01.04.2015 Views

QSAR in Development of Antidepressants

QSAR in Development of Antidepressants

QSAR in Development of Antidepressants

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Next Generation <strong>of</strong><br />

<strong>Antidepressants</strong><br />

James Fells<br />

Organic Medic<strong>in</strong>al Chemistry<br />

Spr<strong>in</strong>g 2005


Outl<strong>in</strong>e<br />

• Depression as a disease<br />

• Treatment Past, Present, and Future<br />

• Determ<strong>in</strong><strong>in</strong>g the target<br />

• <strong>QSAR</strong> model<br />

• Proposed lead<br />

• Synthetic method<br />

• Conclusions & Questions


Depression as a Disease<br />

• 1 out 5 adults affected by depression<br />

• 11 th most common reason for visit<strong>in</strong>g<br />

doctor<br />

• By 2020 2 nd largest cause for illness<br />

<strong>in</strong>duced disability<br />

• 3 rd most commonly sold drug<br />

• lifetime risk<br />

– 12.7% male<br />

– 21.3% female


Treatment Past and Present<br />

• First generation<br />

– Monoam<strong>in</strong>e oxidase<br />

<strong>in</strong>hibitors(MAOIs)<br />

• mechanism-based irreversible<br />

<strong>in</strong>hibitors<br />

– Tricyclic<br />

antidepressants(TCAs)<br />

• three r<strong>in</strong>g molecular core<br />

• Second generation<br />

– Selective seroton<strong>in</strong> (5-HT)<br />

reuptake <strong>in</strong>hibitors(SSRIs)<br />

– Selective<br />

norep<strong>in</strong>ephr<strong>in</strong>e(NE)<br />

reuptake <strong>in</strong>hibitors (SNRIs)<br />

N<br />

Imipram<strong>in</strong>e<br />

NH 2<br />

Cl<br />

Cl<br />

sertal<strong>in</strong>e<br />

N<br />

O<br />

N<br />

N<br />

N<br />

H<br />

H<br />

N<br />

phenelz<strong>in</strong>e<br />

amoxap<strong>in</strong>e<br />

NH 2


Seroton<strong>in</strong> Hypothesis<br />

• serotonergic neurotransmission <strong>in</strong> forebra<strong>in</strong><br />

– key determ<strong>in</strong>ant <strong>of</strong> mood<br />

• euphoria-high activity<br />

• dyphoria-low activity<br />

• depression response to low levels<br />

• Seroton<strong>in</strong> <strong>in</strong>hibitors <strong>in</strong>terfere with 5-HT activity<br />

– removes seroton<strong>in</strong> from synapse<br />

– elevat<strong>in</strong>g low levels <strong>of</strong> synaptic seroton<strong>in</strong>


Stagnant progression<br />

• Serious Drawback to SSRIs<br />

– delay <strong>of</strong> therapeutic benefit<br />

• two to six weeks for response<br />

– low rate <strong>of</strong> response<br />

– low rate <strong>of</strong> remission<br />

• Delayed response due to 5-HT 1a <strong>in</strong>hibition<br />

• 5-HT 1A desensitization normal fir<strong>in</strong>g<br />

– therapeutic effect


Seroton<strong>in</strong> effect<br />

Phil Skolnick, P. P., Aaron Janowsky, Bernard Beer, Arnold S. Lippa. European journal <strong>of</strong> pharmacology.<br />

2003, 461, 99-104.


Future drugs<br />

• SSRI current drug <strong>of</strong> choice<br />

– less side effects and toxicity than1 st<br />

generation<br />

– Toxicity<br />

– almost equal efficacy<br />

• Ideal drug<br />

– Faster effect, specificity, fewer side effects<br />

• 5-HT 1A antagonist augmented with SSRI<br />

show biological effect <strong>in</strong> one week


Project Aim<br />

• explore a faster act<strong>in</strong>g antidepressant by<br />

coupl<strong>in</strong>g an SSRI with some 5-HT 1A<br />

derivative


Leads and biological activity<br />

IC 50<br />

(nM)<br />

Drug<br />

TCAs<br />

imipram<strong>in</strong>e<br />

nortriptyl<strong>in</strong>e<br />

protriptyl<strong>in</strong>e<br />

trimipram<strong>in</strong>e<br />

Second generation<br />

Amoxap<strong>in</strong>e<br />

mirtazap<strong>in</strong>e<br />

venlafaz<strong>in</strong>e<br />

fluoxet<strong>in</strong>e<br />

fluvoxam<strong>in</strong>e<br />

paroxet<strong>in</strong>e<br />

sertal<strong>in</strong>e<br />

Norep<strong>in</strong>ephr<strong>in</strong>e<br />

25<br />

6<br />

10<br />

5000<br />

25<br />

40<br />

300<br />

200<br />

500<br />

70<br />

300<br />

5-HT<br />

50<br />

200<br />

250<br />

10000<br />

600<br />

20000<br />

50<br />

15<br />

5<br />

1<br />

4


<strong>QSAR</strong> Design<br />

• Create tra<strong>in</strong><strong>in</strong>g set<br />

– consist<strong>in</strong>g <strong>of</strong> known antidepressant and biological activity<br />

• activity –log IC 50<br />

– structures built <strong>in</strong> MOE<br />

– 20 current antidepressant<br />

• all descriptors for Cerius2 used<br />

– except alignment family<br />

• Generate <strong>QSAR</strong> equation<br />

– Genetic Function Approximation(GFA)<br />

• Activity <strong>in</strong>dependent variable<br />

• Descriptors dependent variable<br />

• Validate the equation<br />

– Test set<br />

• 5 other antidepressant with known biological activity<br />

• Predict activity<br />

– New leads


GFA<br />

• Statistical analysis method<br />

– Generates multiple <strong>QSAR</strong> models<br />

• Scans for most efficient <strong>QSAR</strong> equation<br />

• Incorporates genetic algorithm<br />

• Models created and screened dur<strong>in</strong>g evolution<br />

– <strong>QSAR</strong> randomly constructed<br />

– Population<br />

• repeatedly select<strong>in</strong>g parent models<br />

• creat<strong>in</strong>g child model<br />

Rogers, D. Relationship. Journal <strong>of</strong> Chemical Information and Computational Science 1994,<br />

34, 854-866.


Why use GFA<br />

• builds multiple models rather than a s<strong>in</strong>gle<br />

model<br />

• selects descriptors to be used <strong>in</strong> the<br />

models<br />

• discovers comb<strong>in</strong>ations <strong>of</strong> descriptors<br />

– correlations between multiple features<br />

• Friedman's lack <strong>of</strong> fit(LOF) error measure<br />

– estimates best number <strong>of</strong> features<br />

– resists overfitt<strong>in</strong>g


<strong>QSAR</strong> equation<br />

• Activity =4.68834 + 0.15002*Jurs-TPSA – 2.3786*CHI-3_C –<br />

2.55778*Shadow-nu<br />

• Jurs-TPSA-Jurs descriptor<br />

– Spatial descriptor<br />

– Based partial charge mapped or surface area<br />

– Comb<strong>in</strong>es shape and electrostatic <strong>in</strong>formation to characterize molecule<br />

• Shadow-nu-Shadow <strong>in</strong>dices<br />

– Spatial descriptor<br />

– Characterize shape <strong>of</strong> molecule<br />

– Depends on conformation and orientation <strong>of</strong> molecule<br />

• CHI-3_C-Kier & Hall Chi connectivity<br />

– Topological descriptor<br />

– Based on size, degree <strong>of</strong> branch<strong>in</strong>g flexibility<br />

– Molecular connectivity <strong>of</strong> atoms <strong>in</strong> molecule


• r 2 =.87<br />

<strong>QSAR</strong> results<br />

• validated with test set<br />

– predict<strong>in</strong>g 5 other compounds based on known<br />

activity<br />

Predicted Activity vs. Activity<br />

Activity<br />

Predicted<br />

activity<br />

Residual<br />

10<br />

8<br />

4.84<br />

4.341<br />

0.499<br />

Activity<br />

6<br />

4<br />

5.771<br />

8.301<br />

5.003<br />

8.887<br />

0.738<br />

-0.586<br />

2<br />

0<br />

6.602<br />

7.942<br />

-1.339<br />

0 2 4 6 8 10<br />

Predicted activity<br />

5<br />

4.918<br />

0.0082


Lead concept<br />

IC 50<br />

(nM)<br />

Drug<br />

TCAs<br />

imipram<strong>in</strong>e<br />

nortriptyl<strong>in</strong>e<br />

protriptyl<strong>in</strong>e<br />

trimipram<strong>in</strong>e<br />

Second generation<br />

Amoxap<strong>in</strong>e<br />

mirtazap<strong>in</strong>e<br />

venlafaz<strong>in</strong>e<br />

fluoxet<strong>in</strong>e<br />

fluvoxam<strong>in</strong>e<br />

paroxet<strong>in</strong>e<br />

sertal<strong>in</strong>e<br />

Norep<strong>in</strong>ephr<strong>in</strong>e<br />

25<br />

6<br />

10<br />

5000<br />

25<br />

40<br />

300<br />

200<br />

500<br />

70<br />

300<br />

5-HT<br />

50<br />

200<br />

250<br />

10000<br />

600<br />

20000<br />

50<br />

15<br />

5<br />

1<br />

4


Strategy<br />

Nh 2<br />

fluoxet<strong>in</strong>e<br />

F<br />

Cl<br />

O<br />

H<br />

N<br />

O<br />

O<br />

O<br />

5-HT 1a pharmacophore<br />

Cl<br />

N<br />

H<br />

sertal<strong>in</strong>e<br />

S<br />

paroxet<strong>in</strong>e<br />

O<br />

N<br />

duloxet<strong>in</strong>e<br />

Evrard, D., et al. Bioorganic & Medic<strong>in</strong>al Chemistry Letters 2005, 15, 911-914.


<strong>QSAR</strong> results<br />

Par<br />

8.695<br />

9<br />

N<br />

O<br />

O<br />

Par C2<br />

8.303<br />

Cl<br />

O<br />

N<br />

N<br />

O<br />

Flu B1<br />

7.756<br />

Cl<br />

Sertal<strong>in</strong>e B1<br />

F<br />

fluoxet<strong>in</strong>e B1<br />

Dul a<br />

8.445<br />

S<br />

O<br />

O<br />

O<br />

Sertal<strong>in</strong>e<br />

B1<br />

7.912<br />

O<br />

O<br />

O<br />

Duloxet<strong>in</strong>e a<br />

N<br />

N<br />

O<br />

N<br />

Paroxet<strong>in</strong>e C2


Synthetic scheme<br />

S<br />

antidepressants<br />

O<br />

O<br />

N<br />

O<br />

Kamal, A., et. al. Tetrahedron letters 2003, 44, 4783-4787


Synthetic scheme<br />

S<br />

OH<br />

N<br />

S<br />

OH<br />

N<br />

O<br />

O C 2<br />

H 5<br />

H<br />

S<br />

OH<br />

N<br />

O NHCH 3<br />

duloxet<strong>in</strong>e<br />

S


Synthetic scheme


Conclusion<br />

• lead compound activity should be as<br />

efficient as current SSRIs yet faster<br />

response<br />

• <strong>QSAR</strong> done on 5-HT need to address NE


References<br />

• Phil Skolnick, P. P., Aaron Janowsky, Bernard Beer, Arnold S. Lippa<br />

Antidepressant-like actions <strong>of</strong> DOV 21,947: a "triple" reuptake <strong>in</strong>hibitor.<br />

European journal <strong>of</strong> pharmacology. 2003, 461, 99-104.<br />

• Kamal, A., et. al Chemoenzymatic synthesis <strong>of</strong> duloxet<strong>in</strong>e and its<br />

enantiomer liase-catalyzed resolution <strong>of</strong> 3hydroxy-3-(2-thienyl)<br />

propanenitrile. Tetrahedron letters 2003, 44, 4783-4787<br />

• Frazer, A. <strong>Antidepressants</strong>. Journal <strong>of</strong> Cl<strong>in</strong>ical Psychiatry 1997, 58, 9-25.<br />

• Schafer, W. R. Do <strong>Antidepressants</strong> Work? Prospects for Genetic Analysis <strong>of</strong><br />

Drug Mechanisms. Cell 1999, 98, 551-554.<br />

• Evrard, D., P<strong>in</strong>g Zhou, Soo i, Dahui Zhou, Deborah L. Smith, Kelly M.<br />

Sullivan, Ge<strong>of</strong>frey A. Hornby, lee E. Schechter, Terrance H. Andree, and<br />

Richard E. Mewshaw Studies towards the next generation <strong>of</strong><br />

antidepressants. Part 4: Derivatives <strong>of</strong> 4-(5fluoro-1H-<strong>in</strong>dol-3-<br />

yl)cyclohexylam<strong>in</strong>e with aff<strong>in</strong>ity for the seroton<strong>in</strong> transporter and the 5-HT1A<br />

receptor. Bioorganic & Medic<strong>in</strong>al Chemistry Letters 2005, 15, 911-914.<br />

• Owens, M. Selectivity <strong>of</strong> <strong>Antidepressants</strong> from Monoam<strong>in</strong>e Hypothesis <strong>of</strong><br />

Depression to the SSRI Revolution and Beyond. Journal <strong>of</strong> Cl<strong>in</strong>ical<br />

Psychiatry 2004, 65, 5-10.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!