15.11.2012 Views

Radiation Effects on Marangoni Convection over a - Universiti Putra ...

Radiation Effects on Marangoni Convection over a - Universiti Putra ...

Radiation Effects on Marangoni Convection over a - Universiti Putra ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Malaysian Journal of Mathematical Sciences 5(1): 13-25 (2011)<br />

<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface<br />

with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

1 Rohana Abdul Hamid, 1 Norihan Md Arifin,<br />

2 Roslinda Nazar and 1 Fadzilah Md Ali<br />

1 Institute for Mathematical Research and<br />

Department of Mathematics, <strong>Universiti</strong> <strong>Putra</strong> Malaysia,<br />

43400 UPM Serdang, Selangor, Malaysia<br />

2 School of Mathematical Sciences, Faculty of Science and Technology,<br />

<strong>Universiti</strong> Kebangsaan Malaysia,<br />

43600 UKM Bangi, Selangor, Malaysia<br />

E-mail: norihan@math.upm.edu.my<br />

ABSTRACT<br />

The radiati<strong>on</strong> effect <strong>on</strong> a steady two-dimensi<strong>on</strong>al Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> flow <strong>over</strong> a<br />

permeable flat surface is studied numerically. The general g<strong>over</strong>ning partial differential<br />

equati<strong>on</strong>s are transformed into a set of two n<strong>on</strong>linear ordinary differential equati<strong>on</strong>s by<br />

using unique similarity transformati<strong>on</strong>. Numerical soluti<strong>on</strong>s of the similarity equati<strong>on</strong>s are<br />

obtained using the shooting method. Numerical results are obtained for the interface<br />

velocity and the surface temperature gradient as well as the velocity and temperature<br />

profiles for some values of the g<strong>over</strong>ning parameters. The results indicate that the heat<br />

transfer rate at the surface decreases as the radiati<strong>on</strong> parameter increases. The effects of<br />

sucti<strong>on</strong> or injecti<strong>on</strong> parameter <strong>on</strong> the flow and heat transfer characteristics are discussed.<br />

Keywords: Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong>, thermal radiati<strong>on</strong>, similarity soluti<strong>on</strong>s,<br />

sucti<strong>on</strong>/injecti<strong>on</strong>.<br />

INTRODUCTION<br />

In recent times a good deal of attenti<strong>on</strong> has been devoted to the<br />

studies of Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong>. This is mainly because it is important in<br />

crystal growth melts and greatly influences other industrial processes.<br />

Nishino et al. (2007) stated that Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> negatively affects the<br />

quality of silic<strong>on</strong> crystals for semic<strong>on</strong>ductors and the c<strong>on</strong>vecti<strong>on</strong> also occurs<br />

in heat pipe for heat radiati<strong>on</strong> devices of pers<strong>on</strong>al computers. The surface<br />

tensi<strong>on</strong> gradient variati<strong>on</strong>s al<strong>on</strong>g the interface may induce the Marang<strong>on</strong>i<br />

c<strong>on</strong>vecti<strong>on</strong>. In particular, the surface tensi<strong>on</strong> gradients that are resp<strong>on</strong>sible of<br />

Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> can be due to gradients of temperature (thermal<br />

c<strong>on</strong>vecti<strong>on</strong>) and/or c<strong>on</strong>centrati<strong>on</strong> (solutal c<strong>on</strong>vecti<strong>on</strong>). Many researchers<br />

have investigated Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> in various geometries such as<br />

Okano et al. (1989), Christopher et al. (1998), Arafune et al. (1999), and


Rohana Abdul Hamid, Norihan Md Arifin, Roslinda Nazar & Fadzilah Md Ali<br />

Pop et al. (2001). The most relevant paper to this work includes Christopher<br />

and Wang (2001) who studied the effects of Prandtl number for Marang<strong>on</strong>i<br />

c<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a flat surface. Meanwhile, Al-Mudhaf and Chamkha (2005)<br />

presented similarity soluti<strong>on</strong>s for MHD Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> in the<br />

presence of heat generati<strong>on</strong> or absorpti<strong>on</strong> effects. Exact analytical soluti<strong>on</strong>s<br />

of thermosolutal Marang<strong>on</strong>i flows in the presence of temperature-dependent<br />

volumetric heat source/sinks as well as of a first order chemical reacti<strong>on</strong><br />

have been examined by Magyari and Chamkha (2007).<br />

It was realized that the studies of thermal radiati<strong>on</strong> and heat transfer<br />

are important in electrical power generati<strong>on</strong>, astrophysical flows, solar<br />

power technology and other industrial areas. Recently, there is a lot of work<br />

<strong>on</strong> boundary layer flow involving radiati<strong>on</strong> (Chamkha et al. (2001);<br />

Elbashbeshy and Dimian (2002); Chaudhary et al. (2006); Bataller (2008)).<br />

Ishak (2009) investigated the radiati<strong>on</strong> effects <strong>on</strong> the flow and heat transfer<br />

<strong>over</strong> a moving plate in a parallel stream. He showed that the existence of<br />

thermal radiati<strong>on</strong> is to reduce the heat transfer rate at the surface. Recently,<br />

Ishak (2010) c<strong>on</strong>sidered the thermal boundary layer flow induced by a<br />

linearly stretching sheet in a micropolar fluid with radiati<strong>on</strong> effect and he<br />

also found that the heat transfer rate at the surface decreases as the radiati<strong>on</strong><br />

parameter increases.<br />

Motivated by these previous works, we aim to study the Marang<strong>on</strong>i<br />

flow <strong>over</strong> a permeable flat surface with the effect of thermal radiati<strong>on</strong>. The<br />

present study may be regarded as the extensi<strong>on</strong> of the paper by Christopher<br />

and Wang (2001). Besides, the present results also study the effects of<br />

sucti<strong>on</strong> and injecti<strong>on</strong> parameter of the problem.<br />

PROBLEM FORMULATION<br />

C<strong>on</strong>sider steady laminar boundary layer flow of an electricallyc<strong>on</strong>ducting<br />

fluid <strong>over</strong> a flat surface in the presence of surface tensi<strong>on</strong> due to<br />

temperature gradients at the wall. The surface is assumed to be permeable so<br />

as to allow for possible sucti<strong>on</strong> and injecti<strong>on</strong> at the wall. Unlike the<br />

Boussinesq effect in buoyancy-induced flow, the Marang<strong>on</strong>i effect acts as a<br />

boundary c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> the g<strong>over</strong>ning equati<strong>on</strong>s for the flow fields. Taking<br />

into account the thermal radiati<strong>on</strong> term in the energy equati<strong>on</strong>, the g<strong>over</strong>ning<br />

equati<strong>on</strong>s are (see Christopher and Wang (2001))<br />

∂u ∂v<br />

+ = 0 , (1)<br />

∂ x ∂ y<br />

14 Malaysian Journal of Mathematical Sciences


<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

subject to the boundary c<strong>on</strong>diti<strong>on</strong>s<br />

0<br />

∂ ∂ ∂<br />

u + v = ν<br />

∂ x ∂ y ∂y<br />

2<br />

u u u<br />

2<br />

2<br />

p p<br />

, (2)<br />

2<br />

∂T ∂T k ∂ T 1 ∂qr<br />

u + v = − , (3)<br />

∂ x ∂ y ρc ∂y ρc<br />

∂ y<br />

v( x,0) = v , T x T Ax +<br />

m 1<br />

( ,0) = (0,0) + ,<br />

u( x, ∞ ) = 0, T( x, ∞ ) = T∞ as y → ∞<br />

u dσ T<br />

µ<br />

y dT x<br />

∂ ∂<br />

= −<br />

∂ ∂<br />

at y = 0 (4)<br />

where u and v are the velocity comp<strong>on</strong>ents al<strong>on</strong>g the x and y axes,<br />

respectively, v is the kinematic viscosity, k is the thermal c<strong>on</strong>ductivity, cp is<br />

the specific heat of the fluid at a c<strong>on</strong>stant pressure, ρ is the density, q r is<br />

the radiative heat flux, T is the temperature across the thermal boundary<br />

layer, A is the temperature gradient coefficient, m is the c<strong>on</strong>stant exp<strong>on</strong>ent<br />

of the temperature, µ is the dynamic viscosity and σ is the surface tensi<strong>on</strong>.<br />

Using the Rosseland approximati<strong>on</strong> for radiati<strong>on</strong> (see Brewster<br />

(1992)), the radiative heat flux is simplified as<br />

* 4<br />

4σ<br />

∂T<br />

qr<br />

= − *<br />

3k<br />

∂y<br />

where σ * is the Stefan-Boltzmann c<strong>on</strong>stant and k * is the mean absorpti<strong>on</strong><br />

coefficient. It is assumed that the temperature differences within the flow<br />

4<br />

such the term T may be expressed as a linear functi<strong>on</strong> of temperature. This<br />

4<br />

is accomplished by expanding T in a Taylor’s series about T∞ and<br />

neglecting higher-order terms, thus<br />

T ≈ 4T T −<br />

3T<br />

4 3 4<br />

∞ ∞<br />

Malaysian Journal of Mathematical Sciences 15<br />

(5)<br />

(6)


Rohana Abdul Hamid, Norihan Md Arifin, Roslinda Nazar & Fadzilah Md Ali<br />

Using (5) and (6), equati<strong>on</strong> (3) reduces to (see Ishak (2009))<br />

p<br />

∂ ∂ ∂<br />

u v N<br />

∂x ∂y ∂y<br />

2<br />

T T T<br />

+ = α(1<br />

+ R)<br />

2<br />

where α = k /( ρc<br />

) is the thermal diffusivity and N = T kk is the<br />

radiati<strong>on</strong> parameter.<br />

16 Malaysian Journal of Mathematical Sciences<br />

R<br />

* 3 *<br />

16 σ ∞ /(3 )<br />

In order to obtain a soluti<strong>on</strong> of Equati<strong>on</strong>s (1), (2) and (7), the<br />

following similarity variables are introduced (see Christopher and Wang<br />

(2001)):<br />

1<br />

m−1<br />

3<br />

η = C x y<br />

2<br />

−2−m 3<br />

(7)<br />

f ( η) = C x ψ ( x, y)<br />

(8)<br />

( T ( x, y) − T (0,0)) x<br />

θ ( η)<br />

=<br />

A<br />

where m , A , 1 C and 2 C are c<strong>on</strong>stants with A , 1<br />

T<br />

A , m 1<br />

L +<br />

∆<br />

= C =<br />

( / )<br />

dσ dT Aρ<br />

, C<br />

µ<br />

3<br />

1 2<br />

( / )<br />

−1−m ρ<br />

dσ dT Aµ<br />

C and C 2 given by<br />

2<br />

2 = 3<br />

(9)<br />

with L being the length of the surface and ∆ T is the c<strong>on</strong>stant characteristic<br />

temperature. Substituting (8) into equati<strong>on</strong>s (2) and (7), we obtain the<br />

following ordinary differential equati<strong>on</strong>s:<br />

2m + 1 2 + m<br />

f ′′′ f ′ ff ′′<br />

3 3<br />

2<br />

− ( ) + ( ) = 0<br />

(10)<br />

1+ N R 2 + m<br />

( ) θ′′ + ( ) f θ ′ − (1 + m) f ′ θ = 0<br />

(11)<br />

Pr 3<br />

where primes denote differentiati<strong>on</strong> with respect to η and Pr = ν / α is the<br />

Prandtl number. The boundary c<strong>on</strong>diti<strong>on</strong>s (4) now become


<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

f (0) = f , f ′′ (0) = − 1, θ(0)<br />

=<br />

1<br />

f ′ ( ∞ ) = 0, θ ( ∞ ) = 0<br />

with f 0 is the dimensi<strong>on</strong>less sucti<strong>on</strong> or injecti<strong>on</strong> velocity.<br />

The surface velocity is given by (see Christopher and Wang (2001))<br />

(12)<br />

2<br />

(( dσ / dT ) A)<br />

(2 m+<br />

1) / 3<br />

u( x,0) = 3 f ′ (0) x .<br />

(13)<br />

ρµ<br />

The temperature gradient coefficient can be defined in terms of the<br />

1<br />

total temperature difference al<strong>on</strong>g a surface of length L as / m<br />

A T L +<br />

= ∆ , so<br />

the Marang<strong>on</strong>i number can then be defined for a general temperature profile<br />

as<br />

Ma<br />

L<br />

( dσ / dT)( ∆T<br />

/ L ) L<br />

=<br />

µ a<br />

m+ 1 m+<br />

2<br />

( dσ / dT) ∆TL<br />

= (14)<br />

µ a<br />

The Reynolds number defined in terms of the surface velocity is then related<br />

to the Marang<strong>on</strong>i number as<br />

u( x,0) L<br />

2 / 3 −2/<br />

3<br />

Re L = = f ′ (0) MaL<br />

Pr<br />

(15)<br />

ν<br />

The total mass flow in the boundary layer per unit width is given by<br />

dσ<br />

ɺ = = ( ∞)<br />

(16)<br />

∞<br />

m ∫ ρudy 0<br />

3<br />

( m+<br />

2) / 3<br />

Aρµ x f<br />

dT<br />

which can be written in dimensi<strong>on</strong>less form as<br />

0<br />

ρuδ 1/ 3 −1/3<br />

Re x = = f ( ∞ ) Max<br />

Pr<br />

(17)<br />

µ<br />

Malaysian Journal of Mathematical Sciences 17


Rohana Abdul Hamid, Norihan Md Arifin, Roslinda Nazar & Fadzilah Md Ali<br />

Analysis of the similarity transformati<strong>on</strong> shows that both are true if<br />

( m+ 2)/ 3 ( dσ / dT ) AρL C 3<br />

1L =<br />

2<br />

µ<br />

1/ 3 −1/<br />

3<br />

= L Pr<br />

m+<br />

2<br />

18 Malaysian Journal of Mathematical Sciences<br />

Ma ≫ 1 (18)<br />

The numerical results can be used to show that the boundary layer<br />

6<br />

assumpti<strong>on</strong>s hold within the momentum boundary layer for Ma L / Pr > 10<br />

and for m ≤ 2.<br />

RESULTS AND DISCUSSION<br />

The n<strong>on</strong>linear ordinary differential equati<strong>on</strong>s (10) and (11) subject to<br />

the boundary c<strong>on</strong>diti<strong>on</strong>s (12) are solved numerically using the shooting<br />

method. In order to discuss the problem under c<strong>on</strong>siderati<strong>on</strong>, the results of<br />

numerical computati<strong>on</strong>s are presented in the form of velocity and<br />

temperature profiles. Figures 1 to 5 illustrate the influence of the sucti<strong>on</strong> or<br />

injecti<strong>on</strong> parameter f 0 <strong>on</strong> the surface velocity, velocity and temperature<br />

profiles. Figure 1 shows the variati<strong>on</strong>s of the reduced surface velocity f ′ (0)<br />

with m , where m = 0 refers to a linear variati<strong>on</strong> of the surface temperature<br />

with the distance x measured al<strong>on</strong>g the flat plate, m = 1 refers to a quadratic<br />

variati<strong>on</strong> of the surface temperature with x , while m = − 0.5 refers to a<br />

surface temperature variati<strong>on</strong> relative to the square root of x . Figures 2 and<br />

3 present the distributi<strong>on</strong> of the dimensi<strong>on</strong>less velocity f ′ ( η)<br />

and<br />

temperature θ( η ) profiles for several values of the Prandtl number Pr when<br />

m = 0 and N R = 0 . The thickness of the thermal boundary layer increases<br />

with the decreasing Prandtl number as shown in Figure 3. In additi<strong>on</strong>, fluid<br />

wall sucti<strong>on</strong> decreases as Prandlt number increases while fluid wall injecti<strong>on</strong><br />

produces the opposite effect. It should be also noticed that for f 0 = 0<br />

(impermeable surface) in Figures 1 to 3, the results obtained by Christopher<br />

and Wang (2001) are reproduced. We found that, impositi<strong>on</strong> of fluid sucti<strong>on</strong><br />

( f 0 > 0) at the wall has the tendency to decrease the fluid velocity and<br />

temperature. However, fluid injecti<strong>on</strong> ( f 0 < 0) increases in the fluid velocity<br />

and temperature.


<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

Effect of radiati<strong>on</strong> parameter N R <strong>on</strong> temperature of the fluid with<br />

the influence of the sucti<strong>on</strong> or injecti<strong>on</strong> parameter f 0 is presented in Figures<br />

6 to 9. Figure 6 displays the variati<strong>on</strong> with N R of the reduced temperature<br />

gradient, − θ′ (0) with different values of f 0 . One can see that the reduced<br />

temperature gradient, − θ′ (0) decreases as N R increases. Thus, the heat<br />

transfer rate at the surface decreases in the presence of radiati<strong>on</strong>. This result<br />

qualitatively agrees with expectati<strong>on</strong>s, since the effect of radiati<strong>on</strong> is to<br />

decrease the rate of energy transport to the fluid, thereby decreasing the<br />

temperature of the fluid. From Figures 7 to 9, we observe that the<br />

temperature profiles increase as radiati<strong>on</strong> parameter N R increases. Thus,<br />

radiati<strong>on</strong> can be used to c<strong>on</strong>trol the thermal boundary layers quite<br />

effectively.<br />

Figure 1: Variati<strong>on</strong>s of surface velocity with temperature gradient exp<strong>on</strong>ent m<br />

for various f 0 .<br />

Malaysian Journal of Mathematical Sciences 19


Rohana Abdul Hamid, Norihan Md Arifin, Roslinda Nazar & Fadzilah Md Ali<br />

Figure 2: Velocity profiles for different values of f0 when m = 0.<br />

Figure 3: Temperature profiles for various values of Pr and f0 when m = 0 and N R =<br />

0.<br />

20 Malaysian Journal of Mathematical Sciences


<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

Figure 4: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of f 0 <strong>on</strong> velocity profiles when m = 0.<br />

f 0 = −2, −1,<br />

0, 1, 2<br />

Pr = 0.7<br />

m = 0<br />

N = 0<br />

Figure 5: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of f0 <strong>on</strong> temperature profiles when m = 0 , and Pr = 0.7.<br />

R<br />

m = 0<br />

f 0 = −2, −<br />

1, 0, 1, 2<br />

Malaysian Journal of Mathematical Sciences 21


Rohana Abdul Hamid, Norihan Md Arifin, Roslinda Nazar & Fadzilah Md Ali<br />

Figure 6: Variati<strong>on</strong> of − θ '(0) with R N for various f 0<br />

Figure 7: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of R<br />

N =<br />

0, 0.5, 1, 2, 3<br />

Pr = 0.7<br />

m = 0<br />

f = 1<br />

N <strong>on</strong> temperature profiles when 0<br />

22 Malaysian Journal of Mathematical Sciences<br />

R<br />

0<br />

f = 1 (sucti<strong>on</strong>)


<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

Figure 8: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of R<br />

Figure 9: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of R<br />

N = 0, 0.5, 1, 2, 3<br />

R<br />

Pr = 0.7<br />

m = 0<br />

f = 0<br />

N <strong>on</strong> temperature profiles when 0<br />

N = 0, 0.5, 1, 2, 3<br />

R<br />

N <strong>on</strong> temperature profiles when 0<br />

0<br />

f = 0 (impermeable surface)<br />

Pr = 0.7<br />

m = 0<br />

f = −<br />

1<br />

0<br />

f = − 1 (injecti<strong>on</strong>)<br />

Malaysian Journal of Mathematical Sciences 23


Rohana Abdul Hamid, Norihan Md Arifin, Roslinda Nazar & Fadzilah Md Ali<br />

CONCLUSIONS<br />

Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> flow al<strong>on</strong>g a flat surface in the presence of<br />

thermal radiati<strong>on</strong> and sucti<strong>on</strong> or injecti<strong>on</strong> parameter was analyzed<br />

numerically. The g<strong>over</strong>ning equati<strong>on</strong>s are transformed into ordinary<br />

differential equati<strong>on</strong>s using appropriate transformati<strong>on</strong>s, and are then solved<br />

numerically by the shooting method. Comparis<strong>on</strong> with previously published<br />

work was performed and the results were found to be in excellent agreement.<br />

The effects of thermal radiati<strong>on</strong> parameter and the sucti<strong>on</strong> or injecti<strong>on</strong><br />

parameter <strong>on</strong> the velocity and temperature profiles were presented in<br />

graphical form and discussed. It can be drawn from the present results that<br />

when the radiati<strong>on</strong> parameter increases, the heat transfer rate at the surface<br />

− θ′ (0) decreases. Meanwhile, the impositi<strong>on</strong> of sucti<strong>on</strong> is to decrease the<br />

fluid velocity and temperature profiles, whereas injecti<strong>on</strong> shows the opposite<br />

effects.<br />

ACKNOWLEDGEMENTS<br />

The financial support received in the form of a fundamental research<br />

grant from the Ministry of Higher Educati<strong>on</strong> Malaysia is gratefully<br />

acknowledged.<br />

REFERENCES<br />

Arafune, K., Sugiura, M. and Hirata, A. 1999. Investigati<strong>on</strong> of thermal<br />

Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> in low and high Prantdl number fluids. Journal<br />

of Chemical Engineering of Japan, 32: 104-109.<br />

Bataller, R. C. 2008. <str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> effects in the Blasius flow. Journal of<br />

Applied Mathematics and Computati<strong>on</strong>s, 198: 333-338.<br />

Chamkha, A. J., Takhar, H. S. and Soundalgekar, V. M. 2001. <str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g><br />

effects <strong>on</strong> free c<strong>on</strong>vecti<strong>on</strong> flow past a semi-infinite vertical plate with<br />

mass transfer. Journal of Chemical Engineering of Japan,<br />

84:335-342.<br />

Chamkha, A. J. and Al-Mudhaf, A. 2005. Similarity soluti<strong>on</strong>s for MHD<br />

thermosolutal Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a flat surface in the<br />

presence of heat generati<strong>on</strong> or absorpti<strong>on</strong> effects. Heat and Mass<br />

Transfer, 42: 112-121.<br />

24 Malaysian Journal of Mathematical Sciences


<str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Marang<strong>on</strong>i C<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a Flat Surface with Sucti<strong>on</strong> and Injecti<strong>on</strong><br />

Chaudhary. R. C., Sharma, B. K. and Jha, A. K. 2006. <str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> effect with<br />

simultaneous thermal and mass diffusi<strong>on</strong> in MHD mixed c<strong>on</strong>vecti<strong>on</strong><br />

flow from a vertical surface with Ohmic heating. Romanian Journal of<br />

Physics, 51: 715-727.<br />

Christopher, D. M. and Wang, B. 1998. Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> around a<br />

bubble in microgravity, heat transfer, in: Lee J.S. (Ed.), Proceedings<br />

of the 11th Internati<strong>on</strong>al Heat Transfer C<strong>on</strong>ference, Taylor & Francis,<br />

Levittown, 3: 489–494.<br />

Christopher, D. M. and Wang, B. 2001. Prandtl number effects for<br />

Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> <strong>over</strong> a flat surface. Internati<strong>on</strong>al Journal of<br />

Thermal Sciences, 40: 564-570.<br />

Elbashbeshy, E. M. A. and Dimian, M. F. 2002. Effect of radiati<strong>on</strong> <strong>on</strong> the<br />

flow and heat transfer <strong>over</strong> a wedge with variable viscosity. Applied<br />

Mathematics and Computati<strong>on</strong>, 132: 445- 454.<br />

Ishak, A. 2009. <str<strong>on</strong>g>Radiati<strong>on</strong></str<strong>on</strong>g> effects <strong>on</strong> the flow and heat transfer <strong>over</strong> a<br />

moving plate in a parallel stream. Chinese Physics Letters,<br />

26(3): 034701(1-4).<br />

Ishak, A. 2010. Thermal boundary layer flow <strong>over</strong> a stretching sheet in a<br />

micropolar fluid with radiati<strong>on</strong> effect. Meccanica, 45: 367-373.<br />

Magyari, E. and Chamkha, A. J. 2007. Exact analytical soluti<strong>on</strong>s for<br />

thermosolutal Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong> in the presence of heat and mass<br />

generati<strong>on</strong> or c<strong>on</strong>sumpti<strong>on</strong>. Heat and Mass Transfer, 43: 965-974.<br />

Nishino, K. and Kawamura, H. 2007. Chaos, turbulence and its transiti<strong>on</strong><br />

process in Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong>. KIBO Japanese Experiment<br />

Module, Japan Aerospace Explorati<strong>on</strong> Agency.<br />

Okano, Y., Itoh, M. and Hirata, A. 1989. Natural and Marang<strong>on</strong>i c<strong>on</strong>vecti<strong>on</strong>s<br />

in a two-dimensi<strong>on</strong>al rectangular open boat. Journal of Chemical<br />

Engineering of Japan, 22: 275-281.<br />

Pop, I., Postelnicu, A. and Grosan, T. 2001. Thermosolutal Marang<strong>on</strong>i<br />

forced c<strong>on</strong>vecti<strong>on</strong> boundary layers. Meccanica, 36: 555-571.<br />

Malaysian Journal of Mathematical Sciences 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!