US; dominant in China<br />

– May become common in US?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Further Classification Dimensions<br />

• <strong>Solar</strong> loop heat exchanger<br />

• Internal/in-the-water<br />

– Immersed coil<br />

– Tank-in-tank<br />

• External to storage<br />

– Wrap-around coil<br />

– Side-arm counterflow<br />

» Only collector side pumped with thermosiphon loop on tank side<br />

» OR: Both sides <strong>of</strong> heat exchanger are pumped<br />

• Storage tank<br />

• Pressurized<br />

» potable water in ceramic-lined steel tanks<br />

• Unpressurized<br />

» Must have load-side heat exchanger carrying potable water<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Further Classification Dimensions<br />

• Controller in active systems<br />

• Active, differential controller<br />

» Pump on when T collector > (T tank-bottom + ~20 o F)<br />

• PV-pump<br />

» DC pump is controlled by PV panel<br />

• Timer<br />

• Overheat protection methods<br />

• None: most common<br />

• Vent the collector<br />

• Evaporate fluid from collector<br />

• Dump storage heat<br />

» boiling, passive radiator, ground loop, night-time circulation<br />

• …<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Active System- Direct<br />

Pressurized potable water<br />

in the collector loop<br />

To aux tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Active System- Indirect<br />

Glycol in this loop<br />

Glycol System<br />

Glycol provides<br />

freeze protection<br />

To aux tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Active System - Drainback<br />

Controller=PV panel<br />

PV Panel<br />

To aux tank<br />

Un-pressurized<br />

solar storage tank<br />

Mains inlet<br />

High-head<br />

DC pump<br />

Heat Exchanger<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>An</strong>other Drainback Design<br />

<strong>Solar</strong><br />

Sensor<br />

PEX<br />

plumbing<br />

Vented<br />

Drainback<br />

Tank with<br />

Level<br />

Indicator<br />

<strong>Solar</strong><br />

Controller<br />

Temperature<br />

Gauges<br />

Drain Valve<br />

Circulation<br />

Module<br />

FAFCO<br />

INCOMING<br />

COLD WATER<br />

HOME HOT<br />

WATER<br />

<strong>Solar</strong><br />

Collector<br />

Mounting<br />

Hardware<br />

Ro<strong>of</strong><br />

Jacks<br />

Bypass Valve<br />

Cold Water<br />

Shut-Off Valve<br />

<strong>An</strong>ti-Scald<br />

Valve<br />

Coaxial tank<br />

adapter<br />

Tank Temperature<br />

Sensor<br />

Storage Tank<br />

Water Heater<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Passive- Thermosiphon<br />

Light, hot water rises<br />

Heavy, cold water sinks<br />

Convection loop schematic<br />

Most popular system worldwide: simple, reliable<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Thermosiphon vs. Active<br />

Thermosiphon<br />

Active<br />

<strong>Solar</strong> tank<br />

Cold In<br />

Collector sensor<br />

Cold In<br />

Wires<br />

Hot Out<br />

Hot Out<br />

Pump<br />

• Thermosiphons:<br />

• Less parts, less cost<br />

• More reliable<br />

• ~Equal performance<br />

Elec.<br />

tank<br />

Inside<br />

<strong>Solar</strong> tank<br />

Tank sensor<br />

Controller<br />

AC Power<br />

Extra hardware vs. thermosiphon<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Thermosiphons: Many varieties possible<br />

Old style: protrusive/ugly?<br />

New style: sleek/aesthetic; “like a skylight”<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Solco/Australian TSiphon<br />

2/3 cost reduction<br />

Cost ~ $400 US<br />

Rotomolded PE Body,<br />

PMMA glazing<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


ICS System: simple<br />

No pump, no<br />

controller, no<br />

separate tank<br />

Mains inlet<br />

Conventional DHW tank<br />

End use<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


ICS Systems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Unpressurized ICS<br />

Immersed heat exchanger<br />

Glazing(s)<br />

Insulation<br />

Supply/Return Piping<br />

Thin-walled polymer<br />

vessel <strong>of</strong> water<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Unpressurized ICS: DEG/SE<br />

Therm<strong>of</strong>ormed<br />

acrylic glazing<br />

Cu Load-side Hx<br />

PE tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


DEG/<strong>Sun</strong>Earth ICS<br />

Glazed version<br />

Unglazed version<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Field Installations<br />

Migrant housing<br />

camp in CA<br />

Glazed units<br />

Unglazed units<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Invisible Collector<br />

Shingles +<br />

Deck<br />

Ht trsfr fluid tubes<br />

Insulation<br />

Conductive fin<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Evacuated Tube Collector<br />

Fin-tube absorber<br />

Dewar design<br />

Evacuated space<br />

Selective coating<br />

Out<br />

In/out tubes<br />

In<br />

Glass tube<br />

Historically expensive; end seal issues<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Variations with Evacuated Tubes<br />

• Passive thermosiphon<br />

• Tubes directly enter storage tank,<br />

thermosiphon loop each tube<br />

• Active system<br />

• Fin-tube heat pipe transfers<br />

heat to condensor in manifold<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Performance Basics<br />

• System efficiency ≡ η sys = Q sav /Q inc<br />

• Q inc ~ 3-6 kWh/m 2 /day, 100-200 kWh/ft 2 /year<br />

• <strong>Solar</strong> Fraction ≡ f sol = Q sav /Q fuel,no-solar<br />

• η sys ≈ constant ≈ 0.4 for active system<br />

1.00<br />

0.80<br />

0.60<br />

Active <strong>Solar</strong> Water Heating<br />

(216 locations in the continental U.S.)<br />

<strong>Solar</strong> Fraction<br />

Efficiency<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.40<br />

0.20<br />

0.20<br />

0.00<br />

0.00<br />

0.0 5.0 10.0 15.0 20.0 25.0 30.0<br />

<strong>An</strong>nual-Average Ambient Temperature ( o C)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Racked/Space Heating System<br />

UGGHH!<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SDHW: Flush-mount<br />

Neat!!<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SDHW: Wide Orientation Range is OK<br />

90%-100%<br />

80%-90%<br />

70%-80%<br />

60%-70%<br />

50%-60%<br />

Collector Orientation Factor<br />

<strong>Solar</strong> Water Heating<br />

(Lat=40 o )<br />

-90<br />

-60<br />

-30<br />

0<br />

30<br />

60<br />

90<br />

Azimuth<br />

90<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

Tilt<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


U.S. Sales by Year<br />

$1 billion/yr @ peak<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


U.S. Collector Area by Year<br />

20 Million ft 2 /yr @ peak<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Market Penetration<br />

Maximum Market Penetration vs. Payback<br />

(avg <strong>of</strong> 3)<br />

Penetration (fraction)<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

Target: 4 yrs (50%) to 7 yrs (10%)<br />

0 2 4 6 8 10<br />

Simple Payback (years)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Cost Goals for SDHW System<br />

Cost <strong>of</strong> 40 ft2 System vs Cost-<strong>of</strong>-elec for spec payback<br />

(Incidence = 5.4 kWh/m2/day; Denver)<br />

Cost_system [$]<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Target<br />

0 5 10 15 20<br />

Payback<br />

4<br />

7<br />

10<br />

13<br />

16<br />

Cost_electricity [c/kWh]<br />

1. Choose mkt. penetration payback (PB line)<br />

2. For site cost <strong>of</strong> fuel, read Cost_System @ PB line (dotted lines)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH and Cost<br />

• Present systems:<br />

– Cost is a barrier<br />

– New construction: $3000 to $5000<br />

– Retr<strong>of</strong>it: $4500 to $10,000<br />

– Need rebates to bring net cost to below $2000<br />

• Future system:<br />

– Cost reduction efforts: bring price under $2000<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Polymer Collector<br />

First Cost<br />

Eliminate one pump<br />

Integrated valve pkg<br />

Integrated piping<br />

$3,500<br />

$3,000<br />

$2,500<br />

$2,000<br />

$1,500<br />

$1,000<br />

Cold Climate Systems:<br />

Cost Reduction Potential<br />

Cost & Cost-<strong>of</strong>-Savings/ Glycol<br />

[COSE = (Cost)/(Savings)]<br />

BOS Variations<br />

1st Cost<br />

COSE<br />

Collector Variations<br />

Base case<br />

<strong>One</strong> pump<br />

Polymer tank + hx<br />

Integrated piping<br />

Valve package<br />

Non-selective mtl-gls<br />

Polymer selective<br />

Polymer non-selective<br />

Polymer unglazed<br />

12<br />

10<br />

8<br />

6<br />

4<br />

COSE [c/kWh]<br />

Film-lined storage<br />

Heat exchanger<br />

Retainer ring<br />

Submersible pump<br />

Polymer film liner<br />

Insulation<br />

Sheet metal cylinder<br />

Rigid foam base<br />

Polymer heat exch.<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Cost ~$12


Key Reliability Issues<br />

• Installation problems<br />

• Leaks in ro<strong>of</strong><br />

• Leaks in piping<br />

• Sloppy installation<br />

• Controller set wrong<br />

• …<br />

• Hardware problems<br />

• Pump, sensor, controller fails<br />

• Storage tanks fails<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation problems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation problems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation problems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Installation Training<br />

North American Board <strong>of</strong> Certified Energy<br />

Practitioners<br />

(NABCEP)<br />

• Administers tests for certification<br />

• Photovoltaics<br />

• <strong>Solar</strong> thermal<br />

• Many jobs (100,000s) coming<br />

• Qualified/certified installers needed badly<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


SWH Show-and-Tell<br />

Let’s go see a few SWH articles in the TTF<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Future <strong>Solar</strong> <strong>Thermal</strong><br />

• Cold-climate thermosiphons<br />

• Address space heating and cooling also<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Pipe Freeze Problem<br />

Collector<br />

Storage<br />

Pipes in attic can freeze<br />

Supply piping<br />

Mains Inlet<br />

Return piping<br />

House load<br />

Aux<br />

Tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Pipe Freeze Probability<br />

Probability is for at least one<br />

freeze in twenty years<br />

Safe to install passive<br />

systems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Passive Systems and Pipe Freeze<br />

Passive systems:<br />

– Currently: pipe freeze limits markets to mild climates<br />

• Cu piping with insulation<br />

– To extend market, must freeze protect piping<br />

• Circulate warm water through the piping<br />

– Heat from auxiliary tank or interior air heat exchanger<br />

• Circulate warm interior air in duct around piping<br />

• Circulate mains water through piping with Freeze Protection Valve (FPV)<br />

– To prevent catastrophe when freeze protection fails:<br />

• Must have freezable piping ⇒ failure/freeze is minor inconvenience<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Freeze Protection System<br />

Two Levels <strong>of</strong> protection:<br />

1. Primary Freeze Protection<br />

Keeps pipes from freezing (until it fails)<br />

Freeze protection valve<br />

Natural convection loops;…<br />

2. Fail-safe Backup: Freeze-tolerant piping<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Is there a Freeze-tolerant Piping?<br />

• Polybutylene:<br />

• PEX?<br />

• Great freeze tolerance (withstood >700 freeze-thaw cycles)<br />

• Withdrawn from market ~1992<br />

Probable reason: Brass/copper fittings attack the material<br />

• Some manufactures/web sites claim “freeze tolerance”<br />

• No documentation<br />

Goal: determine freeze-tolerance <strong>of</strong> PEX<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Freeze-thaw Test<br />

Freezer<br />

PEX<br />

Result: 2 kinds <strong>of</strong><br />

PEX are freezetolerant<br />

Over 500 cycles <strong>of</strong><br />

freeze-thaw done<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Freeze Protection Valves (FPV)<br />

~ $60<br />

~$100-$200<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


FPV Protecting Piping<br />

Collector<br />

Storage<br />

Freeze Protection<br />

Valve located HERE!<br />

Return piping<br />

House load<br />

To drain<br />

Supply piping<br />

Mains Inlet<br />

Aux<br />

Tank<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Dole FPV/35 0 F Setpoint<br />

<strong>An</strong>nual Flow (gallons) through Dole FP-35 Freeze Prevention Valve<br />

Using Air Freezing Index Correlation with y-intercept Equal to Zero<br />

flow=0<br />

0


Passive Systems Market Extension?<br />

Safe/Non-wasteful areas=<br />

Freeze Protection Valve +<br />

Insulated copper pipe<br />

freezable piping<br />

Limited by Pipe Freeze<br />

Limited by water consumption<br />

BUT: collector/store freeze?<br />

Untested, other affects?<br />

Market Uptake/Transformation?<br />

Cold Climate Thermosiphons?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Glazed Systems<br />

A natural end-use progression for solar:<br />

Domestic Water Heating<br />

Domestic Water Heating + Space Heating<br />

(Combi-systems)<br />

Domestic Water Heating + Space Heating + Space Cooling<br />

(Triple-play systems)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


100% <strong>Solar</strong> HVAC<br />

<strong>An</strong>other natural progression:<br />

<strong>Solar</strong> System + Standard HVAC<br />

(solar is an “extra”)<br />

100% <strong>Solar</strong><br />

<strong>Solar</strong> “does it all”<br />

Eliminate conventional furnace, air conditioner, water heater<br />

Implies annual storage<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Progressions: Quantitative<br />

End Uses Addressed<br />

Area<br />

m 2<br />

Storage<br />

m 3<br />

Load<br />

GJ<br />

<strong>Solar</strong><br />

Fraction<br />

Water heating (WH) 6 0.3 16 0.6<br />

WH + Space Heating (Htg) (Combi-system) 20 1.5 40 0.3<br />

High sf combi-sys, w/ H2O annual store 1 40 70 40 0.9<br />

2<br />

100% <strong>Solar</strong> WH/Htg/Clg, w/ Des. TCHP 30 14 50 1<br />

1. From (Sillman 1981)<br />

2. Desiccant thermochemical heat pump storage; estimated.<br />

Boston, MA climate<br />

Note on units:<br />

Multiply m 2 times 110 to get ~ ft 2<br />

Divide volume in m 3 by 4 to get ~ kGal<br />

1 GJ ≅ 1 MMBtu<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>Solar</strong> Combi System Schematic<br />

Compared to <strong>Solar</strong> Water Heaters:<br />

•Larger Collector Area<br />

•Large Storage Tank<br />

•More complex controls<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Combi-System/Diurnal Storage<br />

1= Excess Consumption: load that cannot be met by solar<br />

2 = Potentially Usable <strong>Solar</strong><br />

3 = Excess <strong>Solar</strong><br />

Irradiation<br />

Load<br />

SF max = 2 /( 2 + 1)<br />

1 1<br />

3<br />

Overheating<br />

Potential<br />

2<br />

2<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Architectural/aesthetic issues<br />

Low Winter <strong>Sun</strong> ⇒ High Tilt for Space Heating?<br />

Ugly?<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Building-integrated Combi-systems<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Combi-System: High <strong>Solar</strong> Fraction<br />

Need large capacity,<br />

low-loss storage<br />

Irradiation<br />

Load<br />

SF max = (A col *H day )/(Load)<br />

1<br />

Store Excess<br />

Summer Heat for<br />

Use in Winter<br />

3<br />

1<br />

2<br />

2<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


High <strong>Solar</strong> Fraction ⇒<strong>An</strong>nual Heat Storage<br />

Heat storage types:<br />

– Sensible: need ~5-30 kGal (w/ efficient house)<br />

– Costly, bulky, “formidable”<br />

– Thermochemical heat pump/liquid desiccants<br />

– High energy density possible (1/6 th that <strong>of</strong> sensible)<br />

– Can use flat-plates at ~160 o F<br />

– Integrates well with solar-driven cooling in summer<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


<strong>An</strong>nual Storage<br />

1500<br />

<strong>Solar</strong> Fraction Contours vs (Vstor, Acol)<br />

0.8, super-ins<br />

0.9, super-insul<br />

Acoll [ft2]<br />

1000<br />

500<br />

Unrealistically large<br />

0.8, good passive<br />

0.9, good passive<br />

0.8, ~ '81 code<br />

0.9, ~ '81 code<br />

Reasonable sizes?<br />

0<br />

0 10000 20000 30000 40000<br />

Vstor [gal]<br />

Boston, MA<br />

Flat Plate Collectors<br />

From Sillman 1981 “Trade-<strong>of</strong>f…in <strong>An</strong>nual Storage <strong>Solar</strong> Heating”<br />

2-tank System<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Desiccant Heat Pump Storage<br />

• <strong>Solar</strong> heat in summer:<br />

• Evaporate water out <strong>of</strong> weak desiccant (1250 Btu/lb)<br />

• Makes strong desiccant<br />

– For cooling, and store for winter heat<br />

• Desiccant heat in winter<br />

• Condense water vapor onto strong desiccant (1250 Btu/lb)<br />

• Makes weak desiccant<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Adsorption/Desorption Desiccant Storage Cycle<br />

Q desorption,charge<br />

(from solar)<br />

Summer<br />

Charging<br />

Q condensation,charge<br />

Weak<br />

desiccant<br />

Water vapor, condensed<br />

Ground<br />

Storage<br />

Strong<br />

desiccant<br />

Water vapor, “re-created”<br />

Ground<br />

Storage<br />

Q condensation,discharge<br />

(to load)<br />

High Temperature Processes<br />

Winter<br />

Discharging<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07<br />

Q desorption, discharge<br />

Low Temperature Processes


Future Residential <strong>Solar</strong> HVAC<br />

Beyond SWH to “triple-play”<br />

100% solar triple play, with desiccant heat pump?<br />

(Stay tuned!)<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07


Thank you for your Attention<br />

• Just skimmed the surface<br />

• Much more to learn<br />

• Viewgraphs/references available to sign-up<br />

e-mail list<br />

SEET <strong>Solar</strong> <strong>Thermal</strong> Seminar 7/26/07

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!