29.03.2015 Views

Radiation-cooled Dew Water Condensers studied by CFD - Arcofluid

Radiation-cooled Dew Water Condensers studied by CFD - Arcofluid

Radiation-cooled Dew Water Condensers studied by CFD - Arcofluid

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)<br />

Owen CLUS


2006 European PHOENICS User meeting<br />

Wimbledon, 30th Nov. 1st Dec., 2006<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong><br />

<strong>Condensers</strong> Studied <strong>by</strong><br />

Computational Fluid Dynamic (<strong>CFD</strong>)<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Owen CLUS Université de Corse<br />

Studied Jalil OUAZZANI <strong>by</strong> Computational <strong>Arcofluid</strong> Fluid Dynamic<br />

Université (<strong>CFD</strong>) de Corse<br />

Marc MUSELLI<br />

Vadim NIKOLAYEV<br />

Girja SHARAN<br />

Daniel BEYSENS<br />

CEA/CNRS-ESPCI Paris<br />

Indian Inst. of Management, Ahmedabad<br />

CEA/CNRS-ESPCI Paris<br />

International Organization For <strong>Dew</strong> Utilization


Atmospheric vapour harvesting <strong>by</strong><br />

radiative cooling<br />

Researches for condensing atmospheric<br />

vapor as alternative water resource in arid<br />

<strong>Radiation</strong>-<strong>cooled</strong> areas without energy <strong>Dew</strong> <strong>Water</strong> supplying <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)


Atmospheric vapour harvesting <strong>by</strong><br />

radiative cooling<br />

Radiative budget - 70 W/m²<br />

Researches for condensing atmospheric<br />

<br />

vapor as alternative water resource without<br />

Surface 3 to 8°C below T ambient<br />

<strong>Radiation</strong>-<strong>cooled</strong> CLEAR energy SKY supplying<br />

<strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Insulation<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)<br />

substrate<br />

Innovative formulations<br />

<br />

cheap polymers<br />

LDPE, paint<br />

high IR emissivity<br />

polymer<br />

basis<br />

ROOF<br />

GROUND<br />

Radiative<br />

Filler


Pilots, Prototypes<br />

FRANCE<br />

FRANCE<br />

Experimental<br />

prototypes<br />

<strong>Radiation</strong>-<strong>cooled</strong> 1 m²<br />

<strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

1 m² 0.6 L / night<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

<strong>Dew</strong> = 30 % INDIA of (<strong>CFD</strong>) rain<br />

15 m² 7 L / night<br />

30 m² 10 L / night<br />

Quantitative<br />

systems<br />

CROATIA<br />

800 m² 300 L/ night


<strong>CFD</strong> simulations of radiative condensers<br />

The <strong>CFD</strong> tool has been developed for helping<br />

decision and technical choices before<br />

implementing these huge systems without<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

preliminary empirical tests<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)


Radiative condenser as thermal machine<br />

Wind flow<br />

Radiative<br />

cooling<br />

Condenser<br />

shape and<br />

thermal<br />

condensation in<br />

weak wind, limit free /<br />

forced convection<br />

<strong>Radiation</strong>-<strong>cooled</strong><br />

properties<br />

<strong>Dew</strong> <strong>Water</strong> variability <strong>Condensers</strong> of<br />

Studied <strong>by</strong> Computational meteorological Fluid Dynamic data<br />

Free<br />

convection (<strong>CFD</strong>)<br />

heating<br />

induces long time<br />

outdoor experiments<br />

α<br />

r<br />

forced<br />

convection<br />

heating<br />

R<br />

no description for<br />

complex shapes<br />

without empirical<br />

corrections


Radiative cooling inclusion in <strong>CFD</strong><br />

Specific radiative cooling for each shape<br />

angular sky emissivity<br />

dR = (ε s,θ σT<br />

4<br />

amb – ε r σT rad4 ) dΩ<br />

<br />

1<br />

<br />

b cos<br />

, 1<br />

1 <br />

s<br />

s<br />

isotropic radiator emissivity<br />

ε r = 0.94<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

SKY<br />

(<strong>CFD</strong>)<br />

ε m<br />

0.94 dΩ<br />

ε s,θ<br />

θ<br />

α<br />

1


Radiative budget (W/m²)<br />

Radiative cooling inclusion in <strong>CFD</strong><br />

FORTRAN tool for integrating radiative budget on various shapes<br />

angular integration<br />

dissipation law included in Phoenics computation: E R = f(T)<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> 0 <strong>Water</strong> <strong>Condensers</strong><br />

plan 0.0°<br />

-10<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

plan 30°<br />

-20<br />

cone 20°<br />

cone 30°<br />

(<strong>CFD</strong>)<br />

Puissance dissipée (W/m²)<br />

-30<br />

-40<br />

-50<br />

-60<br />

BILANS RADIADIFS (en ciel nocturne clair à 15°C)<br />

cone 40°<br />

-70<br />

-80<br />

5 10 15 20<br />

Radiator<br />

Température<br />

Temp.<br />

Foil (°C)<br />

(°C)


Radiative condenser described in <strong>CFD</strong><br />

3 Dimensions virtual reality description<br />

Convective heating for every shapes and for various wind<br />

speeds is given <strong>by</strong> Iterative calculation<br />

Radiative cooling power E R is dissipated for each radiator<br />

cell. T RAD (one phase model as in dry air)<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

Volumes Grid (<strong>CFD</strong>)<br />

P T ρ<br />

u v w<br />

E R<br />

Shape<br />

Materials<br />

Radiative<br />

cooling<br />

LOG Wind<br />

Profile<br />

Convective<br />

heating


Cone-shaped condenser simulation<br />

Wind speed variations for 0.25 ; 0.5 ; 1.0 and 2.0 m/s at 10 m<br />

side tilt variations for 50 ; 40 ; 35 ; 30 ; and 25 Deg.<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational<br />

WIND<br />

Fluid Dynamic<br />

(<strong>CFD</strong>)<br />

PROFILE


Cone-shaped condenser simulation<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

30° tilted<br />

Studied <strong>by</strong> Computational Fluid More Dynamic efficient<br />

(<strong>CFD</strong>)


Cone-shaped condenser prototype (France)<br />

30° tilted<br />

7.3 m², Φ 3 m<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)<br />

3.160 L water / night<br />

38 % more water than on<br />

the 1m² planar condenser


<strong>CFD</strong> simulations validation<br />

Comparison of simulated efficiency with physical<br />

measurements on real system on 5 various condensers<br />

from 0.16 to 255 m² installed during long period<br />

<strong>Radiation</strong>-<strong>cooled</strong> 1 m² planar condenser <strong>Dew</strong> is the <strong>Water</strong> reference <strong>Condensers</strong><br />

because<br />

Studied always set <strong>by</strong> up simultaneously Computational near<strong>by</strong> Fluid each system Dynamic<br />

(<strong>CFD</strong>)


Radiative condenser as thermal machine<br />

0.16 m²<br />

1 m² REF<br />

7.3 m²<br />

30 m²<br />

(A)<br />

(B)<br />

(C)<br />

(D)<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)<br />

(E)<br />

3 ridges<br />

255 m²


Comparison “Temperature gain” / “<strong>Dew</strong> gain”<br />

Surface Temperature T COND,<br />

Simulations rough results<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

Non quantitative<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

(<strong>CFD</strong>)<br />

comparison, the cooler<br />

the surface, the better<br />

the dew yield.


Comparison “Temperature gain” / “<strong>Dew</strong> gain”<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

1 m² 30° 0.16 m 2 30 m², 30°<br />

7.32 m² 3 ridges,<br />

tilted PMMA tilted<br />

cone 255 m²<br />

planar plate planar<br />

<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

1.00 0.65 1.05 1.40 1.15<br />

1.00 0.68 0.91 1.38 0.81<br />

(<strong>CFD</strong>)<br />

“Cooling power” or “temperature<br />

gain” related with Ta and 1 m² REF:<br />

T<br />

0<br />

T<br />

<br />

T<br />

cond<br />

Re f<br />

T<br />

T<br />

a<br />

a<br />

“<strong>Dew</strong> gain” related to 1 m² REF<br />

condenser water volume.<br />

H 0<br />

H<br />

H<br />

COND<br />

REF


Comparison “Temperature gain” / “<strong>Dew</strong> gain”<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

1 m² 30° 0.16 m 2 30 m², 30°<br />

7.32 m² 3 ridges,<br />

tilted PMMA tilted<br />

cone 255 m²<br />

planar plate planar<br />

<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

1.00 0.65 1.05 1.40 1.15<br />

1.00 0.68 0.91 1.38 0.81<br />

(<strong>CFD</strong>)<br />

“Cooling power” or<br />

1<br />

“temperature<br />

m² 30°<br />

gain” related with Ta and 1 m² REF:<br />

T<br />

0<br />

T<br />

<br />

T<br />

cond<br />

Re f<br />

tilted<br />

T<br />

T<br />

a<br />

a<br />

0.16 m 2<br />

PMMA<br />

“<strong>Dew</strong> 30 m², gain” 30° 7.32 related m² to 13 m² ridges, REF<br />

tilted condenser cone water volume. 255 m²<br />

1.00 0.65 1.05 1.40 1.15<br />

H(<br />

mm)<br />

<br />

H<br />

H<br />

COND<br />

1.00 0.68 0.91 1.38 0.81<br />

REF


Comparison “Temperature gain” / “<strong>Dew</strong> gain”<br />

<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong><br />

1 m² 30° 0.16 m 2 30 m², 30°<br />

7.32 m² 3 ridges,<br />

tilted PMMA tilted<br />

cone 255 m²<br />

planar plate planar<br />

<br />

Studied <strong>by</strong> Computational Fluid Dynamic<br />

1.00 0.65 1.05 1.40 1.15<br />

1.00 0.68 0.91 1.38 0.81<br />

(<strong>CFD</strong>)<br />

“Cooling power” or<br />

1<br />

“temperature<br />

m² 30°<br />

gain” related with Ta and 1 m² REF:<br />

T<br />

<br />

T<br />

tilted<br />

T<br />

0.16 m 2<br />

PMMA<br />

“<strong>Dew</strong> 30 m², gain” 30° 7.32 related m² to 13 m² ridges, REF<br />

tilted condenser cone water volume. 255 m²<br />

1.00 0.65 1.05 1.40 1.15<br />

cond a<br />

COND<br />

0<br />

H(<br />

mm)<br />

<br />

TRe<br />

f<br />

1.00 Ta<br />

0.68 0.91 1.38 H<br />

REF0.81<br />

H


Conclusion<br />

INDIA<br />

Little set of data is needed to<br />

conclude the validation of the<br />

program<br />

This program has been<br />

advantageously used in <strong>Dew</strong><br />

factory project for orientation and<br />

yields prospective<br />

Next step is to develop a two<br />

phases dew condensation<br />

simulation for more accurate<br />

quantitative results


<strong>Radiation</strong>-<strong>cooled</strong> <strong>Dew</strong> <strong>Water</strong> <strong>Condensers</strong> Studied<br />

<strong>by</strong> Computational Fluid Dynamic (<strong>CFD</strong>)<br />

CONTACT : http://www.opur.u-bordeaux.fr/<br />

Owen CLUS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!