01.04.2015 Views

Nucleophiles, Electrophiles and Leaving Groups Nucleophiles ...

Nucleophiles, Electrophiles and Leaving Groups Nucleophiles ...

Nucleophiles, Electrophiles and Leaving Groups Nucleophiles ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nucleophiles</strong>, <strong>Electrophiles</strong> <strong>and</strong><br />

<strong>Leaving</strong> <strong>Groups</strong><br />

<strong>Nucleophiles</strong><br />

• Translation: Nucleus-loving<br />

• Chemical meaning: Reacts with positivelycharged<br />

(or partially positive) atoms<br />

(electrophiles: electron-loving)<br />

• Characteristics: Nucleophilic atoms will<br />

have either lone pairs or pi bonds that can<br />

be used to form new bonds to electrophiles<br />

Nucleophile Examples<br />

Anions<br />

Br<br />

OH C N<br />

H<br />

Pi bonds<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

H<br />

C C H<br />

H<br />

H<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

H<br />

H<br />

H<br />

Atoms with lone pairs<br />

H<br />

O<br />

H<br />

H<br />

N<br />

H H<br />

O<br />

C<br />

H 3 C CH 3<br />

1


Relative Nucleophile Strength - Charge<br />

• Given two nucleophiles with the same nucleophilic<br />

atom, a negative charge makes the atom more reactive<br />

OH<br />

is a better nucleophile than<br />

H<br />

O<br />

H<br />

Br<br />

is a better nucleophile than<br />

H<br />

Br<br />

• In more general terms, the stronger base is the stronger<br />

nucleophile (given the same nucleophilic atom)<br />

Relative Nucleophile Strength - Solvent<br />

• Hydrogen-bonding solvents (protic solvents) reduce<br />

nucleophilicity by interacting with the free electrons in<br />

H<br />

the nucleophile<br />

H<br />

O<br />

H<br />

• This effect is particularly strong for small atoms with<br />

concentrated charges, thus larger atoms are more<br />

nucleophilic in protic solvents (~opposite basicity)<br />

HS - > HO -<br />

I - > Br - > Cl - > F -<br />

O<br />

H<br />

N<br />

H H H<br />

O<br />

H<br />

H<br />

O H<br />

H<br />

Relative Nucleophile Strength – Aprotic Solvents<br />

• In solvents that can accept, but not donate<br />

hydrogen bonds, nucleophiles are not solvated<br />

(but the cations providing countercharges are)<br />

• Thus the nucleophilicity <strong>and</strong> basicity are more<br />

closely correlated:<br />

F - > Cl - > Br - > I -<br />

2


Aprotic Solvent Examples<br />

O<br />

C<br />

H 3 C N CH 3<br />

CH 3<br />

Dimethylacetamide (DMA)<br />

O<br />

C<br />

H N CH 3<br />

CH 3<br />

N,N-Dimethylformamide (DMF)<br />

O<br />

S<br />

H 3 C CH 3<br />

Dimethylsulfoxide<br />

O<br />

(H 3 C) 2 N P<br />

N(CH<br />

(H 3 C) 2 N 3 ) 2<br />

Hexamethylphosphoramide (HMPA)<br />

O<br />

CH 3 CH 2 CH 2 CH 3<br />

diethyl ether<br />

Problem<br />

• Draw a sketch demonstrating how your<br />

assigned solvent from the previous slide can<br />

solvate a cation, <strong>and</strong> describe why it cannot<br />

solvate an anion<br />

Nucleophilicity vs. Basicity<br />

• Strong nucleophiles tend to be strong bases, but<br />

these properties are not measured the same way<br />

– Base strength is quantitated based on the position of<br />

the equilibrium for that base to accept a proton from<br />

water<br />

– Nucleophile strength is based on relative rates of<br />

reaction with a common electrophile<br />

• Thus basicity is a thermodynamic property <strong>and</strong><br />

nucleophilicity is a kinetic property<br />

3


Example<br />

• Example: Hydroxide ion is a stronger base than cyanide ion,<br />

but cyanide ion is a stronger nucleophile (regardless of solvent)<br />

HO - pK a = 15.7<br />

+ H 2 O H 2 O + HO -<br />

NC - + H 2 O HCN + HO -<br />

pK a = 10<br />

HO - +<br />

H<br />

H<br />

C<br />

H<br />

Br<br />

H<br />

H<br />

C<br />

H<br />

OH<br />

NC - +<br />

H<br />

H<br />

C<br />

H<br />

Br<br />

H<br />

H<br />

C<br />

H<br />

CN<br />

faster<br />

Problem<br />

• Rank the following nucleophiles from strongest<br />

to weakest when dissolved in diethyl ether:<br />

Group I: H 2 O HO - H 2 N - H 3 N<br />

Group II: CH 3 Li NaCN CH 2 =CH 2<br />

<strong>Electrophiles</strong><br />

• Translation: Electron-loving<br />

• Chemical meaning: Reacts with sources of<br />

electrons (nucleophiles: nucleus-loving)<br />

• Characteristics: Electrophilic atoms will have<br />

– Positive charge, a partial positive charge, or be very<br />

polarizable<br />

– An empty orbital or a heterolytically breakable bond<br />

(to a leaving group)<br />

4


Electrophile Examples<br />

• Charged:<br />

H<br />

H<br />

H<br />

C<br />

H<br />

O<br />

N<br />

O<br />

• Polar:<br />

Br<br />

H<br />

C<br />

H H<br />

δ − δ + O<br />

δ −<br />

C<br />

H 3 C δ + H Cl<br />

CH 3<br />

δ +<br />

δ −<br />

• Polarizable:<br />

Br Br Cl Cl I I<br />

Problem<br />

• Identify all electrophilic or nucleophilic<br />

atoms in the following structure:<br />

Br<br />

O<br />

O<br />

Electrophile Strength - I<br />

• Given the same electrophilic atom, a greater<br />

degree of positive charge gives a stronger<br />

electrophile<br />

H<br />

H<br />

C<br />

H<br />

is a better electrophile than<br />

H<br />

C<br />

Br H H<br />

δ − δ +<br />

O<br />

C<br />

H 3 C CH 3<br />

δ + δ −<br />

is a better electrophile than<br />

OH<br />

C<br />

H 3 C CH 3<br />

δ + δ − CH 3<br />

5


Electrophile Strength - II<br />

• The strength of electrophiles without empty<br />

orbitals (to which a bond must be broken<br />

before another can form) is also influenced<br />

by the nature of the group to which the bond<br />

will be broken (leaving group)<br />

<strong>Leaving</strong> <strong>Groups</strong><br />

• <strong>Leaving</strong> groups are the fragments that retain<br />

the electrons in a heterolytic bond cleavage:<br />

H<br />

H<br />

C<br />

H H<br />

δ − δ + C<br />

Br<br />

H<br />

+ Br -<br />

H<br />

H<br />

O<br />

H 2 C CH 2<br />

I<br />

O<br />

H 2 C CH 2<br />

I<br />

H<br />

<strong>Leaving</strong> Group Ability<br />

• Weaker bases are more stable with the extra<br />

pair of electrons <strong>and</strong> therefore make better<br />

leaving groups<br />

H 2 O > HO -<br />

I - > Br - > Cl - > F -<br />

6


Strategies to Improve Reactivity<br />

• Alcohols do not react easily with nucleophiles<br />

due to the poor leaving ability of hydroxide<br />

• Means to improve reactivity:<br />

– Let oxygen act as base first:<br />

OH<br />

+ H + OH 2<br />

OH<br />

– Let oxygen act as nucleophile first:<br />

O<br />

O<br />

+<br />

H 3 CO S<br />

O<br />

Cl<br />

S 3 S OCH 3<br />

H O OOCH<br />

O O<br />

O<br />

Problem<br />

• Why is the group below a good leaving<br />

group?<br />

O<br />

O<br />

S<br />

OCH 3<br />

O<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!