15.11.2012 Views

EnAlgae Macroalgal Pilot Network - Algecenter Danmark

EnAlgae Macroalgal Pilot Network - Algecenter Danmark

EnAlgae Macroalgal Pilot Network - Algecenter Danmark

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction to the Project<br />

2011 - 2015<br />

The <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong><br />

Maeve Edwards 1 , John Bothwell 2 , Matthew Dring 2<br />

& Jennifer Champenois 3<br />

1 2 3


<strong>EnAlgae</strong> (Energetic Algae )<br />

• <strong>EnAlgae</strong> is a 4 year, €14.6M Strategic Initiative of<br />

the INTERREG IVB North West Europe (NWE)<br />

Programme, combining the expertise and<br />

resources of 19 Partners plus 14 Observers<br />

encompassing 7 EU Member States.<br />

Overall aim: To develop sustainable pathways for<br />

algal bioenergy in NW Europe<br />

Website: www.enalgae.eu


<strong>EnAlgae</strong> aims to:<br />

• Improve current methods of culturing both macro- and<br />

micro-algae, through the improvement of pilot plants.<br />

• Integrate with existing industrial, agricultural and municipal<br />

processes to capture and remediate flue gas CO 2 and soluble<br />

aqueous wastes.<br />

• Address the cultural barriers which stand in the way of<br />

algal bioproduct use in Europe.


<strong>EnAlgae</strong> Partnership


<strong>EnAlgae</strong> WP1 –<br />

NW European <strong>Network</strong> of Algal <strong>Pilot</strong>s<br />

A trans-national network maximising the impact of pilot<br />

scale facilities via effective information exchange and<br />

knowledge transfer.<br />

Create a network of 9 algal<br />

pilot facilities across NWE<br />

Up-to-date inventory of<br />

facilities in NWE and<br />

standardised data<br />

management system<br />

Develop best practice for<br />

algal strain exploitation<br />

Demonstrate pilot plants to a<br />

diverse range of partners,<br />

observers, and stakeholders


<strong>EnAlgae</strong> WP2 – Sustainable algae to<br />

energy market for NW Europe<br />

Identify political, economic, social and technological<br />

opportunities for algal bioenergy within NWE, delivering<br />

information for policy-makers, industry and investors.<br />

Assess market and<br />

economics; assess<br />

technology expertise<br />

Define regulatory &<br />

planning issues<br />

Undertake policy<br />

landscaping analysis<br />

Identify life-cycle analysis<br />

and sustainability issues


<strong>EnAlgae</strong> WP3 - Decision support tool for<br />

practitioners, policy makers and investors<br />

Combine information from the algal-bioenergy delivery chain into<br />

an ICT tool to guide decision making, identify knowledge gaps and<br />

provide a roadmap for the sustainable deployment of algal<br />

bioenergy in NWE.<br />

Develop modular<br />

ICT framework to<br />

capture general<br />

and specialised<br />

process knowledge<br />

Validate tool using<br />

different algal<br />

biomass production<br />

scenarios<br />

Launch ICT tool via<br />

online Algal<br />

Information<br />

<strong>Network</strong> (AIN)


<strong>EnAlgae</strong> WP1 –<br />

NW European <strong>Network</strong> of Algal <strong>Pilot</strong>s<br />

1. UK. New algal innovation centre demonstrating a range of<br />

microalgal growth systems (open & closed)<br />

2. BE. New portable mixed microalgae / bacteria bioreactor<br />

3. IE. New large scale open-sea macroalgal cultivation (longlines)<br />

4. UK. Upgrade of microalgal flue gas CO 2 capture facility<br />

5. DE. New microalgae production attached to advanced<br />

aquaculture<br />

6. NL. New outdoor microalgae production (open ponds)<br />

7. FR. Upgrade of macroalgal raceways + longlines<br />

8. UK. Upgrade of photobioreactors co-localised<br />

with aquaculture and heavy industry<br />

9. UK. New macroalgal longlines + genetic analysis<br />

of strains


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong><br />

This will build on work recently completed by NUIG, QUB<br />

and BIM and funded by the Marine Institute (Ireland) on<br />

“Development and demonstration of viable hatchery and<br />

ongrowing methodologies for seaweed species with<br />

identified commercial potential”<br />

Species requested for trials:<br />

Palmaria palmata<br />

Laminaria digitata (Saccharina latissima added in 2010)<br />

Porphyra spp.<br />

Manuals to be published in BIM’s “Aquaculture<br />

Explained” series for Palmaria and Laminaria


Development and demonstration of viable hatchery and ongrowing<br />

methodologies for seaweed species with identified commercial<br />

potential (Marine Institute, 2008-2011)<br />

Locations of the project<br />

hatcheries (letters), and licensed<br />

sea trial sites (numbers).<br />

A. QUB Marine Laboratory<br />

B. NUIG Carna Research Facility<br />

C. DOMMRS/BIM Gearhies Lab.


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong><br />

This will build on work recently completed by NUIG,<br />

QUB and BIM and funded by the Marine Institute<br />

(Ireland) on “Development and demonstration of<br />

viable hatchery and ongrowing methodologies for<br />

seaweed species with identified commercial<br />

potential”<br />

[Give some details and show manuals.]


Economic assessment of Palmaria cultivation:<br />

at sea & in tanks<br />

Best yields of Palmaria after cultivation at sea obtained by settling spores on<br />

nets (3 x 1.3 m, with 10-cm mesh) and harvesting the nets after 5-6 months in<br />

the sea. Yield per net is 25-30 kg of wet Palmaria.<br />

Assuming that standard refrigerated container used as a hatchery, only 48 nets<br />

could be seeded and maintained prior to deployment, so total annual production<br />

of wet Palmaria would be 1.2-1.4 tonnes. At current prices, value of crop would<br />

be €3,000-5,000.<br />

Capital costs to install and equip container as a hatchery: €40,000<br />

Annual costs for consumables, electricity and labour: €90,000<br />

Unless yields can be greatly improved, cultivating Palmaria at sea will not<br />

provide basis for a viable business.<br />

Tank cultivation of Palmaria:<br />

Depreciation on equipment plus electricity for farm with 80x1-m 2 tanks: c.<br />

€8,000 per year.<br />

At 50 kg/tank, total yield of wet Palmaria would be 4 tonnes, worth €10,000<br />

(€14,000 if sold dry), so small margin available to pay for limited labour required.


Cultivation of Laminaria digitata at several sites in Ireland<br />

during 2010/2011,


Business Plan for the Establishment of a Seaweed Hatchery<br />

and Grow-out Farm<br />

Lucy Watson & Matthew Dring, BIM, 2011


Business Plan for the Establishment of a Seaweed Hatchery<br />

and Grow-out Farm<br />

Lucy Watson & Matthew Dring, BIM, 2011


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong> – sea trial sites<br />

Partner Site Site<br />

size<br />

QUB<br />

(Northern<br />

Ireland, UK)<br />

CEVA<br />

(Brittany,<br />

France)<br />

NUIG<br />

(Ireland)<br />

Strangford Lough,<br />

Co. Down<br />

Brittany coast,<br />

potentially several<br />

locations at existing<br />

oyster farms<br />

Onshore tanks<br />

Ventry Harbour,<br />

Co. Kerry<br />

Bertraghboy Bay,<br />

Co. Galway<br />

~8 ha.<br />

(1 ha.<br />

used)<br />

6 ha.<br />

(1 ha.<br />

used)<br />

18 ha.<br />

(1 ha.<br />

used)<br />

Site<br />

characteristics<br />

• Near shore<br />

• ++ Tidal Height<br />

• +++ Currents<br />

• + Wave action<br />

• Mixed substrate<br />

• Near shore<br />

• ++ Wave action?<br />

• +++ Tidal Height<br />

• +++ Currents<br />

• ? substrate<br />

• Near shore<br />

• + Wave action<br />

• + Tidal Height<br />

• + Current<br />

• Sand substrate<br />

Bioremediation?<br />

Not at site, but<br />

modeling kelp growth<br />

around local sewage<br />

outfalls<br />

Yes – onshore tank<br />

facilities using<br />

fishtank effluents,<br />

plus collaboration<br />

with oyster farmers<br />

Yes – using<br />

Bertraghboy Bay site<br />

with cod farm and<br />

scallop production in<br />

IMTA system


Development and demonstration of viable hatchery and ongrowing<br />

methodologies for seaweed species with identified commercial<br />

potential (Marine Institute, 2008-2011)<br />

Locations of the project<br />

hatcheries (letters), and licensed<br />

sea trial sites (numbers).<br />

A. QUB Marine Laboratory<br />

B. NUIG Carna Research Facility<br />

C. DOMMRS/BIM Gearhies Lab.


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong> – planned actions<br />

Partner Hatchery Site structures Site capacity (m rope)<br />

QUB<br />

(Northern<br />

Ireland, UK)<br />

CEVA<br />

(Brittany,<br />

France)<br />

NUIG<br />

(Ireland)<br />

•Upgrade of current<br />

facilities planned<br />

•Upgrade of current<br />

facilities planned<br />

•No upgrade<br />

necessary – only<br />

consumables<br />

required<br />

• Linear longlines to fill<br />

1 ha.<br />

• Infrastructure<br />

required<br />

• Linear longlines to fill<br />

1 ha.<br />

• Infrastructure<br />

required<br />

• Seaweed grid to fill<br />

1 ha.<br />

• Infrastructure<br />

required<br />

• Max. 10 x100-m longlines per<br />

ha. = 1000 m culture rope<br />

required from hatchery<br />

• Realistic yield estimate = 6 kg<br />

wet per m x1000 m = 6 tonnes<br />

• As above<br />

• Already have 30 m x 30 m<br />

grid in place; 50 x 50 m (or<br />

larger) modular system to be<br />

installed.<br />

• Capacity per grid at least<br />

1250 m culture rope. Up to<br />

2500 m. (7.5-15 tonnes wet)


<strong>EnAlgae</strong> WP1:<br />

<strong>Macroalgal</strong> pilot network – planned actions<br />

Species used: Saccharina latissima, Alaria esculenta, Laminaria<br />

digitata and L. hyperborea, Chorda filum, Saccorhiza<br />

polyschides<br />

(possibly Undaria pinnatifida in CEVA, but not in QUB or NUIG)<br />

Environmental Monitoring:<br />

All sea sites<br />

Focus on deployment periods (October to May/June)<br />

Necessary parameters: temperature, current velocity, salinity,<br />

turbidity, irradiance, nutrients, CO2, O2, chlorophyll<br />

Additional parameters (subject to funds):<br />

Wave action (modelled?)<br />

Benthic invertebrate monitoring


Marine Institute (Ireland)<br />

Marine Research Sub-Programme - Seaweed<br />

Development of a methodology for the quantitative<br />

assessment of Ireland’s inshore kelp resource<br />

RESEARCH OBJECTIVES:<br />

Partners:<br />

QUB,<br />

Envision Mapping Ltd,<br />

UC Cork<br />

• Develop, trial and assess potential methodologies for estimation of kelp<br />

standing stock biomass at two inshore sites (1 on SW Coast and 1 on West<br />

coast);<br />

• Carry out acoustic trials to estimate kelp biomass (including appropriate<br />

ground-truthing) and, where appropriate, fine-tune the methodology.


Echograms from (top) Channel 1 (38kHz) and (bottom) Channel 2 (200kHz).


Stages in converting PVI records to map the distribution of kelp biomass<br />

for the Crump Island site (Co. Galway) in the west coast survey.<br />

Track point PVI<br />

data<br />

Interpolate to grid<br />

Contour PVI values<br />

Apply regression for<br />

biomass estimation


Map of predicted biomass of Laminaria hyperborea for Crump<br />

Island site (Co. Galway) in the west coast survey.


Bioremediation<br />

of treated<br />

sewage<br />

effluents<br />

Serrated wrack,<br />

Fucus serratus


Sewage treatment plant<br />

with access to seawater<br />

for admixture of<br />

effluent – Ballyrickard<br />

Sewage Treatment<br />

Plant, Newtownards,<br />

Co. Down<br />

Seaweed tolerant to low<br />

salinity<br />

Seaweed that is<br />

abundant, easy to<br />

harvest and is efficient<br />

at removing inorganic<br />

nutrients<br />

What do you need?<br />

Fucus<br />

serratus


Seaweed-biofilter<br />

system


µmol / L<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Ballyrickard Sewage Treatment Works,<br />

Newtownards, Co. Down<br />

NO3<br />

PO4<br />

NH4<br />

July 2001<br />

Inorganic nutrient<br />

concentrations of<br />

seawater/effluent mix<br />

% removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 0,5 1 1,5 2 2,5<br />

Days (July 2001)<br />

Removal of inorganic nutrients<br />

by the algae (measurements:<br />

every 2h over 2d)<br />

NO3<br />

PO4<br />

NH4


Island of Ios (Aegean Sea,<br />

Greece)


Ios (Aegean) STW & bioremediation trial


Removal of phosphate by the green seaweed Ulva lactuca in a<br />

small scale sewage treatment plant (Ios island, Aegean Sea,<br />

Greece)<br />

P. Tsagkamilis, D. Danielidis, M.J. Dring and C. Katsaros<br />

University of Athens, Faculty of Biology, Athens 157 84, Greece<br />

Queen's University Marine Laboratory, Portaferry, Co. Down,<br />

BT22 1PF, Northern Ireland, U.K.<br />

Journal of Applied Phycology (2010) 22: 331-339

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!