15.11.2012 Views

Helicopter Sizing by Statistics - Faculty of Aerospace Engineering

Helicopter Sizing by Statistics - Faculty of Aerospace Engineering

Helicopter Sizing by Statistics - Faculty of Aerospace Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AHS Forum 58, June 2002<br />

<strong>Helicopter</strong> <strong>Helicopter</strong> <strong>Sizing</strong> <strong>Sizing</strong> <strong>by</strong> <strong>by</strong> <strong>Statistics</strong><br />

<strong>Statistics</strong><br />

Omri Rand Vladimir Khromov<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> <strong>Engineering</strong><br />

Technion – Israel Institute <strong>of</strong> Technology<br />

Haifa 32000, Israel.<br />

Presented at the<br />

American <strong>Helicopter</strong> Society 58 th Annual Forum,<br />

Montreal, Canada, June 11-13, 2002.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

1


AHS Forum 58, June 2002<br />

Introduction<br />

• <strong>Sizing</strong> is the first and an important stage in helicopter preliminary design process.<br />

• Preliminary design tools are relatively simple and were developed for fast design cycles.<br />

• “Design trends” analysis is a well known technique in which flying configurations are<br />

analyzed in order to conclude or identify a trend which is common to many configurations,<br />

and therefore, it may represent physical constrains which are not clear and evident at the early<br />

stages.<br />

• “Design trends” analysis is useful for the sizing stage in its broad sense: geometrical<br />

sizing and preliminary “sizing” <strong>of</strong> performance, power required, etc.<br />

• The present study is based on a (partial) database for more than 180 conventional single<br />

rotor helicopter configurations. The analysis has been carried out using advanced<br />

computerized correlation technique which is based on Multiple Regression Analysis.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

2


AHS Forum 58, June 2002<br />

Multiple Regression Analysis (MRA):<br />

The Analysis Methodology<br />

• A computerized algorithm has been coded to generate and select hundreds <strong>of</strong> combinations <strong>of</strong><br />

independent variables, in order to identify the groups that provide high correlation measure.<br />

• The purpose was to find design trends that contain minimal number <strong>of</strong> independent unknowns<br />

(preferably one or two) that exhibit high correlation indicators.<br />

• Error definition:<br />

Y = a Xα 1 Xβ 2 Xγ<br />

3...<br />

ε (%) = 100<br />

| EV - DBV|<br />

DBV<br />

where EV and DBV stand for the estimated value and the database value, respectively. For each case we<br />

shall present the averaged ε and maximum error obtained, defined <strong>by</strong><br />

AVER ε MAX<br />

1<br />

N<br />

∑<br />

i=<br />

1<br />

AVER MAX<br />

ε = ε and ε = max( ε<br />

N i i<br />

ε i<br />

where N is the number <strong>of</strong> configurations involved, is the error calculated for the i-th configuration.<br />

.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

)<br />

3


AHS Forum 58, June 2002<br />

The Analysis Methodology (cont.)<br />

yi yi<br />

R<br />

y y<br />

e<br />

N 2<br />

∑e<br />

− j<br />

2 = 1−<br />

i=<br />

1<br />

N 2<br />

∑e<br />

i − j<br />

i=<br />

1<br />

yi y ye i<br />

Multiple Regression Correlation Measure:<br />

where are the data base values, is the averaged data base value, and are the estimated<br />

values.<br />

Hence, R = 1 stands for a perfect correlation, while in most cases the minimal value <strong>of</strong> R was<br />

set to be above 0.9 in order to conclude that a correlation is <strong>of</strong> a value and represents a genuine<br />

trend.<br />

The Database<br />

The database used is the one stored in RAPID/RaTE (Rotorcraft Analysis for Preliminary<br />

Design / Rand Technologies & <strong>Engineering</strong>) - a desktop rotorcraft analysis package .<br />

RAPID/RaTE is designed to model general rotorcraft configurations, conventional helicopters and<br />

tilt-rotors. RAPID/RaTE performs trim response, mission analysis, vibration analysis, stability<br />

analysis, and both flight mechanics and aeroelastic simulations.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

4


AHS Forum 58, June 2002<br />

The Analysis Methodology Scheme<br />

RAPID/RaTE<br />

<strong>Helicopter</strong><br />

Configurations<br />

DATABASE<br />

<strong>Helicopter</strong><br />

Configuration<br />

Model<br />

Generation <strong>of</strong> helicopter parameters<br />

combinations {X i , i=1,2,…}<br />

Filtering <strong>of</strong> Database configurations for selected<br />

parameters groups<br />

Calculation <strong>of</strong> the MRA parameters<br />

a , α , β , γ ,etc.<br />

and the multiple correlation measure R<br />

AVER MAX c h<br />

Evaluating error estimation ε …...…. , ε<br />

Identification <strong>of</strong> parameter combinations with<br />

high correlation measures<br />

<strong>Helicopter</strong> “Design trends”<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

5


AHS Forum 58, June 2002<br />

Vertical tail average chord, ± 12%<br />

Tail Rotor RPM, ± 6.6%<br />

Hover Tip Speed 170-250 m/sec<br />

Main Rotor RPM, ± 6.5%<br />

Hover Rotor RPM, ± 6%<br />

Overall length, rotor turning, ± 1.7%<br />

Fuselage Length, ± 6.2%<br />

Tail Rotor Arm, ± 3.3%<br />

Height to rotor head, ±7%<br />

Vertical tail Arm, ± 4.2%<br />

Width over landing gears, ± 10%<br />

Clearance Fuselage - Ground .3-.7 m<br />

Main Scheme <strong>of</strong> <strong>Helicopter</strong> <strong>Sizing</strong><br />

Fenestron diameter, ± 7.7%<br />

Tail rotor diameter, ± 7.6%<br />

Tail Rotor Solidity<br />

Tail rotor Blade number<br />

Tail Rotor chord, ±10%<br />

Main rotor chord, ±10%<br />

Main rotor Blade number<br />

Main Rotor Solidity<br />

Main Rotor<br />

Diameter, ± 6%<br />

Long range speed, ± 6.5%<br />

Horizontal tail arm, ± 16%<br />

Horiz. tail area, ±29%<br />

Gross<br />

Weight<br />

Disc load<br />

Max speed, S/L<br />

Never exceed speed, ± 5.9%<br />

Range with<br />

standard fuel, S/L<br />

Fuel value (liters), ± 11.5%<br />

Empty Weight, ± 9.3%<br />

Useful load, ± 9.5%<br />

Total power T-O, ± 14.3%<br />

T-O Transmission rating, ± 8%<br />

Total power Max cont., ± 10.5%<br />

Max cont. Transm. rating, ± 9%<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

6


FH = f ( D)<br />

c = f ( W0, N B)<br />

σ = f N D c<br />

B<br />

( , , )<br />

Ω= f( D)<br />

AHS Forum 58, June 2002<br />

FL = f ( D)<br />

FLf D<br />

RT = ( )<br />

aMT = f ( D)<br />

aVT = f ( D)<br />

D & D f ( W , V )<br />

LOAD<br />

a = f ( W )<br />

HT<br />

= 0<br />

0<br />

max<br />

<strong>Helicopter</strong> Geometry <strong>Sizing</strong><br />

Parameters<br />

cVT = f ( DTR<br />

)<br />

FW = f ( D)<br />

D = f ( W )<br />

S = f ( W )<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

TR<br />

HT<br />

TR<br />

c = f ( W , N )<br />

TR 0 B<br />

= ( , ,<br />

)<br />

TR<br />

σ TR f NB DTR cTR<br />

ΩTR = f ( DTR)<br />

0<br />

0<br />

7


Main Rotor Diameter (m)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

AHS Forum 58, June 2002<br />

Main Rotor Diameter<br />

The " square− cube" scaling law:<br />

D ∝ W 13<br />

0<br />

D = f (W 0) )<br />

D = f (W (GW 0, Vm & V ) max<br />

Estimation<br />

0 10 20 30 40<br />

Main Rotor Diameter Estimation (m)<br />

Error (%)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

7<br />

D = f ( W0)<br />

6<br />

30<br />

21<br />

Average error Max error<br />

D = 0.<br />

980 W 0. 308,<br />

0<br />

D W<br />

AVER ε MAX ε<br />

where is in [ m] and is in [ kg]<br />

( = 7%, = 30%, R = . 9606)<br />

D = 9 . 133 W0. 380 / V0.<br />

515<br />

m ,<br />

0<br />

Vm<br />

is in [ km / hr]<br />

S/ L<br />

AVER MAX<br />

ε ε R<br />

( = 6%, = 21%, = . 9744).<br />

0<br />

D = f ( W0, Vm) <strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

8


Disc Loading (kg/m 2 )<br />

Disc Loading (kg/m 2 )<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

AHS Forum 58, June 2002<br />

Main Rotor Disc Loading<br />

0 10000 20000 30000 40000 50000 60000<br />

RAH-66 Comanche<br />

Disc Loading (kg/m 2 )<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

CH-53E<br />

Mi-6 & Mi-22<br />

Mi-26<br />

Database configurations<br />

RAH-66<br />

Estimation<br />

Comanche<br />

ASI Ultrasport 254<br />

Database configurations<br />

Estimation<br />

0 2000 4000 6000 8000 10000 12000 14000 16000<br />

Gross Weight (kg)<br />

Gross Weight<br />

(kg)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

9


Wing & Disc Loading (lb / f t 2 )<br />

Wing/Disk Loading (lb / f t 2 )<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

AHS Forum 58, June 2002<br />

0<br />

Wing & Disc Loading Comparison<br />

2.94 (W 1/3 - 6)<br />

[McCormick, 1995]<br />

Fixed-wing<br />

<strong>Helicopter</strong> Database configurations<br />

Disc Loading (rotory-wing)<br />

Wing Loading Upper boundary (fixed-wing)<br />

Wing Loading Lower boundary (fixed-wing)<br />

1.54 (W 1/3 - 6)<br />

[McCormick, 1995]<br />

0 10 20 30 40 50 60<br />

(Gross Weight, lb) 1/3<br />

[Current study]<br />

.334 (W 1/3 - .74)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

10


Wing & Disk Loading (kg/m 2 )<br />

1000<br />

100<br />

10<br />

AHS Forum 58, June 2002<br />

1<br />

Jet transport/bomber<br />

586<br />

30<br />

Fixed-wing<br />

typical loading<br />

[Raymer, 1999]<br />

Wing & Disc Loading<br />

Sailplane<br />

Some transport helicopters<br />

73<br />

20<br />

Rotary-wing<br />

typical loading<br />

[Raymer, 1999]<br />

Civil/utility low<br />

speed helicopters<br />

73<br />

7.5<br />

Rotary-wing<br />

[Current study]<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

11


Main Rotor Blade Chord (m)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

AHS Forum 58, June 2002<br />

Main Rotor Blade Chord & Solidity<br />

Database configurations<br />

Estimation<br />

0 0.2 0.4 0.6 0.8 1<br />

Main Rotor Blade Chord Estimation (m)<br />

c = . W N ,<br />

0108 0540 . / 0.<br />

714<br />

0 b<br />

c W<br />

ε ε<br />

where is in [ m] and 0 is in [ kg]<br />

( AVER = 10%, MAX = 41%, R = . 9535).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

12


Rotor Angular Velocity (RPM)<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

AHS Forum 58, June 2002<br />

Main & Tail Rotor Angular Velocity<br />

Main Rotor Database<br />

Main Rotor Estimation<br />

Tail Rotor Database<br />

Tail Rotor Estimation<br />

FENESTRON Database<br />

0 5 10 15 20 25 30 35<br />

Rotor Diameter (m)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

13


AHS Forum 58, June 2002<br />

Main Rotor:<br />

Ω = 2673.<br />

Ω<br />

ε ε<br />

/ D 0<br />

. 829<br />

D<br />

where is in [ RPM] and is in [ m]<br />

( AVER = 6%, MAX = 35%, R = . 9630).<br />

Ω RPM = 3475.<br />

/ D<br />

ε ε<br />

[ ]<br />

0. 828<br />

TR<br />

( AVER = 7%, MAX = 16%, R = . 9737)<br />

or<br />

Main & Tail Rotor Angular Velocity (cont.)<br />

Tail Rotor:<br />

Ω<br />

D<br />

[rad / sec]<br />

where is in [ m].<br />

TR<br />

=<br />

364. /<br />

D<br />

0. 828<br />

TR<br />

Main Rotor Angular Velocity (RPM)<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Database configurations<br />

Estimation<br />

0 200 400 600 800<br />

Main Rotor Angular Velocity Estimation (RPM)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

14


Tip Speed (m/s)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

AHS Forum 58, June 2002<br />

Main & Tail Rotor Tip Speed<br />

Main Rotor Database configurations<br />

Tail Rotor Database configurations<br />

Fenestron Database configurations<br />

Main Rotor Estimation<br />

Tail Rotor Estimation<br />

0 5 10 15 20 25 30 35<br />

Main Rotor:<br />

Tail Rotor:<br />

Rotor Diameter (m)<br />

V TIP = 140. D 0 . 171,<br />

V TIP m sec<br />

where is in [ / ]<br />

V TIP = 182. D . 172,<br />

V TIP m sec<br />

0 where is in [ / ]<br />

TR<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

15


Tail Rotor Diameter (m)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

AHS Forum 58, June 2002<br />

USAAMRDL Report 1974:<br />

RAPID/RaTE analysis:<br />

Tail Rotor Diameter<br />

Database configurations<br />

Estimation<br />

FENESTRON Estimation<br />

FENESTRON configurations<br />

0 10000 20000 30000 40000 50000 60000<br />

Gross Weight (kg)<br />

2<br />

D/ D = [. 70÷ 73 .] − . 27DL{ lb/ ft }<br />

TR<br />

2<br />

D/ D = 688 . − . 19DL{ lb/ ft }<br />

TR<br />

D .0895 W 0<br />

TR =<br />

.<br />

D<br />

W<br />

ε ε<br />

where TR is in [ m] and 0 is in [ kg]<br />

( AVER = 8%, MAX = 25%, R = . 9754)<br />

.3081 W<br />

0<br />

0 154 .<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

D<br />

TR<br />

F<br />

=<br />

0 391<br />

16


Tail Rotor Arm (m)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

AHS Forum 58, June 2002<br />

Tail Rotor Arm<br />

Database configurations<br />

RAPID+ RAPID/RaTE Estimation<br />

Ref. USAAMRDL 13 Estimation Report 1977<br />

0 5 10 15 20 25<br />

Tail Rotor Arm Estimation (m)<br />

USAAMRDL Report 1977:<br />

RAPID / RaTE analysis:<br />

a = . 5107 D 1061 . ,<br />

aMT D<br />

AVER MAX<br />

ε ε<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

MT<br />

where and is in [ m]<br />

( = 3%, = 14%, R = . 9907).<br />

a = ( D+ D )/ 2 + . 5feet<br />

MT TR<br />

17


Tail Rotor Blade Chord (m)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

AHS Forum 58, June 2002<br />

Tail Rotor Blade Chord & Solidity<br />

Database configurations<br />

(without FENESTRON)<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Tail Rotor Blade Chord Estimation (m)<br />

c = . W N ,<br />

TR<br />

/ 0<br />

b TR<br />

0058 0506 . . 720<br />

0<br />

c W<br />

ε ε<br />

where TR is in [ m] and 0 is in [ kg]<br />

( AVER = 10%, MAX = 30%, R = . 9437).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

18


Surface Area <strong>of</strong><br />

Horizontal Tail (m 2 )<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

AHS Forum 58, June 2002<br />

Horizontal Tail Surface Area<br />

S = . 0021 W 0. 758<br />

0 ,<br />

HT<br />

S W<br />

ε ε<br />

where HT is in [ m2] and 0 is in [ kg]<br />

( AVER = 29%, MAX = 214%, R = .9117).<br />

Mi-28<br />

Database configurations<br />

Estimation<br />

0 10000 20000 30000 40000 50000 60000<br />

Gross Weight (kg)<br />

Mi-26<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

20


Vertical Tail Arm (m)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

AHS Forum 58, June 2002<br />

Vertical Tail Surface Arm<br />

Database configurations<br />

Estimation<br />

0 5 10 15 20 25 30 35<br />

Main Rotor Diameter (m)<br />

a D<br />

= . 5914 0.<br />

995,<br />

a D<br />

ε ε<br />

where VT and are in [ m]<br />

( AVER = 4%, MAX = 20%, R = .9853).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

VT<br />

21


Average Chord <strong>of</strong> Vertical Tail (m)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

AHS Forum 58, June 2002<br />

Vertical Tail Average Chord<br />

Database configurations (Diameter < 3.5 m)<br />

Database configurations (Diameter > 3.5 m)<br />

Database configurations (FENESTRON)<br />

Estimation (Diameter < 3.5 m)<br />

Estimation (Diameter > 3.5 m)<br />

Estimation (FENESTRON)<br />

0.0<br />

0 1 2 3 4 5 VT = 6. 297 106 .<br />

TR 7 8TR > 35 . 9<br />

For Fenestron configurations<br />

Tail Rotor Diameter (m)<br />

cVT ≈<br />

DTR<br />

c D 0<br />

VT = 909 . 927<br />

TR Fenestron<br />

cVT = . 161 D 1745 .<br />

TR DTR < 35 . m<br />

ε ε<br />

AVER MAX ( = 12%, = 43%, R = .9709)<br />

c D D m<br />

c D<br />

where and are in [ m]<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

.<br />

VT<br />

TR<br />

22


Fuselage Length<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

AHS Forum 58, June 2002<br />

Configuration Length<br />

Database configurations<br />

Estimation<br />

0 5 10 15 20 25 30 35 40<br />

Main Rotor Diameter (m)<br />

FL 1 D<br />

RT = . .<br />

AVER MAX ε 2%, ε 9%, R<br />

F D<br />

09 103<br />

( = = = .9982)<br />

where and are in [ m].<br />

L RT<br />

FL = 0 . D .<br />

ε ε<br />

F D<br />

824 1 056<br />

AVER MAX ( = 6%, = 17%, R = .9807)<br />

where and are in [ m].<br />

L<br />

0 5 10 15 20 25 30 35 40<br />

Main Rotor Diameter (m)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Overall Length, Rotor Turning (m)<br />

23


Height to Rotor Head (m)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

AHS Forum 58, June 2002<br />

Fuselage Height and Width<br />

FH D<br />

ε ε<br />

F D<br />

( AVER = 7%, MAX = 25%, R = .9371)<br />

where and are in [ m].<br />

Database configurations<br />

Estimation<br />

0 5 10 15 20 25 30 35<br />

F 0 D 0<br />

W = . 436 .<br />

ε ε<br />

F D<br />

AVER MAX ( = 10%, = 40%, R = .8818)<br />

Main Rotor Diameter (m)<br />

697<br />

where and are in [ m].<br />

W<br />

H<br />

= 0. 642 0.<br />

677<br />

EH 101<br />

Mi-26<br />

Mi-6 & Mi-22<br />

0 5 10 15 20 25 30 35 40<br />

Main Rotor Diameter (m)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Width Over Landing Gears/Skids (m)<br />

24


Clearance Fuselage - Ground (m)<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

AHS Forum 58, June 2002<br />

Fuselage-Ground Clearance<br />

0 10000 20000 30000 40000 50000 60000<br />

Gross Weight (kg)<br />

Database configurations<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

25


Empty Weight (kg)<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

AHS Forum 58, June 2002<br />

Empty Weight & Useful Load<br />

0 10000 20000 30000 40000 50000 60000<br />

W 0 0<br />

U = . 4709 W . , 0 99<br />

ε ε<br />

( AVER = 10%, MAX = 46%,<br />

R = .9870), where<br />

and are in [ kg]<br />

W W<br />

U<br />

0<br />

<strong>Helicopter</strong> Database configurations<br />

Rotor-wing Estimation<br />

Fixed-wing Estimation [McCormick, 1995]<br />

WE<br />

= 0 . 4854 W 1.<br />

, 0 015<br />

ε ε<br />

( AVER = 9%, MAX = 30%,<br />

R = .9932), where<br />

and are in [ kg]<br />

W W<br />

0 2000 4000 6000 8000 10000 12000 14000<br />

Gross Weight (kg)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

E<br />

Gross Weight (kg)<br />

0<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Useful Load (kg)<br />

26


Weight Estimation (kg)<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

AHS Forum 58, June 2002<br />

0<br />

Empty Weight & Useful Load (continued)<br />

0 2000 4000 6000 8000 10000 12000 14000<br />

Gross Weight (kg)<br />

W = W + W + W + W<br />

0<br />

Useful Load Est. + Empty Weight Est.<br />

Empty Weight Estimation<br />

Useful Load Estimation<br />

����� PL �����<br />

F �C<br />

E<br />

W<br />

U<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

+<br />

. 4709 W 0. . 4854 W1. 015 W<br />

0 99<br />

0<br />

≅<br />

0<br />

27


Empty Weight / Gross Weight, %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

AHS Forum 58, June 2002<br />

Empty Weight & Useful Load (continued)<br />

Fixed-wing<br />

[McCormick,<br />

1995]<br />

60<br />

50<br />

Fixed-wing<br />

[Raymer,<br />

1999]<br />

70<br />

30<br />

Rotary-wing<br />

[Raymer,<br />

1999]<br />

80<br />

* Group Weight Statement <strong>of</strong> the US military.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

45<br />

*<br />

Rotary-wing<br />

[current<br />

study]<br />

74<br />

42<br />

Upper<br />

bound<br />

Lower<br />

bound<br />

28


Fuel Value (liters)<br />

AHS Forum 58, June 2002<br />

Fuel Value<br />

W = W + W + W + W<br />

0<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

����� PL �����<br />

F �C<br />

E<br />

W<br />

U<br />

Database configurations<br />

Estimation<br />

0 500 1000 1500 2000 2500 3000<br />

Fuel Values Estimation (liters)<br />

W<br />

F<br />

Rg<br />

0 0038 W 0976 Rg 0650,<br />

0<br />

= Range with standard fuel at sea level<br />

( AVER = 11%, MAX = 33%, R = .9942),<br />

where WFis fuel value in [ liters], W0is<br />

in [ kg]<br />

,<br />

and is range with standard fuel, S/ L in [ km]<br />

.<br />

Rg<br />

ε ε<br />

= . . .<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

29


AHS Forum 58, June 2002<br />

8215 V 1.<br />

0565<br />

M<br />

AVER MAX<br />

( = 6%, = 20%, R = .9399),<br />

,<br />

Speed<br />

where VNE is never exceed speed (S/ L) in [ km / hr], VLR<br />

is long range speed (S/ L) in [ km / hr],<br />

is in [ km / hr]<br />

,<br />

V<br />

M<br />

VNE<br />

= .<br />

ε ε<br />

Speed; S/L (km/hr)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

= .<br />

ε ε<br />

Long Range Speed Database configurations<br />

Long Range Speed Estimation<br />

Never Exceed Speed Database configurations<br />

Never Exceed Speed Estimation<br />

V M<br />

5475 V 0899<br />

M<br />

VLR<br />

1.<br />

( AVER = 6%, MAX = 31%, R = .9408),<br />

0 50 100 150 200 250 300 350<br />

Max Speed; S/L (km/hr)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

,<br />

30


Total Power T-O (kW)<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

AHS Forum 58, June 2002<br />

Take-Off Total Power & Transmission Rating<br />

0 10000 20000 30000 40000 50000 60000<br />

Database configurations<br />

Estimation<br />

= . 0366 W 2107<br />

0 ,<br />

T<br />

1.<br />

TO<br />

AVER MAX<br />

( ε = 8%, ε = 22%,<br />

R = .9943), where<br />

TTO<br />

is the take- <strong>of</strong>f<br />

transmission rating<br />

in [ kW]<br />

and W is in [ kg]<br />

0<br />

Gross Weight (kg)<br />

P<br />

1.<br />

TO<br />

AVER MAX<br />

( ε = 14%, ε = 37%,<br />

R = .9891), where<br />

PTO<br />

is the take-<strong>of</strong>f total power<br />

in [ kW]<br />

and W is in [ kg]<br />

0 5000 10000 15000 20000 25000 30000 35000<br />

Gross Weight (kg)<br />

= . 0764 W0<br />

, 1455<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

0<br />

0<br />

T-O Transmission Rating (kW)<br />

31


AHS Forum 58, June 2002<br />

Max Continuous Total Power & Transmission Rating<br />

Max Continuous Total<br />

Power (kW)<br />

Max Continuous Total Power Estimation<br />

0 3000 6000<br />

Database<br />

Estimation<br />

9000 12000<br />

P<br />

0 0<br />

MC = . 0013 W . 9876 V . 9760<br />

0 M ,<br />

AVER MAX<br />

( ε = 10%, ε = 37%, R = .9889), where<br />

PMC<br />

is the Max Cont. total power in [ kW],<br />

in [ kg] , is Max speed in [ km/ hr]<br />

12000<br />

9000<br />

6000<br />

3000<br />

0<br />

TMC<br />

= . . .<br />

ε ε<br />

000141 W 09771 V 13393<br />

0 M<br />

( AVER = 9%, MAX = 20%, R = .9870), where<br />

TMC<br />

is the Max Cont. transmission rating<br />

in [ kW],<br />

in [ kg] , is in [ km / hr]<br />

Wis V<br />

0<br />

EH 101<br />

M<br />

CH - 53E<br />

,<br />

Wis V<br />

0<br />

EH 101<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

M<br />

0 3000 6000 9000 12000<br />

12000<br />

9000<br />

6000<br />

3000<br />

0<br />

Max Continuous<br />

Transmission rating (kW)<br />

Max cont. transmission rating estimation (kW)<br />

32


AHS Forum 58, June 2002<br />

Power & Transmission Loading<br />

Power loading = the ratio <strong>of</strong> the take <strong>of</strong>f gross weight over the maximum engine power.<br />

Transmission loading = the ratio <strong>of</strong> the take <strong>of</strong>f gross weight over the take-<strong>of</strong>f transmission rating.<br />

Power/Transmission Loading<br />

(kg/kW)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

MINI-500 BRAVO<br />

Transmission Loading Database configurations<br />

Transmission Loading Estimation<br />

Power Loading Database configurations<br />

Power Loading Estimation<br />

0 10000 20000 30000 40000 50000 60000<br />

Gross Weight (kg)<br />

Mi - 26<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

33


Power / Transmission<br />

Loading (kg/kW)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

AHS Forum 58, June 2002<br />

Propeller powered aircrafts<br />

9<br />

6<br />

Fixed-wing<br />

typical power<br />

loading<br />

[Raymer, 1999]<br />

Power & Transmission Loading<br />

4.9<br />

1.8<br />

Rotary-wing<br />

typical power<br />

loading<br />

[Raymer, 1999]<br />

6.3<br />

2.6<br />

Rotary-wing<br />

power loading<br />

[Current study]<br />

6.4<br />

3.5<br />

Rotary-wing<br />

transmission<br />

loading<br />

[Current study]<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

34


AHS Forum 58, June 2002<br />

RAPID/RaTE <strong>Helicopter</strong> <strong>Sizing</strong> S<strong>of</strong>tware<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

35


AHS Forum 58, June 2002<br />

Concluding Remarks<br />

• A database for conventional helicopter configurations has been established and<br />

studied using advanced computerized correlation technique which is based on<br />

multiple regression analysis. Design trends were obtained and demonstrated. Currently,<br />

such data can not be found in the open literature.<br />

• The study presented in this paper is expected to give designers a perspective <strong>of</strong> the<br />

existing flying designs and their inter-correlation. This is extremely important in the<br />

early preliminary stages where sizing issues are discussed in order to activate the<br />

preliminary design process.<br />

• The collection <strong>of</strong> design trends presented in this paper contains also valuable<br />

information when comparison <strong>of</strong> performance <strong>of</strong> various configurations is under<br />

discussion.<br />

• The present study results have been implemented as an autonomous component <strong>of</strong><br />

RAPID/RaTE package.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!