15.11.2012 Views

stability on marangoni convection in fluid layer with temperature ...

stability on marangoni convection in fluid layer with temperature ...

stability on marangoni convection in fluid layer with temperature ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITI PUTRA MALAYSIA<br />

STABILITY OF MARANGONI CONVECTION IN A FLUID LAYER WITH<br />

TEMPERATURE-DEPENDENT VISCOSITY<br />

NURUL HAFIZAH BINTI ZAINAL ABIDIN<br />

IPM 2007 3


STABILITY OF MARANGONI CONVECTION IN A FLUID LAYER WITH<br />

TEMPERATURE-DEPENDENT VISCOSITY<br />

By<br />

NURUL HAFIZAH BINTI ZAINAL ABIDIN<br />

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,<br />

<strong>in</strong> Fulfilment of the Requirements for the Degree of Master of Science<br />

OCTOBER 2007


To My Family and Friends.<br />

ii


Abstract of thesis presented to the Senate of Universiti Putra Malaysia <strong>in</strong> fulfilment<br />

of the requirement for the degree of Master of Science<br />

STABILITY OF MARANGONI CONVECTION IN A FLUID LAYER WITH<br />

TEMPERATURE-DEPENDENT VISCOSITY<br />

By<br />

NURUL HAFIZAH BINTI ZAINAL ABIDIN<br />

October 2007<br />

Chair : Norihan Md Arif<strong>in</strong>, PhD<br />

Institute : Institute for Mathematical Research<br />

The <strong>on</strong>set of steady Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong>duced by surface tensi<strong>on</strong> gradients<br />

al<strong>on</strong>g the upper surface of a horiz<strong>on</strong>tal <strong>layer</strong> of <strong>fluid</strong> have been the subject of a great<br />

deal of theoretical work s<strong>in</strong>ce the pi<strong>on</strong>eer<strong>in</strong>g theoretical <strong>in</strong>vestigati<strong>on</strong>s of Pears<strong>on</strong><br />

(1958). The system is heated from below and cooled from above. The purpose of the<br />

thesis is to study <strong>in</strong> detail the <strong>on</strong>set of Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> <strong>with</strong> <strong>temperature</strong>-<br />

dependent viscosity. Few cases of boundary c<strong>on</strong>diti<strong>on</strong>s at the bottom surface are<br />

studied which are c<strong>on</strong>duct<strong>in</strong>g <strong>with</strong> no-slip, c<strong>on</strong>duct<strong>in</strong>g <strong>with</strong> free-slip and <strong>in</strong>sulat<strong>in</strong>g<br />

<strong>with</strong> no-slip. We perform a detailed numerical calculati<strong>on</strong> of the marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

curves. We showed that the effect of a <strong>temperature</strong>-dependent viscosity may be<br />

either stabiliz<strong>in</strong>g or destabiliz<strong>in</strong>g depend<strong>in</strong>g <strong>on</strong> the measurement of the relative<br />

variati<strong>on</strong> of viscosity <strong>in</strong> the <strong>fluid</strong> volume (viscosity group, Rv). We also present the<br />

problem to a case where the <strong>fluid</strong> <strong>layer</strong> is overly<strong>in</strong>g a solid <strong>layer</strong> and here, we<br />

undertake a detailed <strong>in</strong>vestigati<strong>on</strong> to look at the effect of the thickness or the<br />

iii


c<strong>on</strong>ductivity of the solid <strong>layer</strong> to the <strong>on</strong>set of Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> <strong>with</strong><br />

<strong>temperature</strong>-dependent viscosity. Aga<strong>in</strong> we perform a detailed numerical calculati<strong>on</strong><br />

of marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves. We showed that the coupled effect of the solid <strong>layer</strong><br />

depth (or its c<strong>on</strong>ductivity) and a <strong>temperature</strong>-dependent viscosity (<strong>with</strong> negative sign<br />

of variati<strong>on</strong> of viscosity <strong>with</strong> <strong>temperature</strong>) is to stabilize the <strong>fluid</strong> <strong>layer</strong>.<br />

iv


Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia<br />

sebagai memenuhi keperluan untuk ijazah Master Sa<strong>in</strong>s<br />

KESTABILAN OLAKAN MARANGONI DALAM LAPISAN BENDALIR<br />

DENGAN KELIKATAN BERSANDAR PADA SUHU<br />

Oleh<br />

NURUL HAFIZAH BINTI ZAINAL ABIDIN<br />

Oktober 2007<br />

Pengerusi : Norihan Md Arif<strong>in</strong>, PhD<br />

Institut : Institut Penyelidikan Matematik<br />

Permulaan olakan Marang<strong>on</strong>i mantap yang wujud disebabkan kecerunan tegangan<br />

permukaan diatas permukaan bebas menjadi pent<strong>in</strong>g sejak Pears<strong>on</strong> (1958)<br />

mengkaj<strong>in</strong>ya secara teori. Sistem pemodelan <strong>in</strong>i dipanaskan dari bawah dan<br />

disejukkan daripada atas. Tujuan tesis <strong>in</strong>i adalah untuk mengkaji secara terper<strong>in</strong>ci<br />

kesan kelikatan bersandar pada suhu ke atas permulaan olakan Marang<strong>on</strong>i. Beberapa<br />

syarat sempadan pada permukaan bawah telah dikaji iaitu berk<strong>on</strong>duksi dengan tak<br />

gel<strong>in</strong>cir, berk<strong>on</strong>duksi dengan bebas gel<strong>in</strong>cir, dan berpenebat dengan tak gel<strong>in</strong>cir.<br />

Kami menunjukkan secara berangka lengkung kestabilan sut dan mengkaji samada<br />

kelikatan bersandar kepada suhu akan menstabilkan atau menyahstabilkan sistem<br />

yang mana ia bergantung pada pekali variasi relatif kelikatan di dalam ruang bendalir<br />

(kumpulan kelikatan, Rv). Seterusnya, kami mengkaji kesan ketebalan atau<br />

kek<strong>on</strong>duksian satu lapisan pejal terhadap permulaan olakan Marang<strong>on</strong>i mantap<br />

dengan kelikatan bersandar kepada suhu sekiranya ia berada di bawah satu lapisan<br />

v


endalir. Sekali lagi, kami tunjukkan secara terper<strong>in</strong>ci pengiraan berangka lengkung<br />

kestabilan sut. Kami tunjukkan bahawa kedua-dua faktor ketebalan (atau<br />

kek<strong>on</strong>duksian) lapisan pejal dan kelikatan bersandar kepada suhu (dimana pekali<br />

variasi kumpulan kelikatan bernilai negatif) akan menstabilkan lapisan bendalir.<br />

vi


ACKNOWLEDGEMENTS<br />

Bismillahirrahmanirrahim. Alhamdulillah. In the Name of Allah, the Beneficient, the<br />

Merciful, I would like to express my appreciati<strong>on</strong> for the guidance and assistance<br />

received throughout the journey of this thesis writ<strong>in</strong>g. Research will be a very<br />

l<strong>on</strong>esome activity if not for the w<strong>on</strong>derful researchers of the doma<strong>in</strong> and the<br />

envir<strong>on</strong>ment. Now it has come to the cross<strong>in</strong>g po<strong>in</strong>t, I realize, I may not arrive to this<br />

stage <strong>with</strong>out the experience I ga<strong>in</strong>ed from people around me.<br />

I would like to thank my respected supervisor and co-supervisor; Dr. Norihan Md.<br />

Arif<strong>in</strong> and Prof. Dr. Mohd. Salmi Md. Noorani, for the endless motivati<strong>on</strong>, support,<br />

trust and for teach<strong>in</strong>g me to be more patient and wiser.<br />

I am very grateful for the opportunity to do my research <strong>in</strong> Institute for Mathematical<br />

Research UPM which provides a very good research envir<strong>on</strong>ment. Thank you to the<br />

<strong>in</strong>stitute for provid<strong>in</strong>g all equipments that I need. Special thanks to the staff from the<br />

<strong>in</strong>stitute who have been very supportive and very helpful throughout my studies here.<br />

I want to thank all my dear friends and research colleagues for be<strong>in</strong>g my shoulder to<br />

cry <strong>on</strong>, for the generous <strong>in</strong>formati<strong>on</strong> shar<strong>in</strong>g, c<strong>on</strong>structive arguments and accompany.<br />

Last, but never the least, to the most important pers<strong>on</strong> of my life, my parent and to<br />

the members of the family who always giv<strong>in</strong>g their unc<strong>on</strong>diti<strong>on</strong>al love and support<br />

throughout my ups and downs, not <strong>on</strong>ly for me as a student but also as their still<br />

grow<strong>in</strong>g child. Thank you very much.<br />

vii


I certify that an Exam<strong>in</strong>ati<strong>on</strong> Committee has met <strong>on</strong> 5 th October 2007 to c<strong>on</strong>duct the<br />

f<strong>in</strong>al exam<strong>in</strong>ati<strong>on</strong> of Nurul Hafizah b<strong>in</strong>ti Za<strong>in</strong>al Abid<strong>in</strong> <strong>on</strong> her Master of Science<br />

thesis entitled “Stability of Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a Fluid Layer <strong>with</strong><br />

Temperature-dependant Viscosity” <strong>in</strong> accordance <strong>with</strong> Universiti Pertanian Malaysia<br />

(Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree)<br />

Regulati<strong>on</strong>s 1981. The Committee recommends that the student be awarded the<br />

degree of Master of Science.<br />

Members of the Exam<strong>in</strong>ati<strong>on</strong> Committee were as follows:<br />

Nik Mohd Asri Nik L<strong>on</strong>g, PhD<br />

Lecturer<br />

Institute for Mathematical Research<br />

Universiti Putra Malaysia<br />

(Chairman)<br />

Fudziah Ismail , PhD<br />

Associate Professor<br />

Institute for Mathematical Research<br />

Universiti Putra Malaysia<br />

(Internal Exam<strong>in</strong>er)<br />

Mohd Noor Saad, PhD<br />

Lecturer<br />

Faculty of Science<br />

Universiti Putra Malaysia<br />

(Internal Exam<strong>in</strong>er)<br />

Bachok M. Taib, PhD<br />

Professor<br />

Faculty of Science & Technology<br />

Universiti Sa<strong>in</strong>s Islam Malaysia<br />

(External Exam<strong>in</strong>er)<br />

________________________________<br />

HASANAH MOHD. GHAZALI, PhD<br />

Professor and Deputy Dean<br />

School of Graduate Studies<br />

Universiti Putra Malaysia<br />

Date: 17 December 2007<br />

viii


This thesis was submitted to the Senate of Universiti Putra Malaysia and has been<br />

accepted as fulfilment of the requirement for the degree of Master of Science. The<br />

members of the Supervisory Committee were as follows:<br />

NORIHAN MD ARIFIN, PhD<br />

Lecturer<br />

Institute for Mathematical Research<br />

Universiti Putra Malaysia<br />

(Chairman)<br />

MOHD SALMI MD NOORANI, PhD<br />

Professor<br />

Institute for Mathematical Research<br />

Universiti Putra Malaysia<br />

(Member)<br />

ix<br />

________________________________<br />

AINI IDERIS, PhD<br />

Professor and Dean<br />

School of Graduate Studies<br />

Universiti Putra Malaysia<br />

Date: 22 January 2008


DECLARATION<br />

I hereby declare that the thesis is based <strong>on</strong> my orig<strong>in</strong>al work except for quotati<strong>on</strong>s<br />

and citati<strong>on</strong>s, which have been duly acknowledged. I also declare that it has not been<br />

previously or c<strong>on</strong>currently submitted for any other degree at UPM or other<br />

<strong>in</strong>stituti<strong>on</strong>s.<br />

________________________________________<br />

NURUL HAFIZAH BINTI ZAINAL ABIDIN<br />

x<br />

Date:


TABLE OF CONTENTS<br />

xi<br />

Page<br />

DEDICATION ii<br />

ABSTRACT iii<br />

ABSTRAK v<br />

ACKNOWLEDGEMENTS vii<br />

APPROVAL viii<br />

DECLARATION x<br />

LIST OF TABLES xiii<br />

LIST OF FIGURES xiv<br />

LIST OF ABBREVIATIONS xviii<br />

CHAPTER<br />

1 INTRODUCTION 1-1<br />

1.1 C<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a Fluid Layer 1-2<br />

1.1.1 Physical Mechanism for Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> 1-3<br />

1.1.2 C<strong>on</strong>vecti<strong>on</strong> <strong>with</strong> Variable Viscosity Effect 1-4<br />

1.2 Mathematical Formulati<strong>on</strong> of a Model Problem 1-7<br />

1.3 L<strong>in</strong>ear Theory of Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> 1-15<br />

1.4 Objectives 1-18<br />

1.5 The Scope of The Thesis 1-18<br />

2 LITERATURE REVIEW 2-1<br />

3 METHODOLOGY 3-1<br />

3.1 Problem Formulati<strong>on</strong> 3-1<br />

3.2 L<strong>in</strong>ear Stability Analysis 3-2<br />

3.3 Numerical Soluti<strong>on</strong> 3-7<br />

4 MARANGONI CONVECTION WITH TEMPERATURE-DEPENDENT<br />

VISCOSITY 4-1<br />

4.1 Background 4-1<br />

4.2 C<strong>on</strong>duct<strong>in</strong>g Case <strong>with</strong> No-slip C<strong>on</strong>diti<strong>on</strong> 4-11<br />

4.3 C<strong>on</strong>duct<strong>in</strong>g Case <strong>with</strong> Free-slip C<strong>on</strong>diti<strong>on</strong> 4-13<br />

4.4 Insulat<strong>in</strong>g Case <strong>with</strong> No-slip C<strong>on</strong>diti<strong>on</strong> 4-16<br />

4.5 C<strong>on</strong>clusi<strong>on</strong> 4-18


5 BOUNDARY EFFECT ON MARANGONI CONVECTION IN A<br />

VARIABLE VISCOSITY FLUID LAYER 5-1<br />

5.1 Background 5-1<br />

5.2 Problem Formulati<strong>on</strong> 5-5<br />

5.3 Numerical Results 5-7<br />

5.3 C<strong>on</strong>clusi<strong>on</strong> 5-14<br />

5 CONCLUSION AND FURTHER WORK 6-1<br />

5.1 C<strong>on</strong>clusi<strong>on</strong> 6-1<br />

5.3 Further Work 6-3<br />

REFERENCES R-1<br />

APPENDICES A-1<br />

BIODATA OF THE AUTHOR B-1<br />

xii


LIST OF TABLES<br />

Table Page<br />

1.1 Viscosities of some comm<strong>on</strong> <strong>fluid</strong>s. 1-5<br />

4.1 Critical values of the steady Marang<strong>on</strong>i numbers Msc, oscillatory<br />

Marang<strong>on</strong>i number Moc and corresp<strong>on</strong>d<strong>in</strong>g wave numbers at<br />

R = Bi = 0, Bo = 0.1 and Pr =1. 4-7<br />

5.1 Critical values of the critical Marang<strong>on</strong>i numbers Mc and<br />

corresp<strong>on</strong>d<strong>in</strong>g wave numbers αc for kr = 1 and Cr = 0. 5-8<br />

xiii


LIST OF FIGURES<br />

Figure Page<br />

1.1 (a) H<strong>on</strong>eycomb like pattern observed <strong>in</strong> Bénard c<strong>on</strong>vecti<strong>on</strong> and<br />

(b) Hexag<strong>on</strong> geometry show<strong>in</strong>g the wavelength λ (Maroto et al. 2007). 1-2<br />

1.2 C<strong>on</strong>vecti<strong>on</strong> mechanism caused by surface tensi<strong>on</strong> gradient. 1-4<br />

1.3 Lam<strong>in</strong>ar shear. 1-6<br />

1.4 Pears<strong>on</strong>’s model. 1-7<br />

1.5 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curve. 1-15<br />

1.6 Marg<strong>in</strong>al Stability Curve for<br />

(a) C<strong>on</strong>duct<strong>in</strong>g case and<br />

(b) Insulat<strong>in</strong>g case calculated from equati<strong>on</strong> (1.43) and (1.44) where<br />

Cr = 0 and Bo = 0. 1-16<br />

1.7 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curve for a c<strong>on</strong>duct<strong>in</strong>g case <strong>with</strong> a free-slip<br />

c<strong>on</strong>diti<strong>on</strong> at the bottom where Cr = 0 and Bo = 0. 1-17<br />

3.1 Physical model. 3-2<br />

4.1 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves <strong>in</strong> the c<strong>on</strong>duct<strong>in</strong>g case for Cr = 0 ,<br />

B i =<br />

and various values of the viscosity number: (1) N = 0, (2) N = 0.7,<br />

(3) N = 1.5, (4) N = 3. 4-3<br />

4.2 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves <strong>in</strong> the c<strong>on</strong>duct<strong>in</strong>g case for N = 0.7, B i = 0 ,<br />

B o = 0.1 and various values of the crspati<strong>on</strong> number: (1) Cr = 10 -6 ,<br />

(2) Cr = 0.7 x 10 3 , (3) Cr = 0.85 x 10 -3 , (4) Cr = 10 -2 . 4-3<br />

4.3 Critical Marang<strong>on</strong>i number<br />

M (marked as<br />

c<br />

0<br />

c<br />

Ma ) vs. the viscosity<br />

parameter N <strong>in</strong> the c<strong>on</strong>duct<strong>in</strong>g case for Cr = 0 and Bi = 0. The<br />

crosses are values for a l<strong>in</strong>ear viscosity law. 4-4<br />

4.4 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves <strong>in</strong> the c<strong>on</strong>duct<strong>in</strong>g case for Cr = 0 , B i = 0<br />

and various values of the viscosity number: (1) N = 0.18, (2) N = 1,<br />

(3) N = 2, (4) N = 3. 4-5<br />

4.5 Critical Marang<strong>on</strong>i number<br />

M (marked as<br />

c<br />

Ma ) vs. the modified<br />

c<br />

Crispati<strong>on</strong> number Cr <strong>in</strong> the c<strong>on</strong>duct<strong>in</strong>g case for Bi = 0, Bo = 0.1 and<br />

xiv


various values of the viscosity number: (1) N = 0.18, (2) N = 1,<br />

(3) N = 2, (4) N = 3. 4-5<br />

4.6 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves <strong>in</strong> the c<strong>on</strong>duct<strong>in</strong>g case for Cr = 0 , B i = 1 and<br />

various values of the viscosity number: (1) N = 0.18, (2) N = 1,<br />

(3) N = 2, (4) N = 3. 4-6<br />

4.7 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bo = 0.1, Bi = 0, Γ = 0.8 and<br />

different values of the Crispati<strong>on</strong> number : Cr = 0 (label 1);<br />

(label 2); Cr = 10 −2 Cr<br />

−3<br />

= 10<br />

(label 3). Solid curves refer to Rv = 0<br />

and dashed curves to Rv = −0.3. 4-8<br />

4.8 Critical Marang<strong>on</strong>i number Mc (marked as Ma sc ) vs. the Crispati<strong>on</strong><br />

number Cr (marked as for Cr ) for B o = 0.1 , Bi = 0, Γ = 0.8 and various<br />

values of the viscosity group: Rv = −0.5 (label 1); Rv = −0.3 (label 2);<br />

Rv = 0 (label 3); Rv = 0.3 (label 4); Rv = 0.5 (label 5). 4-9<br />

4.9 Critical Marang<strong>on</strong>i number Mc (marked as Ma sc ) vs. the Rayleigh<br />

number Rac for B = 0.1,<br />

Pr = 1, Bi = 0 and various values of the Crispati<strong>on</strong><br />

o<br />

number: Cr = 0.0015 (label 1); Cr = 0.001 (label 2); Cr = 0.0005. (label 3).<br />

Solid curves refer to steady critical Marang<strong>on</strong>i Number, Msc and<br />

dashed <strong>on</strong>es to oscillatory Marang<strong>on</strong>i number, Moc. The viscosity<br />

group is equal to 0 and 0.3 <strong>on</strong> a, and b, respectively. 4-10<br />

4.10 Critical Marang<strong>on</strong>i number Mc (marked as Ma c ) vs. the Rayleigh<br />

number Rac for C r 0.0005 , Rv = 20.3, Pr = 1, Bi = 0 and various values<br />

=<br />

of the B<strong>on</strong>d number: Bo = 0.1 (label 1); Bo = 0.5 (label 2); Bo = 1 (label 3).<br />

Solid curves refer to steady critical Marang<strong>on</strong>i number, Msc and dashed<br />

<strong>on</strong>es to oscillatory Marang<strong>on</strong>i number, Moc. 4-10<br />

4.11 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bi = 0, Cr = 0 and different<br />

values of the viscosity, Rv. 4-12<br />

4.12 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bo = 0.1, Bi = 0, Rv = 0.3 and<br />

different values of Crispati<strong>on</strong> number, Cr. 4-12<br />

4.13 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bo = 0.1, Bi = 0, Rv = 0 and<br />

different values of Crispati<strong>on</strong> number, Cr. 4-13<br />

4.14 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bi = 0, Cr = 0 and different<br />

values of the viscosity group, Rv. 4-14<br />

4.15 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bo = 0.1, Bi = 0, Cr = 0.001<br />

and different values of viscosity group, Rv. 4-15<br />

4.16 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bo = 0.1, Bi = 0, Rv = -0.3 and<br />

xv


different values of Crispati<strong>on</strong> number, Cr. 4-15<br />

4.17 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for Bo = 0.1, Bi = 0, Rv = 0.3 and<br />

different values of Crispati<strong>on</strong> number, Cr. 4-16<br />

4.18 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs.α, for Bi = 0, Cr = 0 and different<br />

values of the viscosity, Rv. 4-17<br />

4.19 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs.α, for Bo = 0.1, Bi = 0, Rv = 0.3 and<br />

different values of Crispati<strong>on</strong> number, Cr. 4-17<br />

5.1 Variati<strong>on</strong> of Rc <strong>with</strong> B for different values of dr and kr = 1. The solid<br />

l<strong>in</strong>es corresp<strong>on</strong>d to Bi -1 = 0 and the dashed l<strong>in</strong>es to Bi = 0. 5-2<br />

5.2 Variati<strong>on</strong> of Rc <strong>with</strong> B for different values of kr and dr = 1. The solid<br />

l<strong>in</strong>es corresp<strong>on</strong>d to Bi -1 = 0 and the dashed l<strong>in</strong>es to Bi = 0. 5-2<br />

5.3 Variati<strong>on</strong> of Rc <strong>with</strong> B for different values of Γ when Bi = 0 and dr = 10.<br />

The solid l<strong>in</strong>es corresp<strong>on</strong>d to kr = 10 and the dashed l<strong>in</strong>es<br />

to kr = 0.1. 5-3<br />

5.4 Variati<strong>on</strong> of Rc <strong>with</strong> B for different values of kr and Γ when dr = 10.<br />

The solid l<strong>in</strong>es corresp<strong>on</strong>d to Bi = 1.0 and the dashed l<strong>in</strong>es to Bi = 10. 5-4<br />

5.5 Comparis<strong>on</strong> of the critical Rayleigh number Rc between asymptotic<br />

soluti<strong>on</strong> (dashed curves) and numerical soluti<strong>on</strong> (solid curves) for<br />

Γ = -0.1 and Γ = 1 when krdr = 0.5 and Bi = 0. 5-5<br />

5.6 Physical model <strong>with</strong> a boundary slab. 5-6<br />

5.7 Variati<strong>on</strong> of marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M <strong>with</strong> α, for different values<br />

of the depth ratio, dr. 5-9<br />

5.8 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for different values of the<br />

viscosity, Rv where Cr = 0, kr = 1, dr = 0.01. The solid l<strong>in</strong>es<br />

corresp<strong>on</strong>d to Bi = 2 and the dashed l<strong>in</strong>e to Bi = 0. 5-10<br />

5.9 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for different values of the<br />

viscosity, Rv where Cr = 0, kr = 1, dr = 10. The solid l<strong>in</strong>es<br />

corresp<strong>on</strong>d to Bi = 2 and the dashed l<strong>in</strong>e to Bi = 0. 5-11<br />

5.10 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves Mc vs. dr, for Bi = 0, Cr = 0, kr = 1 and<br />

different values of the viscosity, Rv. 5-11<br />

5.11 Variati<strong>on</strong> of marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M <strong>with</strong> α, for different<br />

values of the thermal c<strong>on</strong>ductivity ratio, kr. 5-12<br />

5.12 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for different values of the<br />

xvi


viscosity, Rv where Cr = 0, dr = 1, kr = 0.1. The solid l<strong>in</strong>es<br />

corresp<strong>on</strong>d to Bi = 2 and the dashed l<strong>in</strong>e to Bi = 0. 5-13<br />

5.13 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves M vs. α, for different values of the<br />

viscosity, Rv where Cr = 0, dr = 1 kr = 10. The solid l<strong>in</strong>es<br />

corresp<strong>on</strong>d to Bi = 2 and the dashed l<strong>in</strong>e to Bi = 0. 5-13<br />

5.14 Marg<strong>in</strong>al <str<strong>on</strong>g>stability</str<strong>on</strong>g> curves Mc vs. kr, for Bi = 0, Cr = 0, dr = 1 and<br />

different values of the viscosity, Rv. 5-14<br />

xvii


LIST OF ABBREVIATIONS<br />

a thermal expansi<strong>on</strong> coefficient of density<br />

Bi Biot number<br />

Bo B<strong>on</strong>d number<br />

c specific heat<br />

Cr Crispati<strong>on</strong> number<br />

d depth of <strong>fluid</strong> <strong>layer</strong><br />

dr depth ratio, ds/d<br />

ds depth of solid <strong>layer</strong><br />

f shear stress<br />

g gravity<br />

h heat transfer coefficient<br />

H mean curvature of the surface<br />

k thermal c<strong>on</strong>ductivity of <strong>fluid</strong><br />

kr thermal c<strong>on</strong>ductivity ratio, ks/k<br />

ks thermal c<strong>on</strong>ductivity of solid <strong>layer</strong><br />

M Marang<strong>on</strong>i number<br />

p pressure<br />

pg gas pressure<br />

Pr Prandtl number<br />

R Rayleigh number<br />

Rv Viscosity group<br />

s growth rate<br />

xviii


t time<br />

T <strong>temperature</strong> of <strong>fluid</strong><br />

T g<br />

<strong>temperature</strong> of the ambient gas<br />

T s<br />

<strong>temperature</strong> of solid <strong>layer</strong><br />

u velocity<br />

x, y, z Cartesian coord<strong>in</strong>ates<br />

Greek Abbreviati<strong>on</strong>s<br />

α wavenumber<br />

γ thermal expansi<strong>on</strong> coefficient of dynamic<br />

viscosity<br />

δ d<br />

surface deflecti<strong>on</strong><br />

ε thermal expansi<strong>on</strong> coefficient of surface<br />

tensi<strong>on</strong><br />

ζ thermal expansi<strong>on</strong> coefficient of k<strong>in</strong>ematic<br />

viscosity<br />

θ <strong>temperature</strong> disturbance<br />

κ thermal diffusivity of <strong>fluid</strong><br />

κ s<br />

thermal diffusivity of solid <strong>layer</strong><br />

μ dynamic viscosity of <strong>fluid</strong><br />

ν k<strong>in</strong>ematic viscosity of <strong>fluid</strong><br />

ρ density of <strong>fluid</strong><br />

σ surface tensi<strong>on</strong><br />

xix


Subscript<br />

0 reference quantity<br />

c critical state<br />

s property of the solid plate<br />

r ratio of the solid plate property to the <strong>fluid</strong> property<br />

xx


CHAPTER 1<br />

INTRODUCTION<br />

C<strong>on</strong>vecti<strong>on</strong> is the transfer of heat by the moti<strong>on</strong> of or <strong>with</strong><strong>in</strong> a <strong>fluid</strong>. It may arise<br />

from the <strong>temperature</strong> differences either <strong>with</strong><strong>in</strong> the <strong>fluid</strong> or between the <strong>fluid</strong> and its<br />

boundary, other sources of density variati<strong>on</strong>s (such as variable sal<strong>in</strong>ity) or from the<br />

applicati<strong>on</strong> of an external motive force. It is <strong>on</strong>e of the three primary mechanisms of<br />

heat transfer, the others be<strong>in</strong>g c<strong>on</strong>ducti<strong>on</strong> and radiati<strong>on</strong>. C<strong>on</strong>vecti<strong>on</strong> has a wide range<br />

of applicati<strong>on</strong>s, <strong>in</strong>clud<strong>in</strong>g calculat<strong>in</strong>g forces and moments <strong>on</strong> aircraft, determ<strong>in</strong><strong>in</strong>g<br />

the mass flow rate of petroleum through pipel<strong>in</strong>es and to predict weather patterns.<br />

Some of its pr<strong>in</strong>ciples are even used <strong>in</strong> traffic eng<strong>in</strong>eer<strong>in</strong>g, where the traffic is treated<br />

as a c<strong>on</strong>t<strong>in</strong>uous <strong>fluid</strong>. Generally, c<strong>on</strong>vecti<strong>on</strong> means <strong>fluid</strong> moti<strong>on</strong> caused by<br />

<strong>temperature</strong> difference <strong>with</strong> the <strong>temperature</strong> gradient po<strong>in</strong>t<strong>in</strong>g <strong>in</strong> any directi<strong>on</strong><br />

(Chapmen 1984).<br />

In this thesis, the <str<strong>on</strong>g>stability</str<strong>on</strong>g> <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a plane horiz<strong>on</strong>tal <strong>fluid</strong> <strong>layer</strong> heated from<br />

below is c<strong>on</strong>sidered as it is <strong>on</strong>e of the most comm<strong>on</strong> types of c<strong>on</strong>vecti<strong>on</strong>. It was<br />

studied for the first time by Pellew and Southwell (1940) and then was summarized<br />

by Chandrasekhar’s (1961) book, where a nearly complete picture of the l<strong>in</strong>ear<br />

analysis called Rayleigh-Bénard c<strong>on</strong>vecti<strong>on</strong> was presented. Usually, the term<br />

Rayleigh-Bénard c<strong>on</strong>vecti<strong>on</strong> is attributed to c<strong>on</strong>vecti<strong>on</strong> due to buoyancy mechanism,<br />

while the term Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> refers to surface tensi<strong>on</strong> gradient mechanism.<br />

1-1


(a)<br />

Figure 1.1: (a) H<strong>on</strong>eycomb like pattern observed <strong>in</strong> Bénard c<strong>on</strong>vecti<strong>on</strong> and<br />

(b) Hexag<strong>on</strong> geometry show<strong>in</strong>g the wavelength λ<br />

(Maroto et al. 2007)<br />

1.1 C<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a Fluid Layer<br />

When a <strong>fluid</strong> <strong>layer</strong> <strong>in</strong> a horiz<strong>on</strong>tal plane is heated from below, <strong>in</strong>stabilities arise when<br />

the <strong>temperature</strong> gradient across the <strong>layer</strong> exceeds a certa<strong>in</strong> critical value which is<br />

caused by buoyancy or by the surface tensi<strong>on</strong> gradient. Bénard (1900) and Block<br />

(1959) were the pi<strong>on</strong>eers of the comprehensive <strong>in</strong>vestigati<strong>on</strong> of c<strong>on</strong>vecti<strong>on</strong> for both<br />

mechanism.<br />

Bénard (1900), carry<strong>in</strong>g his experiment <strong>on</strong> a th<strong>in</strong> horiz<strong>on</strong>tal <strong>layer</strong> of molten<br />

spermaceti <strong>with</strong> a free surface observed the establishment of a regular, steady pattern<br />

of flow cells when the <strong>layer</strong> is heated from below. These cells, which are known as<br />

Bénard cells, were ma<strong>in</strong>ly hexag<strong>on</strong>al, and the pattern resembled a h<strong>on</strong>eycomb as<br />

shown <strong>in</strong> Figure 1.1. The distance between the central po<strong>in</strong>ts of neighbour<strong>in</strong>g<br />

hexag<strong>on</strong>al cells def<strong>in</strong>es the wavelength of the system. Bénard (1900) believed that<br />

the phenomen<strong>on</strong> was caused by buoyancy and therefore, this experiment was<br />

regarded as the start<strong>in</strong>g po<strong>in</strong>t of c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong>stabilities. But later, Block (1956) and<br />

1-2<br />

(b)


Pears<strong>on</strong> (1958) suggested that the c<strong>on</strong>vecti<strong>on</strong> was caused by surface tensi<strong>on</strong> gradient<br />

as the case studied used a th<strong>in</strong> <strong>fluid</strong> <strong>layer</strong> <strong>with</strong> a free surface where buoyancy may<br />

not exist.<br />

Block (1956) is the pi<strong>on</strong>eer of c<strong>on</strong>vecti<strong>on</strong> that is caused by a surface tensi<strong>on</strong> gradient<br />

and the study is known as Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong>. The experimental <strong>in</strong>vestigati<strong>on</strong> of<br />

the c<strong>on</strong>vecti<strong>on</strong> led to the c<strong>on</strong>clusi<strong>on</strong> that the hexag<strong>on</strong>al pattern observed by Bénard<br />

(1900) was due to the surface tensi<strong>on</strong> gradient and not the buoyancy. In the<br />

experiment, a th<strong>in</strong> hydrocarb<strong>on</strong> film less than <strong>on</strong>e millimeter <strong>with</strong> a free surface was<br />

used and Block (1956) observed that c<strong>on</strong>vecti<strong>on</strong> would stop when the <strong>fluid</strong> <strong>layer</strong> was<br />

covered <strong>on</strong> the top by a th<strong>in</strong> silic<strong>on</strong>e <strong>layer</strong>. Hence, Block (1956) c<strong>on</strong>cluded that the<br />

c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a <strong>fluid</strong> <strong>layer</strong> <strong>with</strong> a free surface was caused by surface tensi<strong>on</strong> gradient.<br />

Later, Pears<strong>on</strong> (1958) furthers the study of Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> theoretically.<br />

1.1.1 Physical Mechanism for Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong><br />

C<strong>on</strong>sider a horiz<strong>on</strong>tal <strong>fluid</strong> <strong>layer</strong> bounded from below by a rigid boundary and from<br />

above by a free surface. An <strong>in</strong>f<strong>in</strong>itesimal disturbance of the <strong>temperature</strong> <strong>on</strong> the<br />

surface, say a warm spot, creates surface tensi<strong>on</strong> tracti<strong>on</strong> <strong>on</strong> the surface if the surface<br />

tensi<strong>on</strong> coefficient of the <strong>fluid</strong> is a functi<strong>on</strong> of <strong>temperature</strong>. S<strong>in</strong>ce surface tensi<strong>on</strong><br />

usually decreases <strong>with</strong> <strong>temperature</strong>, a warm spot will be a soft spot at the surface<br />

from which the <strong>fluid</strong> will be pulled away laterally as shown <strong>in</strong> figure 1.2. The <strong>fluid</strong><br />

underneath the warm spot must c<strong>on</strong>sequently rise. The <strong>fluid</strong> moti<strong>on</strong> at the surface<br />

1-3


Warm spot<br />

Figure 1.2: C<strong>on</strong>vecti<strong>on</strong> mechanism caused by surface tensi<strong>on</strong> gradient<br />

will be transmitted by viscosity to the <strong>in</strong>terior of the <strong>fluid</strong> <strong>layer</strong>, but viscosity will<br />

also dampen the moti<strong>on</strong>. The moti<strong>on</strong> <strong>in</strong> the <strong>fluid</strong> can be susta<strong>in</strong>ed <strong>on</strong>ly if energy is<br />

provided to overcome the fricti<strong>on</strong>al losses. The required energy can be provided by a<br />

vertical <strong>temperature</strong> differences across the <strong>fluid</strong> <strong>layer</strong>, which can be heated from<br />

below. If sufficient energy is supplied, and if a critical vertical <strong>temperature</strong> difference<br />

is reached, c<strong>on</strong>vecti<strong>on</strong> caused by surface tensi<strong>on</strong> gradients will commence and will<br />

be susta<strong>in</strong>ed.<br />

cold<br />

hot<br />

1.1.2 C<strong>on</strong>vecti<strong>on</strong> <strong>with</strong> Variable Viscosity Effect<br />

Viscosity is a measure of the resistance of a <strong>fluid</strong> to deform under shear stress.<br />

Realistically, viscosity <strong>in</strong> a <strong>fluid</strong> depends <strong>on</strong> density. The higher the density of the<br />

<strong>fluid</strong>, the higher the viscosity will be. Fluid also possess a <strong>temperature</strong>-dependent<br />

viscosity which <strong>in</strong>fluences heat transport and the spatial structure of the <strong>fluid</strong>. When<br />

the <strong>temperature</strong> <strong>in</strong>creases, the viscosity decreases, but for gases, the viscosity will<br />

<strong>in</strong>crease. Viscosity varies widely <strong>with</strong> <strong>temperature</strong>, but <strong>temperature</strong> variati<strong>on</strong> has the<br />

opposite effect <strong>on</strong> the viscosities of <strong>fluid</strong>s because of their fundamentally different<br />

1-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!