27.03.2015 Views

World/Mark 4800/5200 and 4850/5250 Product Guide ... - NCR

World/Mark 4800/5200 and 4850/5250 Product Guide ... - NCR

World/Mark 4800/5200 and 4850/5250 Product Guide ... - NCR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong><br />

<strong>and</strong> <strong>4850</strong>/<strong>5250</strong><br />

<strong>Product</strong> <strong>Guide</strong><br />

Release 1.4<br />

B035-5501-090A<br />

September, 2000


The product described in this book is a licensed product of <strong>NCR</strong> Corporation.<br />

Adaptec <strong>and</strong> SCSISelect are registered trademarks of Adaptec, Inc.<br />

BYNET is an <strong>NCR</strong> trademark registered in the U.S. Patent <strong>and</strong> Trademark Office<br />

Digiboard is a registered trademark of Digi International, Inc.<br />

Ethernet is a trademark of Xerox Corporation<br />

IBM is a registered trademark of International Business Machines Corporation<br />

Intel is a registered trademark of Intel Corporation<br />

Pentium is a registered tradmark of Intel Corporation<br />

Teradata is a registered trademark of <strong>NCR</strong> International, Inc.<br />

UNIX is a registered trademark of the Open Group<br />

TCP/IP protocol is a United States Department of Defense St<strong>and</strong>ard ARPANET protocol<br />

Windows <strong>and</strong> Windows NT are registered trademarks of Microsoft Corporation<br />

<strong>World</strong><strong>Mark</strong> is a trademark of <strong>NCR</strong> Corporation<br />

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY<br />

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A<br />

PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED<br />

WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT WILL <strong>NCR</strong> CORPORATION (<strong>NCR</strong>) BE<br />

LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR<br />

LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.<br />

The information contained in this document may contain references or cross references to features, functions, products,<br />

or services that are not announced or available in your country. Such references do not imply that <strong>NCR</strong> intends to<br />

announce such features, functions, products, or services in your country. Please consult your local <strong>NCR</strong> representative<br />

for those features, functions, products, or services available in your country.<br />

Information contained in this document may contain technical inaccuracies or typographical errors. Information may<br />

be changed or updated without notice. <strong>NCR</strong> may also make improvements or changes in the products or services<br />

described in this information at any time without notice.<br />

To maintain the quality of our products <strong>and</strong> services, we would like your comments on the accuracy, clarity, organization,<br />

<strong>and</strong> value of this document. Please e-mail: info.products@SanDiegoCA.ncr.com<br />

or write:<br />

Information Engineering<br />

<strong>NCR</strong> Corporation<br />

17095 Via Del Campo<br />

San Diego, California 92127-1711<br />

U.S.A.<br />

Any comments or materials (collectively referred to as “Feedback”) sent to <strong>NCR</strong> will be deemed non-confidential. <strong>NCR</strong><br />

will have no obligation of any kind with respect to Feedback <strong>and</strong> will be free to use, reproduce, disclose, exhibit, display,<br />

transform, create derivative works of <strong>and</strong> distribute the Feedback <strong>and</strong> derivative works thereof without limitation on<br />

a royalty-free basis. Further, <strong>NCR</strong> will be free to use any ideas, concepts, know-how or techniques contained in such<br />

Feedback for any purpose whatsoever, including developing, manufacturing, or marketing products or services<br />

incorporating Feedback.<br />

Copyright © 1999, 2000<br />

By <strong>NCR</strong> Corporation<br />

Dayton, Ohio U.S.A.<br />

All Rights Reserved


About This <strong>Guide</strong><br />

Who Should Read This <strong>Guide</strong><br />

Releases Covered in This <strong>Guide</strong><br />

The <strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> is intended to provide an<br />

overview of the system for users, administrators, <strong>and</strong> field support personnel.<br />

This guide covers Release 1.4 of the <strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong><br />

system platforms, using either <strong>NCR</strong> UNIX SVR4 MP-RAS Enterprise Operating<br />

Environment (EOE) Release 3.02.00 or later, Windows NT 4.0 Server Enterprise<br />

Edition (EE), or Windows 2000 Advanced Server version.<br />

Note: This user guide covers both the <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> the <strong>4850</strong>/<strong>5250</strong> system<br />

platforms. Throughout this book, all references to the <strong>4800</strong> <strong>and</strong> <strong>5200</strong> also apply<br />

to the <strong>4850</strong> <strong>and</strong> <strong>5250</strong>, respectively, unless otherwise specified.<br />

Note: Operating environments are supported as follows in the <strong>World</strong><strong>Mark</strong><br />

48xx <strong>and</strong> 52xx system models:<br />

Model UNIX MP-RAS Windows NT Windows 2000<br />

<strong>4800</strong>/BYNET V1 Yes Yes No<br />

<strong>4850</strong>/BYNET V1 * Yes Yes No<br />

<strong>4850</strong>/BYNET V2 Yes No Yes<br />

<strong>5200</strong>/BYNET V2 Yes No No<br />

<strong>5250</strong>/BYNET V2 Yes No Yes **<br />

* coexistence <strong>and</strong> migration<br />

** not applicable on 64+ node configuration<br />

What You Should Know<br />

This guide assumes that you underst<strong>and</strong> the following:<br />

• St<strong>and</strong>ard industry terminology<br />

• System networking protocol<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong><br />

i


About This <strong>Guide</strong><br />

How To Use This <strong>Guide</strong><br />

Conventions Used in This <strong>Guide</strong><br />

The purpose of this manual is to provide a general underst<strong>and</strong>ing of the<br />

<strong>World</strong><strong>Mark</strong> 48xx/52xx system architecture <strong>and</strong> operation. It includes the<br />

following information:<br />

• Overview of system hardware, software, <strong>and</strong> interfaces<br />

• Description of system rack configurations <strong>and</strong> cabling<br />

• Identification <strong>and</strong> definitions of subsystems<br />

• <strong>Product</strong> warranty, cautions, <strong>and</strong> warnings<br />

• Cabling diagrams<br />

This guide does not document procedures for the operation, administration, or<br />

service of the system or its individual components, nor does it cover use of<br />

application software.<br />

The following table describes the conventions used in this guide.<br />

This convention.... Is used for the following item or items: For example:<br />

Bold • Comm<strong>and</strong> names<br />

• Package names<br />

• Main menu bar<br />

• Run mktable.<br />

• Use PUT to upgrade the software.<br />

• Use the appropriate comm<strong>and</strong> in the Management<br />

menu.<br />

• Select from the File menu.<br />

Courier Screen output # Load the CD-ROM.<br />

Courier bold<br />

User input (text that you must<br />

enter exactly as shown)<br />

• Enter /usr/etc/ping from the comm<strong>and</strong> line.<br />

• Enter \winnt\system32\ping at the comm<strong>and</strong><br />

line.<br />

Helvetica bold • Keyboard keys<br />

• Screen buttons<br />

• Field names<br />

Italic • Directory, file, <strong>and</strong> path names<br />

•<br />

• References to guides<br />

• Emphasis<br />

• Arguments<br />

• Comm<strong>and</strong> string variables<br />

• Environmental variables<br />

• Press the Esc key.<br />

• Click the Exit button on the dialog box.<br />

• Enter the system name in the System Name field.<br />

• The file is in the /user/sysadm/bin directory.<br />

• The file is in the \winnt\system32 directory.<br />

• See the <strong>Product</strong> <strong>Guide</strong>.<br />

• Do not delete this file.<br />

• shutdown -i -y -g<br />

• The variable must have at least 6<br />

characters.<br />

• The run_only_with_dual_ac environmental variable<br />

must be set to yes.<br />

ii<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


About This <strong>Guide</strong><br />

This convention.... Is used for the following item or items: For example:<br />

Bulleted lists<br />

Numbered lists<br />

<br />

“Text in<br />

Quotation<br />

<strong>Mark</strong>s”<br />

[Text in square<br />

brackets]<br />

Bulleted lists do not denote order;<br />

numbered lists denote specific<br />

order.<br />

Numbered lists denote specific<br />

order; bulleted lists do not denote<br />

order.<br />

• Variables in a comm<strong>and</strong> string<br />

• Required elements of<br />

comm<strong>and</strong> strings<br />

• Submenus<br />

• References to chapter <strong>and</strong><br />

appendix titles<br />

• References to chapter <strong>and</strong><br />

appendix headings.<br />

Optional elements<br />

• Floppy disk drive<br />

• Hard drive<br />

• CD-ROM drive<br />

1 Insert the CD-ROM into the CD-ROM drive.<br />

2 Double-click install.exe.<br />

• $ <br />

• To kill a process, enter exec kill from<br />

the comm<strong>and</strong> line, where is the process<br />

identification number.<br />

• Use the appropriate comm<strong>and</strong> in the Management<br />

menu.<br />

• Select from the File menu.<br />

• See Chapter 5, “Installation Overview.”<br />

• See “Shipping Weights” in Appendix A.<br />

ls [-a] [-F]<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong><br />

iii


About This <strong>Guide</strong><br />

Related Information<br />

Related Information<br />

Related information about the <strong>World</strong><strong>Mark</strong> 48xx/52xx platform is available<br />

online <strong>and</strong> in additional guides <strong>and</strong> publications.<br />

Web Sites<br />

<strong>NCR</strong> customers may access online information through the following <strong>NCR</strong><br />

web sites:<br />

http://www.info.ncr.com/<br />

http://www.ncr.com/customer_svc/support.asp<br />

<strong>NCR</strong> Information <strong>Product</strong> Library of technical<br />

documentation <strong>and</strong> user guides<br />

<strong>NCR</strong> customer resource link for technical<br />

support, information products, <strong>and</strong> training<br />

programs<br />

Publications<br />

The most recent versions of the publications that support the <strong>World</strong><strong>Mark</strong><br />

48xx/52xx platform are maintained on the documentation web site. The online<br />

versions of these books will be updated as necessary to reflect any changes<br />

introduced between product releases.<br />

Note: In the book numbers referenced below, the first eight characters are a<br />

unique <strong>Product</strong> ID for the book, <strong>and</strong> can be used to navigate to the book online.<br />

The mmyx, where used, represents the publication date, where mm is the<br />

month, y is the last digit of the year, <strong>and</strong> x is an internal code. The most recent<br />

versions of the books are maintained on the documentation web site.<br />

For supplementary server software <strong>and</strong> system hardware platform<br />

information, the following guides are available to <strong>NCR</strong> customers:<br />

B035-5501-mmyx<br />

B035-5502-mmyx<br />

B035-5503-mmyx<br />

B035-5504-mmyx<br />

B035-5515-mmyx<br />

B035-5519-mmyx<br />

B035-5517-mmyx<br />

BD20-0931-C<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong>, <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong><br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong>, <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> Site Preparation <strong>Guide</strong><br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> Server Support Log<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> Administration Workstation<br />

User <strong>Guide</strong><br />

AWS on Windows NT User <strong>Guide</strong><br />

AWS on Windows 2000 User <strong>Guide</strong><br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong> <strong>and</strong> <strong>4850</strong> for Windows Console Switch Kit<br />

Instruction<br />

Customer Support Facility User’s <strong>Guide</strong><br />

iv<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Contents<br />

About This <strong>Guide</strong><br />

Who Should Read This <strong>Guide</strong> ......................................................................................... i<br />

Releases Covered in This <strong>Guide</strong>...................................................................................... i<br />

What You Should Know................................................................................................... i<br />

How To Use This <strong>Guide</strong> ..................................................................................................ii<br />

Conventions Used in This <strong>Guide</strong> ...................................................................................ii<br />

Related Information ...........................................................................................................iv<br />

Web Sites...........................................................................................................................iv<br />

Publications ......................................................................................................................iv<br />

Chapter 1:<br />

System Overview<br />

System Architecture........................................................................................................ 1–2<br />

About the Platform....................................................................................................... 1–2<br />

About the Subsystems ................................................................................................. 1–2<br />

Processing Node ........................................................................................................ 1–2<br />

BYNET......................................................................................................................... 1–3<br />

Power...........................................................................................................................1–3<br />

Server Management <strong>and</strong> System Networking ...................................................... 1–3<br />

Disk Storage................................................................................................................ 1–3<br />

System Configurations ................................................................................................... 1–4<br />

48xx System Configurations / 1 to 4 Nodes............................................................. 1–5<br />

52xx System / 2 to 16 Nodes....................................................................................... 1–6<br />

52xx System / 18 to 64 Nodes..................................................................................... 1–7<br />

52xx System Beyond 64 Nodes................................................................................... 1–9<br />

Coexistence Systems .................................................................................................. 1–10<br />

Chapter 2:<br />

Systems Components<br />

Rack Specifications.......................................................................................................... 2–2<br />

40U Rack Frame............................................................................................................ 2–2<br />

Rack Chassis Placement............................................................................................... 2–3<br />

Rack Chassis ID Conventions..................................................................................... 2–5<br />

Processing <strong>and</strong> BYNET Cabinets .................................................................................. 2–6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong><br />

v


Contents<br />

48xx System / 1 to 4 Nodes......................................................................................... 2–6<br />

52xx System / 2 to 16 Nodes....................................................................................... 2–7<br />

52xx System / 18 to 64 Nodes..................................................................................... 2–8<br />

52xx System / 65-512 Nodes)...................................................................................... 2–9<br />

Storage Cabinets ............................................................................................................ 2–10<br />

6000 NSC <strong>and</strong> 6000 WES......................................................................................... 2–10<br />

627x Storage Cabinet............................................................................................... 2–11<br />

System Console.............................................................................................................. 2–12<br />

Network Hubs at AWS .............................................................................................. 2–12<br />

Dual AWS .................................................................................................................... 2–12<br />

Remote AWS ............................................................................................................... 2–12<br />

Software .......................................................................................................................... 2–14<br />

System-Level Software............................................................................................... 2–14<br />

Server-Level Software................................................................................................ 2–14<br />

System Platform Interfaces........................................................................................... 2–15<br />

SLAN ............................................................................................................................2–15<br />

PvtLAN ........................................................................................................................ 2–17<br />

MLAN .......................................................................................................................... 2–18<br />

External MLAN........................................................................................................ 2–18<br />

BYNET Network......................................................................................................... 2–19<br />

Cabinet Power............................................................................................................. 2–20<br />

SCSI............................................................................................................................... 2–20<br />

Teradata IBM Channel............................................................................................... 2–21<br />

Cable Management........................................................................................................ 2–22<br />

Chapter 3:<br />

Subsystems Features<br />

Service Subsystem (3U) .................................................................................................. 3–2<br />

3U Service Subsystem Components .......................................................................... 3–2<br />

Hardware.................................................................................................................... 3–2<br />

Firmware..................................................................................................................... 3–3<br />

BYNET Interconnect Subsystem ................................................................................... 3–6<br />

BYA4P Subsystem ........................................................................................................ 3–6<br />

BYA4G Subsystem........................................................................................................ 3–7<br />

BYA16G Subsystem...................................................................................................... 3–7<br />

BYA64GX <strong>and</strong> BYB64G Subsystems........................................................................ 3–10<br />

Processing Node Subsystem ........................................................................................ 3–14<br />

Node Components ..................................................................................................... 3–14<br />

Hardware.................................................................................................................. 3–14<br />

Software/Firmware................................................................................................. 3–16<br />

Power Subsystem .......................................................................................................... 3–20<br />

UIS Chassis .................................................................................................................. 3–20<br />

vi<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Contents<br />

UPS Chassis................................................................................................................. 3–21<br />

SLAN <strong>and</strong> PvtLAN Hardware .................................................................................... 3–25<br />

SLAN Hubs ................................................................................................................. 3–25<br />

10BaseT SLAN Hub at AWS .................................................................................. 3–25<br />

10Base2 SLAN Hub ................................................................................................. 3–26<br />

PvtLAN Hub ............................................................................................................... 3–27<br />

PvtLAN Switch ........................................................................................................... 3–28<br />

Chapter 4:<br />

System Management <strong>and</strong> Maintenance<br />

Initialization ..................................................................................................................... 4–2<br />

Power On/Off.................................................................................................................. 4–3<br />

Administration................................................................................................................. 4–4<br />

AWS on UNIX............................................................................................................... 4–4<br />

AWS on Windows ........................................................................................................ 4–6<br />

Logs ................................................................................................................................... 4–7<br />

Event Log.......................................................................................................................4–7<br />

Server Support Log ...................................................................................................... 4–7<br />

Appendix A:<br />

<strong>Product</strong> Statements<br />

Regulatory <strong>and</strong> Technical Compliance ....................................................................... A–2<br />

Safety ............................................................................................................................. A–2<br />

EMI Emissions <strong>and</strong> Immunity................................................................................... A–2<br />

Declaration of Conformity ...................................................................................... A–2<br />

Electromagnetic Compatibility............................................................................... A–4<br />

Electromagnetic Compatibility Notices ................................................................ A–4<br />

Disclaimer..................................................................................................................... A–5<br />

Cautions <strong>and</strong> Warnings................................................................................................. A–6<br />

Proper cooling <strong>and</strong> airflow ..................................................................................... A–6<br />

Grounding ................................................................................................................. A–6<br />

Rack Stabilization ..................................................................................................... A–6<br />

Power on/off............................................................................................................. A–6<br />

Hazardous electrical conditions ............................................................................. A–6<br />

Appendix B:<br />

Cabling Maps<br />

SLAN Cabling..................................................................................................................B–2<br />

PvtLAN Cabling ..............................................................................................................B–4<br />

MLAN ...............................................................................................................................B–6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong><br />

vii


Contents<br />

BYNET Network..............................................................................................................B–8<br />

Cabinet Power................................................................................................................B–14<br />

SCSI..................................................................................................................................B–16<br />

Index.........................................................................................................................Index –1<br />

viii<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


List of Figures<br />

Figure 1-1 48xx System Configuration.................................................................... 1–5<br />

Figure 1-2 52xx System Configuration of 2 to 16 Nodes ...................................... 1–6<br />

Figure 1-3 52xx System Configuration of 18 to 64 nodes .................................... 1–8<br />

52xx System Expansion Pattern Beyond 64 Nodes *.......................... 1–9<br />

Figure 2-1 40U Rack Measurements ........................................................................ 2–2<br />

Figure 2-2 Rack Chassis Placement Pattern (cabinet side view) ......................... 2–4<br />

Figure 2-3 Subsystem Chassis IDs ........................................................................... 2–5<br />

Figure 2-4 Typical <strong>NCR</strong> Storage Cabinet .............................................................. 2–10<br />

Figure 2-5 Remote AWS Connections ................................................................... 2–13<br />

Figure 3-1 Service Subsystem Chassis Connectors <strong>and</strong> LEDs ............................. 3–4<br />

Figure 3-2 BYA4P Connectors .................................................................................. 3–6<br />

Figure 3-3 BYA16G Subsystem Chassis (rear view) ............................................. 3–9<br />

Figure 3-4 BYA64GX <strong>and</strong> BYB64G Subsystem Chassis<br />

Connectors <strong>and</strong> LEDs ........................................................................ 3–12<br />

Figure 3-5 Processing Node Chassis (rear view)<br />

Components <strong>and</strong> Connectors ........................................................... 3–17<br />

Figure 3-6 Processing Node Chassis (front view)<br />

Components, Controls, <strong>and</strong> LEDs.................................................... 3–18<br />

Figure 3-7 UIS Connectors <strong>and</strong> LEDs (rear view) ............................................... 3–20<br />

Figure 3-8 UPS Chassis (rear view) ....................................................................... 3–22<br />

Figure 3-9 UPS Front Panel LEDs .......................................................................... 3–23<br />

Figure 3-10 SLAN Hub Connectors <strong>and</strong> LEDs *.................................................... 3–26<br />

Figure 3-11 PvtLAN Hub Connectors <strong>and</strong> LEDs *................................................ 3–27<br />

Figure 3-12 PvtLAN Switch Connectors <strong>and</strong> LEDs *............................................ 3–28<br />

Figure B-1 SLAN: 1 to 4 Nodes, <strong>and</strong> 2 to 16 Nodes ...............................................B–2<br />

Figure B-2 SLAN: 18 to 64 Nodes.............................................................................B–3<br />

Figure B-3 PvtLAN: 3 Nodes <strong>and</strong> 16 Nodes ...........................................................B–4<br />

Figure B-4 PvtLAN: 64 Nodes ..................................................................................B–5<br />

Figure B-5 MLAN: Processing Rack.........................................................................B–6<br />

Figure B-6 MLAN: BYNET Rack ..............................................................................B–7<br />

Figure B-7 BYNET to Node Connections:<br />

BYA4P Network to 4 Nodes................................................................B–8<br />

Figure B-8 BYNET to Node Connections:<br />

BYA4G Network to 4 Nodes ...............................................................B–9<br />

Figure B-9 BYNET to Node Connections:<br />

BYA16GX Network to 16 Nodes ......................................................B–10<br />

Figure B-10 BYNET to Node Connections:<br />

BYA64GX Network to 64 Nodes ......................................................B–11<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong><br />

ix


List of Figures<br />

Figure B-11<br />

Figure B-12<br />

Figure B-13<br />

Figure B-14<br />

Figure B-15<br />

Figure B-16<br />

BYA64GX to BYB64G Connections:<br />

Expansion Port Cabling per BYNET Network<br />

(Sample 65-128 Node System) *........................................................B–12<br />

BYA64GX to BYB64G Connections:<br />

Clock Cabling per BYNET Network<br />

(Sample 65-128 Node System) ..........................................................B–13<br />

Power: Processing Rack........................................................................B–14<br />

Power: BYNET Rack..............................................................................B–15<br />

Shared SCSI: 4-Node Clique<br />

with <strong>NCR</strong> Storage Cabinet (NSC) ....................................................B–16<br />

Point-to-Point SCSI: 4-Node Clique<br />

with <strong>World</strong><strong>Mark</strong> Enterprise Storage (WES) ...................................B–17<br />

x<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 1:<br />

System Overview<br />

This chapter provides the following introductory information about the<br />

<strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> platform systems:<br />

• System Architecture<br />

• System Configurations<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 1 – 1


Chapter 1: System Overview<br />

System Architecture<br />

System Architecture<br />

About the Platform<br />

About the Subsystems<br />

The <strong>NCR</strong> <strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> products are Massively<br />

Parallel Processing (MPP) platforms for Teradata Warehouse applications. The<br />

platform offers two levels of scalability:<br />

• The <strong>World</strong><strong>Mark</strong> <strong>4800</strong> <strong>and</strong> <strong>4850</strong> series systems are designed for data<br />

warehouses of 50 GB to 1 Terabyte (TB), with scalability from 1 to a<br />

maximum of 4 processing nodes.<br />

• The <strong>World</strong><strong>Mark</strong> <strong>5200</strong> <strong>and</strong> <strong>5250</strong> series systems can support data warehouses<br />

from 250 GB to 100+ TB, <strong>and</strong> offers system expansion from 2 to 512<br />

processing nodes.<br />

The <strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong><br />

systems use industry st<strong>and</strong>ard rack mount<br />

architecture. It consists of individual<br />

subsystem chassis that are housed in st<strong>and</strong>ard<br />

rack frames. Subsystems are self-contained,<br />

<strong>and</strong> their configurations -- either internal or<br />

within a system -- are redundant. The design<br />

ensures overall system reliability, enhances its<br />

serviceability, <strong>and</strong> enables time <strong>and</strong> costefficient<br />

upgrades.<br />

Following are the types of subsystems that can make up <strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong><br />

<strong>and</strong> <strong>4850</strong>/<strong>5250</strong> systems:<br />

• Symmetrical multi-processing (SMP) nodes<br />

• BYNET interconnect<br />

• Uninterruptible power supplies (UPS) <strong>and</strong> UPS input selectors<br />

• Server management<br />

• Disk storage<br />

Processing Node<br />

SMP nodes are housed in processing racks, typically two Teradata nodes per<br />

rack. There is also a minimum single-node rack configuration housing one non-<br />

Teradata node, referred to as a non-TPA (trusted parallel applications) node.<br />

1 – 2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 1: System Overview<br />

System Architecture<br />

BYNET<br />

The nodes communicate with each other through the BYNET interconnect<br />

network. Depending on the overall system size, the BYNET network switch<br />

may be located in one of the processing racks in a system, or it may be housed<br />

in its own BYNET rack. In either case, the BYNET switch is always paired in the<br />

system for redundancy.<br />

Power<br />

Multiple UPS chassis per rack support dual AC power sources. The redundant<br />

power sources feed into UPS input selectors (UIS), one on each UPS chassis.<br />

The input selectors choose the power source <strong>and</strong> direct it to their respective<br />

UPS chassis. The UPS chassis then distribute the AC power to all other chassis<br />

within the rack. All subsystem chassis are designed with multiple power inlets.<br />

Server Management <strong>and</strong> System Networking<br />

Each rack contains a service subsystem that monitors <strong>and</strong> controls all the<br />

chassis in its rack. The service subsystem chassis is connected to each chassis<br />

within its rack through a Management Local Area Network (MLAN).<br />

Service subsystems across multiple racks are connected over the System Local<br />

Area Network (SLAN). The SLAN interfaces all the racks with the<br />

Administration Workstation (AWS) for a single operational view of the<br />

complete system. The BYNET subsystems are also included in the SLAN for<br />

administration <strong>and</strong> control of the BYNET switching network. SLAN hubs are<br />

used in larger network environments to facilitate the rack-to-rack connections.<br />

SMP nodes have a connection to the AWS over a Private Local Area Network<br />

(PvtLAN) for TCP/IP login capability. PvtLAN hub <strong>and</strong> switch hardware is<br />

used in the system racks to provide for consistent cabling protocol, from small<br />

to expansion systems.<br />

Disk Storage<br />

In association with this system architecture, processing nodes are connected to<br />

disk storage devices in “cliques,” where as many as four nodes share a disk<br />

array. The type of disk array determines how it is connected to the system<br />

platform. The <strong>NCR</strong> storage cabinet (NSC) <strong>and</strong> the <strong>World</strong><strong>Mark</strong> enterprise<br />

storage (WES) present disk arrays in a rack that includes a service subsystem<br />

chassis to link the disk cabinet to the platform. The NSC <strong>and</strong> the WES models<br />

link via an external MLAN to a controlling service subsystem in a processing<br />

rack. The 627x models are interfaced through SCSI connection software for<br />

minimal administrative functions.<br />

In addition, a channel interface capability is available for node-to-mainframe<br />

connections.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 1 – 3


Chapter 1: System Overview<br />

System Configurations<br />

System Configurations<br />

Following is a summary of the available 48xx/52xx system configurations:<br />

Model<br />

<strong>4800</strong><br />

1 to 4 nodes<br />

<strong>4850</strong><br />

1 to 4 nodes<br />

<strong>4850</strong><br />

1 to 4 nodes<br />

(coexistence <strong>and</strong><br />

migration)<br />

<strong>5200</strong><br />

2 to 16 nodes<br />

<strong>5250</strong><br />

2 to 16 nodes<br />

<strong>5200</strong><br />

18 to 64 nodes<br />

<strong>5250</strong><br />

18 to 64 nodes<br />

<strong>5200</strong><br />

64+ nodes<br />

<strong>5250</strong><br />

64+ nodes<br />

Features<br />

450 - 550 MHz<br />

BYNET version 1 (BYA4P switch board)<br />

UNIX or Windows NT<br />

700 MHz<br />

BYNET version 2 (BYA4G switch board)<br />

UNIX or Windows 2000<br />

700 MHz<br />

BYNET version 1 (BYA4P switch board)<br />

UNIX or Windows NT<br />

450 - 550 MHz<br />

BYNET version 2 (BYA16G switch chassis)<br />

UNIX<br />

700 MHz<br />

BYNET version 2 (BYA16G switch chassis)<br />

UNIX or Windows 2000<br />

450 - 550 MHz<br />

BYNET version 2 (BYA64GX switch cabinet)<br />

UNIX<br />

700 MHz<br />

BYNET version 2 (BYA64GX switch cabinet)<br />

UNIX or Windows 2000<br />

450 - 550 MHz<br />

BYNET version 2 (BYA64/BYB64 switch cabinet)<br />

UNIX<br />

700 MHz<br />

BYNET version 2 (BYA64/BYB64 switch cabinet)<br />

UNIX<br />

1 – 4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


48xx System Configurations / 1 to 4 Nodes<br />

Chapter 1: System Overview<br />

System Configurations<br />

The <strong>World</strong><strong>Mark</strong> <strong>4800</strong> <strong>and</strong> <strong>4850</strong> series systems have one to four SMP nodes.<br />

Figure 1-1 illustrates the maximum 4-node configuration of processing racks.<br />

Figure 1-1<br />

48xx System Configuration<br />

Base<br />

Cabinet<br />

Service<br />

Subsystem<br />

Expansion<br />

Cabinet<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

BYA Switch<br />

SLAN Hub<br />

Node<br />

Node<br />

AWS<br />

PvtLAN Hub<br />

BYA Switch<br />

Node<br />

Node<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

The 48xx system is anchored by a base cabinet (also referred to as the system<br />

cabinet). The base cabinet houses a BYNET switch board (BYA4P or BYA4G<br />

depending on model) in each of two SMP Teradata nodes. The BYA switch<br />

board can interconnect as many as four nodes. The dual switches provide for a<br />

redundant BYNET network. A BYNET adapter (BIC2G or BIC2C, depending<br />

on model) is contained in every node in the system. The multi-ported adapter<br />

provides for node connection to both BYNET switches.<br />

The expansion cabinet is the add-on rack, with two SMP Teradata nodes<br />

connecting to the BYNET switches in the base rack. The expansion cabinet also<br />

contains a PvtLAN hub, which is used to connect all four node chassis in the<br />

system to the system console for TCP/IP login capability.<br />

A single node cabinet is an option for a one or three-node <strong>4800</strong> or <strong>4850</strong> system<br />

configuration. The 48xx single node cabinet contains one SMP node <strong>and</strong> no<br />

PvtLAN hub.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 1 – 5


Chapter 1: System Overview<br />

System Configurations<br />

52xx System / 2 to 16 Nodes<br />

All cabinet variations are configured with 3 UPS/UIS chassis at the bottom of<br />

the rack <strong>and</strong> a service subsystem chassis at the top.<br />

All 48xx system configurations include an AWS with two network hubs, one<br />

for the PvtLAN <strong>and</strong> one for the SLAN. The PvtLAN hub funnels multiple node<br />

Ethernet connections into a single connection at the console. The SLAN hub<br />

converts a 10Base2 coaxial connection from the rack cabinets to a 10BaseT<br />

twisted pair Ethernet connection at the console.<br />

Note: Earlier AWS models use an internal coaxial adapter for the SLAN<br />

connection, instead of the external SLAN hub.<br />

The <strong>World</strong><strong>Mark</strong> <strong>5200</strong> <strong>and</strong> <strong>5250</strong> system configuration of 2 to 16 nodes is<br />

illustrated in Figure 1-2.<br />

Figure 1-2<br />

52xx System Configuration of 2 to 16 Nodes<br />

Expansion Cabinet (7x)<br />

Base<br />

Cabinet<br />

Service<br />

Subsystem<br />

BYA16G<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

BYA16G<br />

SLAN Hub<br />

Node<br />

Node<br />

AWS<br />

PvtLAN Hub<br />

Node<br />

Node<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

1 – 6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


52xx System / 18 to 64 Nodes<br />

Chapter 1: System Overview<br />

System Configurations<br />

The dual-node base cabinet houses two BYA16G switch chassis that support a<br />

maximum of 16 Teradata nodes in redundant networks. Each SMP node in the<br />

system contains a multi-ported BYNET adapter (BIC4G) for connection to both<br />

BYNET chassis.<br />

The expansion cabinet is an add-on rack with two Teradata nodes that connect to<br />

the BYNET chassis in the base rack. The expansion cabinet also contains a<br />

PvtLAN hub, which is used to connect the node chassis in the cabinet to the<br />

system console.<br />

A single node cabinet is an option for an odd-numbered configuration of 52xx<br />

nodes beyond the initial dual node base cabinet. The 52xx single node cabinet<br />

contains one non-TPA node (no Teradata) as well as a PvtLAN hub.<br />

All cabinet variations are configured with 3 UPS/UIS chassis at the bottom of<br />

the rack, <strong>and</strong> a service subsystem chassis at the top.<br />

All 52xx system configurations up to 16 nodes include an AWS with two<br />

network hubs, one for the PvtLAN <strong>and</strong> one for the SLAN. The PvtLAN hub<br />

funnels multiple node Ethernet connections into a single connection at the<br />

console.The SLAN hub converts a 10Base2 coaxial connection from the rack<br />

cabinets to a 10BaseT twisted pair Ethernet connection at the console.<br />

Note: Earlier AWS models use an internal coaxial adapter for the SLAN<br />

connection, instead of the external SLAN hub.<br />

The <strong>World</strong><strong>Mark</strong> <strong>5200</strong> <strong>and</strong> <strong>5250</strong> system of 18 to 64 nodes consists of a<br />

combination of processing <strong>and</strong> BYNET racks, as shown in<br />

Figure 1-3.<br />

The BYA64GX switch cabinet is the anchor rack of this large system model. It<br />

contains a single BYA64 chassis that can interconnect a maximum of 64<br />

Teradata nodes. A second BYA64 cabinet is included in the system to provide a<br />

redundant BYNET network. Every node in the system contains a multi-ported<br />

BYNET adapter (BIC4G), providing connection to both 64-node switches.<br />

The BYA64GX cabinet also houses the PvtLAN switch <strong>and</strong> the SLAN hub. The<br />

PvtLAN switch consolidates the PvtLAN hub connections of node cabinets in<br />

groups, <strong>and</strong> links them to the AWS console. The SLAN hub in the BYNET<br />

cabinet repeats the SLAN connection from the AWS console to groups of node<br />

cabinets.<br />

The node expansion cabinet is the system building block, with two Teradata<br />

nodes per cabinet connecting to each of the BYA64 chassis in the system. The<br />

expansion cabinet also contains a PvtLAN hub which is used to connect the<br />

node chassis in the cabinet with the PvtLAN switch in the BYNET cabinet.<br />

A single node cabinet is an option for an odd-numbered configuration of 52xx<br />

nodes. The 52xx single node cabinet contains one non-TPA node (no Teradata)<br />

as well as a PvtLAN hub.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 1 – 7


Chapter 1: System Overview<br />

System Configurations<br />

Figure 1-3<br />

52xx System Configuration of 18 to 64 nodes<br />

Expansion Cabinet (32x)<br />

BYA64 Cabinet (2x)<br />

Service<br />

Subsystem<br />

SLAN Hub<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

PvtLAN Switch<br />

SLAN Hub<br />

BYA64GX<br />

Node<br />

AWS<br />

Node<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

The BYNET rack contains only two UPS/UIS chassis; the processing rack uses<br />

three. All cabinets contain a service subsystem chassis at the top of the rack.<br />

All 52xx system configurations from 18 to 64 nodes include an AWS with a<br />

network hub for the SLAN. The SLAN hub converts a 10Base2 coaxial<br />

connection from the rack cabinets to a 10BaseT twisted pair Ethernet<br />

connection at the console.<br />

Note: Earlier AWS models use an internal coaxial adapter for the SLAN<br />

connection, instead of the external SLAN hub.<br />

1 – 8<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


52xx System Beyond 64 Nodes<br />

52xx System Expansion Pattern Beyond 64 Nodes *<br />

Chapter 1: System Overview<br />

System Configurations<br />

The <strong>World</strong><strong>Mark</strong> <strong>5200</strong> <strong>and</strong> <strong>5250</strong> systems can be exp<strong>and</strong>ed beyond 64 nodes with<br />

the addition of BYNET racks. shows the general expansion pattern.<br />

65 to 128<br />

Nodes<br />

to 192<br />

Nodes<br />

to 256<br />

Nodes<br />

Pattern<br />

Repeats<br />

every 64 Nodes<br />

Up to 512 Nodes<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

Service<br />

Subsystem<br />

PvtLAN Hub<br />

Node<br />

Node<br />

Node<br />

Node<br />

Node<br />

Node<br />

Node<br />

Node<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

Expansion<br />

Cabinet (32x)<br />

Expansion<br />

Cabinet (32x)<br />

Expansion<br />

Cabinet (32x)<br />

Expansion<br />

Cabinet (32x)<br />

Service<br />

Subsystem<br />

SLAN Hub<br />

Service<br />

Subsystem<br />

Service<br />

Subsystem<br />

SLAN Hub<br />

Service<br />

Subsystem<br />

SLAN Hub<br />

PvtLAN Switch<br />

PvtLAN Switch<br />

PvtLAN Switch<br />

BYA64GX<br />

BYA64GX<br />

BYA64GX<br />

BYB64G<br />

BYB64G<br />

BYB64G<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

UPS<br />

BYA64<br />

Cabinet (2x)<br />

BYB64<br />

Cabinet (2x)<br />

BYA/BYB64<br />

Cabinet (2X)<br />

BYA/BYB64<br />

Cabinet (2X)<br />

The BYB64G switch cabinet is the upgrade rack for the initial BYA64GX cabinet.<br />

The BYB64G switch allows the BYA64GX chassis to communicate with<br />

additional BYA64GX chassis as the BYNET network grows to support nodes<br />

beyond 64 in number. The BYB64G is designed to interconnect as many as eight<br />

BYA64GX chassis.<br />

The BYA64/BYB64 switch cabinet is an extender rack. It houses both BYA64GX<br />

<strong>and</strong> BYB64G chassis types, thus allowing the system to grow by up to 64 nodes<br />

for each BYA/BYB cabinet introduced. Like the single BYA64GX switch cabinet,<br />

the BYA/BYB cabinet also contains a PvtLAN switch <strong>and</strong> a 10Base2 SLAN hub.<br />

Note: An initial system ordered with greater than 64 nodes will use only the<br />

BYA64/BYB64 cabinet configuration, rather than the upgrade configuration of<br />

a BYA64 cabinet <strong>and</strong> a BYB64 cabinet.<br />

All BYNET cabinets have two UPS/UIS chassis at the bottom of the rack, <strong>and</strong> a<br />

service subsystem chassis at the top.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 1 – 9


Chapter 1: System Overview<br />

System Configurations<br />

Coexistence Systems<br />

The following <strong>World</strong><strong>Mark</strong> platforms (UNIX-based only) can coexist as a single<br />

MPP platform:<br />

• <strong>4800</strong> <strong>and</strong> 4700/5150<br />

• <strong>4800</strong> <strong>and</strong> <strong>4850</strong><br />

• <strong>4850</strong> <strong>and</strong> 4700/5150<br />

• <strong>5200</strong> <strong>and</strong> <strong>5250</strong><br />

In a coexistence system, all processing nodes in each platform are connected as<br />

one system through the same BYNET infrastructure (either version 1 or<br />

version 2 as applicable to the platforms involved). All of the nodes can be<br />

administered through the single operational view of the AWS.<br />

For more information about <strong>World</strong><strong>Mark</strong> product coexistence configurations,<br />

talk to your <strong>NCR</strong> representative.<br />

1 – 10<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2:<br />

Systems Components<br />

This chapter provides the following information about the components of the<br />

48xx/52xx systems:<br />

• Rack Specifications<br />

• Processing <strong>and</strong> BYNET Cabinets<br />

• Storage Cabinets<br />

• System Console<br />

• Software<br />

• System Platform Interfaces<br />

• Cable Management<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 1


Chapter 2: Systems Components<br />

Rack Specifications<br />

Rack Specifications<br />

40U Rack Frame<br />

All system cabinets use a st<strong>and</strong>ard rack frame, referred to as a 40U rack. “U”<br />

represents a unit of vertical measurement for placement of chassis in the rack,<br />

as follows:<br />

1U = 4.445 cm (1.75 in.) high<br />

Vertical rails at the front of the rack (called EIA rails) have hole patterns that can<br />

be used to measure U space, as follows:<br />

3 holes = 1U<br />

Each chassis occupies a specific number of U spaces in the rack. The U spaces<br />

are labeled on the four EIA rails of the rack frame. Also, notches in the EIA rail<br />

delineate each U. The U spaces are numbered from bottom to top in the rack.<br />

Figure 2-1<br />

40U Rack Measurements<br />

The following figure illustrates the measurements of the st<strong>and</strong>ard rack<br />

assembly:<br />

61 cm<br />

24 in.<br />

101.6 cm<br />

40 in.<br />

45.1 cm<br />

17.75 in.<br />

1U =<br />

4.445 cm<br />

1.75 in.<br />

EIA<br />

Rails<br />

195.6 cm<br />

77 in.<br />

Stabilizer<br />

Feet<br />

Front<br />

Side<br />

2 – 2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Rack Chassis Placement<br />

Chapter 2: Systems Components<br />

Rack Specifications<br />

The 40U rack has the following features <strong>and</strong> specifications:<br />

• Total rack frame height: 195.6 cm (77 in.)<br />

• Usable height: 40U<br />

• Total rack frame width: 61 cm (24 in.)<br />

• Usable width: 45.1 cm (17.75 in.)<br />

• Total rack frame depth: 101.6 cm (40 in.)<br />

• Rack frame weight (unloaded): 135.9 kg (300 lb.)<br />

• Load limit: 499.0 kg (1,100 lb.)<br />

• Cable entry in floor<br />

• Hinged, vented, <strong>and</strong> locking front <strong>and</strong> rear doors<br />

• Removable side panels (removed on side-by-side rack configurations)<br />

Each chassis has a st<strong>and</strong>ard placement in the rack. The SMP node chassis are<br />

mounted in the rack on extendible rails, allowing the node chassis to be<br />

extended from the rack for servicing access. All other chassis are installed on<br />

fixed mounts.<br />

Note that the chassis are installed from the front of the rack, with the exception<br />

of the UPS input selectors <strong>and</strong> Ethernet hub <strong>and</strong> switch hardware, which load<br />

from the rear of the rack.<br />

Figure 2-2 illustrates the placement pattern of the various chassis types in<br />

processing <strong>and</strong> BYNET rack frames, as viewed from the right side of the<br />

cabinet.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 3


Chapter 2: Systems Components<br />

Rack Specifications<br />

Figure 2-2<br />

Rack Chassis Placement Pattern (cabinet side view)<br />

Service Subsystem Chassis (3U) BYA16X Chassis (3U) SMP Node Chassis (11U)<br />

UPS Chassis (3U) UPS Input Selector (3U) PvtLAN Hub (1U)<br />

SLAN Hub (1U)<br />

PvtLAN Switch (2U)<br />

BYA64GX Chassis (12U)<br />

BYB64G Chassis (12U)<br />

2 – 4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

Rack Specifications<br />

Rack Chassis ID Conventions<br />

Subsystem chassis have assigned positions in a cabinet. Each position is<br />

identified by a number. The following figure is a general representation of a<br />

processing <strong>and</strong> a BYNET cabinet, identifying the chassis ID for each subsystem<br />

that may reside in that cabinet type.<br />

Figure 2-3<br />

Subsystem Chassis IDs<br />

Note that the chassis number does not change, relative to the presence or<br />

absence of other chassis in the rack. Also note that the PvtLAN <strong>and</strong> SLAN hub<br />

<strong>and</strong> switch hardware components within the cabinets are not identified by<br />

chassis numbers, since those units are not defined as subsystems within the<br />

cabinet.<br />

Processing<br />

Cabinet<br />

Service Subsystem<br />

Chassis #1<br />

BYA16G<br />

Chassis #2<br />

BYA16G<br />

Chassis #3<br />

BYNET<br />

Cabinet<br />

Service Subsystem<br />

Chassis #1<br />

SMP Node<br />

Chassis #4<br />

BYA64GX<br />

Subsystem<br />

Chassis #2<br />

SMP Node<br />

Chassis #5<br />

UPS/UIS<br />

Chassis #6<br />

UPS/UIS<br />

Chassis #7<br />

UPS/UIS<br />

Chassis #8<br />

BYB64G<br />

Subsystem<br />

Chassis #3<br />

UPS/UIS<br />

Chassis #4<br />

UPS/UIS<br />

Chassis #5<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 5


Chapter 2: Systems Components<br />

Processing <strong>and</strong> BYNET Cabinets<br />

Processing <strong>and</strong> BYNET Cabinets<br />

48xx System / 1 to 4 Nodes<br />

The <strong>World</strong><strong>Mark</strong> 48xx series system is built on three processing rack variations,<br />

as shown below. See “System Configurations” in Chapter 1 for an overview of<br />

the 1 to 4 node configuration.<br />

48xx System Base Cabinet<br />

1 service subsystem<br />

2 SMP nodes (<strong>4800</strong> or <strong>4850</strong>)<br />

<strong>4800</strong><br />

- 450 - 550 MHz processors<br />

- BYA4P switch board<br />

- BIC2G adapter<br />

<strong>4850</strong><br />

- 700 MHz processors<br />

- BYA4G switch board<br />

- BIC2C adapter<br />

3 UPS <strong>and</strong> UIS<br />

48xx System Expansion Cabinet<br />

1 service subsystem<br />

1 PvtLAN hub<br />

2 SMP nodes (<strong>4800</strong> or <strong>4850</strong>)<br />

<strong>4800</strong><br />

- 450 - 550 MHz processors<br />

- BYA4P switch board<br />

- BIC2G adapter<br />

<strong>4850</strong><br />

- 700 MHz processors<br />

- BYA4G switch board<br />

- BIC2C adapter<br />

3 UPS <strong>and</strong> UIS<br />

48xx Single Node Cabinet<br />

1 service subsystem<br />

1 SMP node (<strong>4800</strong> or <strong>4850</strong>)<br />

<strong>4800</strong><br />

- 450 - 550 MHz processors<br />

- BYA4P switch board<br />

- BIC2G adapter<br />

<strong>4850</strong><br />

- 700 MHz processors<br />

- BYA4G switch board<br />

- BIC2C adapter<br />

3 UPS <strong>and</strong> UIS<br />

2 – 6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

Processing <strong>and</strong> BYNET Cabinets<br />

52xx System / 2 to 16 Nodes<br />

The <strong>World</strong><strong>Mark</strong> 52xx system of 2 to 16 nodes has three processing rack<br />

variations, as shown below. See “System Configurations” in Chapter 1 for an<br />

overview of the 2 to 16 node configuration.<br />

52xx System / 2 to 16 Node<br />

Base Cabinet<br />

1 service subsystem<br />

2 BYA16GX subsystems<br />

2 SMP nodes (<strong>5200</strong> or <strong>5250</strong>)<br />

<strong>5200</strong><br />

- 450 - 550 MHz processors<br />

- BIC4G adapter<br />

<strong>5250</strong><br />

- 700 MHz processors<br />

- BIC4G adapter<br />

3 UPS <strong>and</strong> UIS<br />

52xx System Expansion Cabinet<br />

1 service subsystem<br />

1 PvtLAN hub<br />

2 SMP nodes (<strong>5200</strong> or <strong>5250</strong>)<br />

<strong>5200</strong><br />

- 450 - 550 MHz processors<br />

- BIC4G adapter<br />

<strong>5250</strong><br />

- 700 MHz processors<br />

- BIC4G adapter<br />

3 UPS <strong>and</strong> UIS<br />

52xx Non-TPA<br />

Single Node Cabinet<br />

1 service subsystem<br />

1 PvtLAN hub<br />

1 non-TPA (trusted parallel<br />

applications) SMP node<br />

(<strong>5200</strong> or <strong>5250</strong>)<br />

<strong>5200</strong><br />

- 450 - 550 MHz processors<br />

- BIC4G adapter<br />

<strong>5250</strong><br />

- 700 MHz processors<br />

- BIC4G adapter<br />

3 UPS <strong>and</strong> UIS<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 7


Chapter 2: Systems Components<br />

Processing <strong>and</strong> BYNET Cabinets<br />

52xx System / 18 to 64 Nodes<br />

The <strong>World</strong><strong>Mark</strong> <strong>5200</strong> system of 18 to 64 nodes consists of a combination of<br />

processing <strong>and</strong> BYNET racks, as shown below. See “System Configurations” in<br />

Chapter 1 for an overview of the 18 to 64 node configuration.<br />

52xx System Expansion Cabinet<br />

1 service subsystem<br />

1 PvtLAN hub<br />

2 SMP nodes (<strong>5200</strong> or <strong>5250</strong>)<br />

<strong>5200</strong><br />

- 450 - 550 MHz processors<br />

- BIC4G adapter<br />

<strong>5250</strong><br />

- 700 MHz processors<br />

- BIC4G adapter<br />

3 UPS <strong>and</strong> UIS<br />

52xx Non-TPA<br />

Single Node Cabinet<br />

1 service subsystem<br />

1 PvtLAN hub<br />

1 non-TPA (trusted parallel<br />

applications) SMP node<br />

(<strong>5200</strong> or <strong>5250</strong>)<br />

<strong>5200</strong><br />

- 450 - 550 MHz processors<br />

- BIC4G adapter<br />

<strong>5250</strong><br />

- 700 MHz processors<br />

- BIC4G adapter<br />

3 UPS <strong>and</strong> UIS<br />

BYA64 Cabinet<br />

1 service subsystem<br />

1 SLAN hub<br />

1 PvtLAN switch<br />

1 BYA64GX subsystem<br />

2 UPS <strong>and</strong> UIS<br />

2 – 8<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

Processing <strong>and</strong> BYNET Cabinets<br />

52xx System / 65-512 Nodes)<br />

The <strong>World</strong><strong>Mark</strong> 52xx system can be exp<strong>and</strong>ed beyond 64 nodes with the<br />

addition of BYNET racks to support more expansion racks, as shown below.<br />

See “System Configurations” in Chapter 1 for an overview of the 65 to 512<br />

node configuration.<br />

52xx System Expansion<br />

Cabinet<br />

1 service subsystem<br />

1 PvtLAN hub<br />

2 SMP nodes (<strong>5200</strong> or <strong>5250</strong>)<br />

<strong>5200</strong><br />

- 450 - 550 MHz processors<br />

- BIC4G adapter<br />

<strong>5250</strong><br />

- 700 MHz processors<br />

- BIC4G adapter<br />

3 UPS <strong>and</strong> UIS<br />

BYB64 Cabinet<br />

1 service subsystem<br />

1 BYB64G subsystem<br />

2 UPS <strong>and</strong> UIS<br />

BYA64/BYB64 Cabinet<br />

1 service subsystem<br />

1 SLAN hub<br />

1 PvtLAN switch<br />

1 BYA64GX subsystem<br />

1 BYB64G subsystem<br />

2 UPS <strong>and</strong> UIS<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 9


Chapter 2: Systems Components<br />

Storage Cabinets<br />

Storage Cabinets<br />

The <strong>World</strong><strong>Mark</strong> 48xx/52xx system uses one of the following br<strong>and</strong>s of storage<br />

cabinet for external storage of processing data:<br />

• 6000 <strong>NCR</strong> storage cabinet (NSC)<br />

• 6000 <strong>World</strong><strong>Mark</strong> enterprise storage (WES)<br />

• 627x storage cabinet<br />

Note: Operating environment <strong>and</strong> applications programs are stored on the<br />

internal disk drives in the individual processing nodes.<br />

6000 NSC <strong>and</strong> 6000 WES<br />

Figure 2-4 is an example of a 6000 storage cabinet. Both the NSC <strong>and</strong> the WES<br />

have the same cabinet architecture. The cabinet contains a 2U service<br />

subsystem chassis at the top of the rack. It is connected to <strong>and</strong> controlled by the<br />

3U service subsystem in a processing rack, affording full AWS control of the<br />

storage cabinet. The NSC <strong>and</strong> WES models also contains two UPS/UIS chassis<br />

at the bottom of the rack.<br />

Figure 2-4<br />

Typical <strong>NCR</strong> Storage Cabinet<br />

UPS<br />

UPS<br />

2 – 10<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

Storage Cabinets<br />

The 6000 NSC houses disk array subsystems in the following supported<br />

configurations:<br />

• 6285-1220 disk arrays: 1 to 3 per NSC<br />

• 6285-1440 disk arrays: 1 or 2 per NSC<br />

The 6000 WES houses disk array subsystems in the following supported<br />

configurations:<br />

• 6288-1440 disk arrays: 1 to 2 per WES<br />

627x Storage Cabinet<br />

The 627x cabinet does not have a physical connection to the system except<br />

through SCSI cabling from the 627x disk arrays to SMP nodes in the processing<br />

racks. The 627x has its own cabinet protocol with a dedicated console for its<br />

own control.<br />

The 627x storage cabinet houses the following types of disk array subsystems:<br />

• 6273<br />

• 6274<br />

• 6276<br />

• 6277<br />

• 6278-2000<br />

• 6278-3000<br />

For complete information, see the product documentation for your disk array.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 11


Chapter 2: Systems Components<br />

System Console<br />

System Console<br />

Network Hubs at AWS<br />

Dual AWS<br />

Remote AWS<br />

The Administration Workstation (AWS) is an <strong>NCR</strong> deskside computer. It serves<br />

as the <strong>World</strong><strong>Mark</strong> MPP systems console, providing a single operational view in<br />

a large systems environment.<br />

Two AWS configurations are available, one for MPP systems of 1 to 12 nodes,<br />

the second for MPP systems of 12+ nodes.<br />

For specific information on the server used as the AWS, see the <strong>NCR</strong> user guide<br />

which is provided with the product.<br />

The AWS is packaged with two 8-port Ethernet hubs, one for the Private LAN<br />

(PvtLAN) <strong>and</strong> one for the System LAN (SLAN).<br />

• The PvtLAN hub at the AWS is used in system configurations of 16 nodes<br />

or less. It funnels multiple node connections into a single connection to the<br />

console.<br />

• The SLAN hub converts a 10Base2 coaxial connection from the rack<br />

cabinets to a 10BaseT twisted pair Ethernet connection at the console.<br />

Note: Earlier AWS models use an internal coaxial adapter for the SLAN<br />

connection, instead of the external SLAN hub.<br />

For more information on system networks, see “System Platform Interfaces”<br />

later in this chapter.<br />

In the UNIX operating environment, a redundant AWS, referred to as “dual<br />

AWS,” is an available option. It provides a redundant system console<br />

connection to the platform. Both consoles are totally independent, each having<br />

full st<strong>and</strong>-alone functionality.<br />

Enabling software allows the two consoles to operate on the same System LAN<br />

(SLAN) simultaneously for all unrestricted functions. Security lockout software<br />

allows only one AWS at a time to execute security function operations.<br />

In the hardware configuration for a second AWS, the Private LAN (PvtLAN)<br />

<strong>and</strong> the SLAN extend to <strong>and</strong> terminate at the second AWS.<br />

A single AWS can be extended for multiple operators <strong>and</strong> administrators by<br />

adding Administration Stations (AS). The AS is an X terminal that connects to<br />

the AWS to gain management functions. Up to five Administration Stations can<br />

be supported by an AWS.<br />

2 – 12<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

System Console<br />

The AS can connect to the AWS locally via Ethernet or remotely through a<br />

modem. When the AS connects to the AWS from a remote location, the AWS<br />

must support the X-Remote protocol.<br />

Figure 2-5 depicts the remote AWS interface.<br />

Figure 2-5<br />

Remote AWS Connections<br />

SLAN<br />

AWS<br />

Console<br />

PvtLAN<br />

(Private LAN)<br />

Administration<br />

Stations (AS)<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 13


Chapter 2: Systems Components<br />

Software<br />

Software<br />

System-Level Software<br />

Server-Level Software<br />

The <strong>World</strong><strong>Mark</strong> 48xx/52xx platform requires the following system-level<br />

operating software:<br />

• Operating system:<br />

– <strong>NCR</strong> UNIX SVR4 MP-RAS Enterprise Operating Environment (EOE),<br />

release 3.02 (with platform-required compatibility update <strong>and</strong> patches),<br />

available for <strong>4800</strong>, <strong>5200</strong>, <strong>4850</strong>, <strong>and</strong> <strong>5250</strong><br />

– Windows NT 4.0 Server Enterprise Edition (EE), available on <strong>4800</strong> <strong>and</strong><br />

<strong>4850</strong> with BYNET version 1 (coexistence <strong>and</strong> migration model only)<br />

– Windows 2000 Advanced Server, available on <strong>4850</strong> <strong>and</strong> <strong>5250</strong><br />

• Teradata Warehouse 6.0<br />

• Supporting packages <strong>and</strong> patches for both the AWS <strong>and</strong> processing nodes<br />

The system software is installed before shipment. Operating system software is<br />

also delivered in CD-ROM media. The three-piece CD set includes the<br />

following:<br />

• Core CD<br />

• Packages CD<br />

• Documentation CD<br />

You can list software installed on the system as follows:<br />

• On UNIX: To list all software, run the pkginfo utility (pkginfo -x). To list<br />

the contents of a single package, use the comm<strong>and</strong> pkginfo -l .<br />

• On Windows: To list software packages that loaded via Install Shield, access<br />

the .<br />

A platform CD-ROM is provided with the <strong>World</strong><strong>Mark</strong> 48xx/52xx system. It<br />

contains the software utilities that are pre-loaded in the Diagnostic Partition, a<br />

DOS partition on each node’s boot disk.<br />

Server software includes node-enabling components such as Power On Self<br />

Test (POST), BIOS Setup Utility, System Setup Utility (SSU), BIOS flash utility,<br />

SCSI configuration utilities <strong>and</strong> others. The CD is bootable (no flex required)<br />

with utilities executable directly off of the CD.<br />

For information on these software utilities, see the Server Software <strong>Guide</strong>.<br />

For information on other specific subsystem level software that runs on nodes<br />

in an MPP environment, see Chapter 3 in this guide.<br />

2 – 14<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

System Platform Interfaces<br />

System Platform Interfaces<br />

The <strong>World</strong><strong>Mark</strong> 48xx/52xx system uses the following interfaces to accomplish<br />

communications among the system platform components.<br />

This interface…<br />

System LAN (SLAN)<br />

Private LAN (PvtLAN)<br />

Management LAN<br />

(MLAN)<br />

External MLAN<br />

BYNET Network<br />

Cabinet Power<br />

Small Computer Systems<br />

Interface (SCSI)<br />

Teradata IBM Channel<br />

Connects these components…<br />

Processing cabinets, BYNETs, <strong>and</strong> <strong>NCR</strong><br />

storage cabinets to AWS<br />

AWS to processing nodes<br />

Service subsystem to each chassis within its<br />

own rack<br />

2U service subsystem in <strong>NCR</strong> storage<br />

cabinet to 3U service subsystem in<br />

processing cabinet (“collective”)<br />

BYNET to each processing node chassis,<br />

<strong>and</strong> BYNET to BYNET chassis<br />

UPS/UIS to each chassis within a rack<br />

Processing nodes to disk arrays<br />

Processing nodes to IBM (or compatible)<br />

mainframes<br />

Note: These interfaces are specific to the networking requirements of the<br />

<strong>World</strong><strong>Mark</strong> 48xx/52xx system hardware platform. A complete line of interface<br />

offerings are available for the varied networking requirements of the user site.<br />

SLAN<br />

The SLAN is a private network for the system. It is a coaxial (10Base2) Ethernet<br />

LAN that interconnects all processing <strong>and</strong> BYNET cabinets <strong>and</strong> the AWS. It<br />

uses the following hardware:<br />

• 8-port 10BaseT hub at the AWS<br />

Note: Earlier AWS models do not use this 10BaseT hub for the SLAN<br />

connection. They have an internal 10Base2 adapter to h<strong>and</strong>le the SLAN<br />

connection directly.<br />

• 4-port 10Base2 hub in each BYA64 cabinet <strong>and</strong> each BYA64/BYB64 cabinet<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 15


Chapter 2: Systems Components<br />

System Platform Interfaces<br />

The following table outlines the SLAN connections, based upon system<br />

configuration.<br />

Note that for systems that do not have the 10Base2 SLAN hub (no BYNET<br />

cabinet in the configuration), the SLAN consists of a single segment, or<br />

sequence of connections terminated at either end. The larger systems with the<br />

4-port 10Base2 SLAN hub have multiple segments, each port representing a<br />

segment, with a maximum of 30 connections per segment.<br />

System Configuration<br />

4 nodes or less, using<br />

BYA4P switch boards<br />

16 nodes or less, using<br />

BYA16 chassis<br />

64 nodes or less, using<br />

BYA64GX chassis<br />

SLAN Cabling<br />

Starting at the AWS*, the SLAN connects to the 10BaseT<br />

SLAN hub**, then to the service subsystem in the expansion<br />

cabinet, then to the service subsystem in the system cabinet,<br />

terminating at that chassis.<br />

See Appendix B, Figure B-1.<br />

Starting at the AWS*, the SLAN connects to the 10BaseT<br />

SLAN hub**, then to the service subsystem chassis in each<br />

cabinet in sequence, from expansion cabinets to the system<br />

cabinet. At the system cabinet, the SLAN connection<br />

continues from the service subsystem to each of the two<br />

BYA16G chassis, terminating at the lower BYNET.<br />

See Appendix B, Figure B-1.<br />

Starting at the AWS*, the SLAN connects to the 10BaseT<br />

SLAN hub**, then to the AUI port of the 10Base2 SLAN hub<br />

in each BYA64GX cabinet in sequence. This is the primary<br />

segment of the SLAN.<br />

Ports 1, 2, <strong>and</strong> 3 are the start of separate segments of the<br />

SLAN, each connecting to a group of expansion cabinets,<br />

which are daisy-chained together through service<br />

subsystem connections.<br />

Port 4 of each SLAN hub connects to the service subsystem<br />

chassis in its respective BYNET rack, creating an internal<br />

segment.<br />

See Appendix B, Figure B-2.<br />

* In a dual AWS configuration, the segment starts at the second AWS <strong>and</strong> continues to<br />

the first AWS, then to the racks.<br />

** On earlier AWS models, the SLAN connects directly to an internal 10Base2 adapter.<br />

There is no 10BaseT SLAN hub in the configuration.<br />

2 – 16<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

System Platform Interfaces<br />

The SLAN must be operational for system bringup. It carries the “heartbeats,”<br />

system events, <strong>and</strong> AWS comm<strong>and</strong>s. A heartbeat is a broadcast message that<br />

goes out from the service subsystem -- specifically, its Cabinet Module Interface<br />

Controller (CMIC2) -- to the AWS to inform the AWS of its presence.<br />

When a new CMIC2 joins the SLAN (as in the addition of an expansion rack), it<br />

starts heartbeating. The AWS reads the message <strong>and</strong> updates its view of the<br />

system configuration. If the CMIC2 stops running, or “heartbeating,” an AWS<br />

event is generated to report the lost heartbeat.<br />

A CMIC2 broadcasts all events relating to its rack cabinet. An event is<br />

generated when the CMIC2 detects an environmental change in any subsystem<br />

within its rack. Rack subsystems forward event messages to the CMIC2 over<br />

the MLAN, <strong>and</strong> the CMIC2 broadcasts the events on the SLAN.<br />

Once the system has booted, the SLAN is not critical to continued operation.<br />

The SLAN is not a fault-tolerant network. Any break in the network causes a<br />

failure along the entire network. However, the SLAN is not used for any<br />

system-critical functions during operation. It is primarily a mechanism for<br />

passing messages <strong>and</strong> events to the AWS. The system will continue operation<br />

even if the SLAN fails.<br />

PvtLAN<br />

The Private LAN (PvtLAN) is a 10BaseT Ethernet connection from the AWS<br />

console to each processing node to enable TCP/IP login capability.<br />

Caution: The PvtLAN is intended to be private, <strong>and</strong> should not be configured as part of<br />

the user facility network.<br />

The following hardware is used to provide consistency in the PvtLAN cabling<br />

protocol, from small to expansion system configurations:<br />

• 8-port 10BaseT hub on the AWS, in systems with 16 nodes or less<br />

• 8-port 10BaseT hub in each expansion cabinet<br />

• 24-port 10/100BaseT switch in each BYA64 cabinet <strong>and</strong> each BYA64/BYB64<br />

cabinet<br />

SMP nodes in each expansion cabinet connect to the PvtLAN hub in their<br />

cabinet. For a cabinet that does not have a PvtLAN hub (i.e., single node cabinet<br />

or system cabinet with BYA4P switch cards or BYA16 chassis), the node(s) in<br />

that cabinet are connected to the PvtLAN hub in a neighboring cabinet.<br />

In a 3-node system configuration, each node connects directly to the PvtLAN<br />

hub at the AWS, since there is no PvtLAN hub resident in a cabinet. See<br />

Appendix B, Figure B-3.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 17


Chapter 2: Systems Components<br />

System Platform Interfaces<br />

In a system of 16 nodes or less, each cabinet’s PvtLAN hub is connected to the<br />

PvtLAN hub at the AWS. This completes the connectivity to each node in the<br />

system for TCP/IP login capability. See Appendix B, Figure B-3.<br />

In systems greater than 16 nodes, the PvtLAN hubs are daisy-chained together<br />

in segments, with no more than four hubs per segment. Each segment is<br />

connected to the PvtLAN switch in the BYNET cabinet. In expansion systems<br />

with multiple PvtLAN switches, one switch is the central connecting point for<br />

all other PvtLAN switches. The central PvtLAN switch connects to the AWS,<br />

thus completing the connectivity to each node in the system for TCP/IP login<br />

capability. See Appendix B, Figure B-4.<br />

Hub-to-node <strong>and</strong> hub-to-AWS connections use twisted pair straight through<br />

cable. Hub-to-hub <strong>and</strong> hub-to-switch connections require cross-over cabling.<br />

MLAN<br />

The Management LAN (MLAN) is the main diagnostic <strong>and</strong> control LAN for all<br />

subsystem chassis within a cabinet. It is a 78 Kbps free topology network that<br />

links the service subsystem chassis to distributed management boards for the<br />

other subsystem chassis in the cabinet.<br />

There is a distributed management board for each rack subsystem chassis. Each<br />

board interfaces with the CMIC2 in the service subsystem chassis.<br />

For the BYNET chassis, the management board resides within the respective<br />

chassis. Point-to-point connection is between the management board <strong>and</strong> a<br />

pass-through board in the service subsystem.<br />

For all other subsystem chassis types, including the processing node, the<br />

UPS/UPS input selector, <strong>and</strong> the disk array, their respective management<br />

boards are located in the service subsystem chassis. Each is linked to its<br />

management board through a serial connection.<br />

See Appendix B, Figure B-5 <strong>and</strong> Figure B-6 for sample MLAN cabling<br />

configurations.<br />

The distributed management boards provide the interface for h<strong>and</strong>ling<br />

management functions within the chassis. These functions include power<br />

control, remote console, reset, <strong>and</strong> environmental monitoring. The CMIC2<br />

coordinates cabinet level reset, cabinet level network management, <strong>and</strong><br />

physical chassis location.<br />

The MLAN is fault tolerant, thereby providing protection against broken <strong>and</strong><br />

shorted connections.<br />

External MLAN<br />

The MLAN is commonly understood as the management LAN that is internal<br />

to the cabinet. In a “collective” configuration, an external MLAN is supported.<br />

2 – 18<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 2: Systems Components<br />

System Platform Interfaces<br />

A “collective,” as defined in the current release, is a group of <strong>NCR</strong> storage<br />

cabinets (NSCs) or <strong>World</strong><strong>Mark</strong> enterprise storage (WES) connected to <strong>and</strong><br />

controlled by the service subsystem in a processing rack. The disk cabinets<br />

have service subsystem chassis that do not contain the CMIC2 component (the<br />

Cabinet Module Interface Controller). These special chassis are identified by<br />

their smaller size, i.e., 2U. These are connected over an external MLAN to a<br />

collective-enabled 3U service subsystem that resides in a processing rack.<br />

The collective-enabled 3U chassis is the st<strong>and</strong>ard as of the current product<br />

release, <strong>and</strong> can be distinguished from the earlier version by a label on the back<br />

panel indicating “CRSM” (Collective Ready Server Management). This chassis<br />

is required to support the 2U service subsystems in a collective configuration.<br />

The external MLAN has the same properties as the MLAN that is internal to a<br />

cabinet.<br />

BYNET Network<br />

The BYNET network enables the processing nodes to communicate with each<br />

other.<br />

Each of two BYNET switches in a system represents a separate, redundant<br />

switching network for the processing nodes. Each node contains a multi-ported<br />

BYNET adapter card (BIC2G, BIC2C, or BIC4G, depending on the model), with<br />

one port cabled to one of the BYNET switches, a second port cabled to the<br />

second BYNET switch. This comprises dual BYNET switching networks.<br />

In <strong>4800</strong> <strong>and</strong> <strong>4850</strong> systems, the BYA switch board is used to interface a<br />

maximum of 4 nodes. See Appendix B, Figure B-7 <strong>and</strong> Figure B-8.<br />

In a <strong>5200</strong> or <strong>5250</strong> system using the BYA16G chassis, as many as 16 nodes are<br />

supported in the BYNET network. See Appendix B, Figure B-9.<br />

In a <strong>5200</strong> or <strong>5250</strong> system using the BYA64GX chassis, 64 nodes can be<br />

supported on one switch. See Appendix B, Figure B-10.<br />

Multiple BYA64GX chassis can be interfaced through multiple BYB64G chassis<br />

to exp<strong>and</strong> the system to a maximum of 512 nodes.<br />

In an expansion configuration, each BYA64GX in a single network is connected<br />

to each BYB64G within its network. Each BYA64GX chassis supports 8 X-port<br />

connections to BYB chassis. Likewise, every BYB chassis presents 8 interface<br />

connections for BYAs.<br />

All expansion ports on the BYA <strong>and</strong> BYB chassis are used in any expansion<br />

configuration, affording maximum throughput. See Appendix B, Figure B-11.<br />

The 8 X-port connections on the BYA64GX chassis are distributed as evenly as<br />

possible among all BYB64G chassis in the network.Additionally, all BYA64GX<br />

<strong>and</strong> BYB64G chassis in a single BYNET network are daisy-chained through<br />

“clock cabling.” The first BYB64G chassis in the cabling chain is defined as the<br />

master; it has an output cable (Clock-Out), but no input cable (Clock-In). See<br />

Appendix B, Figure B-12.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 19


Chapter 2: Systems Components<br />

System Platform Interfaces<br />

Cabinet Power<br />

SCSI<br />

Dual AC to each cabinet in the system is accommodated through two separate<br />

AC power sources, or through one AC power source with two separate circuit<br />

breakers.<br />

One power source is connected to power inlets on the left side of each UPS<br />

input selector (UIS), <strong>and</strong> the other power source is connected to the power<br />

inlets on the right side of each UIS. Power inlets on the left of the UIS represent<br />

Leg A of the power source, <strong>and</strong> the power inlets on the right represent Leg B.<br />

Leg A is the default power leg. That is, the UIS distributes power to its UPS<br />

through Leg A. Connections from cabinet to power source (UIS to AC power<br />

outlet) use the following cabling protocol:<br />

• In a system configured for load sharing:<br />

– Leg A of even-numbered cabinets, <strong>and</strong> leg B of odd-numbered cabinets,<br />

are plugged into one power source (AC1).<br />

– Leg A of odd-numbered cabinets, <strong>and</strong> leg B of even-numbered cabinets,<br />

are plugged into the other power source (AC2).<br />

• In a system configured without load sharing:<br />

– Leg A in each cabinet is plugged into one power source (AC1).<br />

– Leg B of each cabinet is plugged into the other power source (AC2).<br />

UPS to chassis connections also follow strict cabling protocol. Node chassis<br />

have three power inlets, so each UPS in a processing rack is connected to each<br />

node. All other subsystem chassis have two power inlets. Note that the<br />

PvtLAN <strong>and</strong> SLAN hub hardware has a single power inlet.<br />

See Appendix B, Figure B-13 <strong>and</strong> Figure B-14 for UPS to chassis power<br />

connections.<br />

PCI quad SCSI cabling provides the high-speed data link between processing<br />

nodes <strong>and</strong> disk arrays for external storage purposes.<br />

For connection to 6000 <strong>NCR</strong> storage cabinet (NSC) or 627x storage, processing<br />

nodes are populated with PCI quad SCSI (PQS) adapter boards, shared <strong>and</strong><br />

unshared, that use special cable assemblies. Each of the four buses on a PQS<br />

board can support as many as 15 external devices.<br />

The configuration of PQS shared <strong>and</strong> unshared boards within groups of nodes<br />

determines the connectivity to disk storage devices. Up to four processing<br />

nodes can access the same disk array in a shared configuration, known as a<br />

“clique.” See Appendix B, Figure B-15 for a sample PQS shared cabling<br />

configuration.<br />

2 – 20<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Teradata IBM Channel<br />

Chapter 2: Systems Components<br />

System Platform Interfaces<br />

For connection to 6000 <strong>World</strong><strong>Mark</strong> enterprise storage (WES), the nodes use<br />

high performance PCI quad SCSI (HP-PQS) adapters. These employ st<strong>and</strong>ard<br />

industry cabling that allows for point-to-point connectivity from the node to<br />

multi-ported disk arrays in the WES. Termination is end-of-bus only. See<br />

Appendix B, Figure B-16 for a sample HP-PQS/WES cabling configuration.<br />

The Teradata IBM channel provides the interconnect between the 48xx/52xx<br />

platform Teradata database <strong>and</strong> IBM (or compatible) mainframes for very high<br />

speed data transfer. Two types of channel interfaces are supported:<br />

• Parallel channel interface, referred to as bus <strong>and</strong> tag, PCI-based<br />

• Serial channel interface, referred to as ESCON (Enterprise Systems<br />

Connection), PCI-based<br />

The bus <strong>and</strong> tag interconnect consists of PCI bus channel adapter (PBCA)<br />

boards in the processing node (maximum of 2 per node), with 80-pin cable<br />

connecting to the channel tailgate assembly (CTGA). The tailgate assembly<br />

interfaces the PBCA cables to the IBM bus & tag channel cables. Tailgate<br />

assemblies are rack mounted. A tailgate rack can accommodate as many as<br />

eight tailgate assemblies. Each of the tailgate assemblies supports two PBCA<br />

cable interfaces.<br />

The ESCON interconnect consists of PCI Bus-to-ESCON adapter (PBSA) boards<br />

in the processing node, with fiber optic connections that plug directly into the<br />

edge of the adapter boards. No tailgate assembly is required for the PCI<br />

ESCON channel interface.<br />

These hardware interconnects are supported by Teradata system software.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 2 – 21


Chapter 2: Systems Components<br />

Cable Management<br />

Cable Management<br />

St<strong>and</strong>ard cable management hardware on all system rack types consists of D<br />

rings along the inside vertical frame of the rack. These are used to secure routed<br />

cables from each of the chassis in the rack.<br />

Specialized hardware to h<strong>and</strong>le the numerous cables from the node chassis <strong>and</strong><br />

the BYA64GX chassis is also included in the respective racks.<br />

The processing rack is outfitted with a cable bracket that attaches to the left<br />

inside rear frame of the rack, in alignment with the node chassis it supports.<br />

Five clamps on the bracket are positioned top to bottom, to hold the cables from<br />

the node’s I/O panel in a cascading fashion.<br />

The BYNET rack uses a pair of cable brackets on the left <strong>and</strong> right inside rear<br />

frames of the rack, just behind the BYA64GX chassis. Each of the brackets is<br />

designed to hold half of the possible 64 total node interface cables. The brackets<br />

secure the cables in the pattern that they are presented from the back of the<br />

chassis.<br />

2 – 22<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3:<br />

Subsystems Features<br />

This chapter provides details on each of the following <strong>World</strong><strong>Mark</strong> 48xx/52xx<br />

subsystem types:<br />

• Service Subsystem (3U)<br />

– 3U chassis<br />

• BYNET Interconnect<br />

– BYA4P Subsystem<br />

– BYA4G Subsystem<br />

– BYA16G Subsystem<br />

– BYA64GX <strong>and</strong> BYB64G Subsystems<br />

• Processing Node Subsystem<br />

• Power subsystem<br />

– UPS Chassis<br />

– UIS Chassis<br />

This chapter also includes descriptions of the following LAN hardware<br />

components, which are used in the <strong>World</strong><strong>Mark</strong> 48xx/52xx system cabling<br />

protocol:<br />

• SLAN Hubs<br />

• PvtLAN Hub <strong>and</strong> PvtLAN Switch<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 1


Chapter 3: Subsystems Features<br />

Service Subsystem (3U)<br />

Service Subsystem (3U)<br />

3U Service Subsystem Components<br />

The service subsystem is the top chassis in each rack. It is always chassis ID #1.<br />

Note: This section defines the 3U service subsystem chassis. There is a 2U<br />

service subsystem model, which is a “slave” to the 3U. In the current release,<br />

the 2U is used in the <strong>NCR</strong> storage cabinet only. The 2U is linked via external<br />

MLAN to a 3U in a processing rack to form a “collective.” For specifications on<br />

the 2U chassis, see the product documentation for the <strong>NCR</strong> storage cabinet.<br />

Hardware<br />

Following is a summary of the hardware components that make up the 3U<br />

service subsystem in processing <strong>and</strong> BYNET racks:<br />

• CMIC2 assembly: Message passing interface, performs the following<br />

system level functions:<br />

– SLAN to MLAN gateway<br />

– MLAN management<br />

– Distributed management board firmware downloading<br />

The CMIC2 assembly includes an ISA processor board with 4 MB RAM, 4<br />

MB flash EEPROM, an Ethernet port; serial board with 2 RS-232 ports for<br />

remote console support to nodes; passive ISA backpanel.<br />

• Management boards cage: Hot-swap capable backpanel with 8 slots.<br />

Supports the distributed management boards listed below:<br />

Rack CMB<br />

UMB<br />

PTB<br />

CMB<br />

(Chassis Management Board) Monitors service subsystem<br />

chassis status <strong>and</strong> keeps track of the rack configuration (i.e., the<br />

number <strong>and</strong> types of chassis within the rack).<br />

(Universal Management Board) Connects to processing node,<br />

enabling service subsystem to monitor node status <strong>and</strong> to access<br />

<strong>and</strong> administer the node remotely.<br />

(Pass-Through Board) Provides MLAN interface to BYNET CMB<br />

(which resides in the BYNET chassis) <strong>and</strong> <strong>NCR</strong> storage cabinet<br />

(NSC) 2U service subsystem. BYNET CMB performs same<br />

functions for BYNET as the UMB does for the node.<br />

Interfaces with UPS chassis, performing same function for UPS<br />

as the UMB does for the node.<br />

• Fans: Redundant fans, 12V DC each, for chassis cooling.<br />

3 – 2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Service Subsystem (3U)<br />

• Power: Two hot-plug power supplies, one on each AC leg, providing DC<br />

voltages. Redundant in a 1+1 configuration. Two separate AC feeds, each<br />

connecting to one of the two power supplies, accommodate dual AC input<br />

for high availability.<br />

Firmware<br />

Following is a summary of the firmware resident on the 3U service subsystem<br />

chassis.<br />

• CMIC2 firmware: Runs on CMIC2 to enable CMIC2 functionality<br />

including:<br />

– UMB, CMB, <strong>and</strong> rack configuration on MLAN<br />

– Comm<strong>and</strong> routing from AWS to appropriate chassis<br />

– Event routing from a chassis to AWS<br />

– Remote console from AWS to target processing node<br />

• UMB firmware: Runs on UMB to enable monitoring <strong>and</strong> remote control of<br />

node chassis<br />

• UMB network firmware: For MLAN communications processor on UMB<br />

• Rack CMB firmware: Runs on the rack CMB to enable monitoring of<br />

service subsystem chassis status/environment <strong>and</strong> MLAN conditions<br />

• CMB UPS firmware: Runs on CMB to enable monitoring <strong>and</strong> remote<br />

control of UPS chassis<br />

Figure 3-1 identifies the connectors <strong>and</strong> LEDs on the front <strong>and</strong> rear of the<br />

service subsystem chassis in a processing rack. Note that this same chassis is<br />

used in the BYNET rack, with minor variations in the population of the<br />

management boards cage, as noted in the table legend below the figure.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 3


Chapter 3: Subsystems Features<br />

Service Subsystem (3U)<br />

Figure 3-1<br />

Service Subsystem Chassis Connectors <strong>and</strong> LEDs<br />

A<br />

Front<br />

CMIC2 Assembly<br />

B<br />

Management Boards<br />

Cage<br />

C E D<br />

L<br />

N<br />

P<br />

Rear<br />

Collective<br />

Enabled<br />

F<br />

G H I J K M O<br />

Figure 3-1 Item<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

Figure 3-1 Item Description<br />

Chassis status LED:<br />

Green = OK<br />

Amber = Chassis off-line, being reset, or booting up<br />

Power supply LEDs: Green = OK<br />

Ethernet BNC. SLAN connection<br />

CMIC2 processor LED: Green = Traffic on SLAN<br />

Serial interface to processing nodes for remote console support. Uses quad cable assembly<br />

(P1-P4 connectors) to nodes in rack as follows:<br />

• P1 top node (chassis #4)<br />

• P2 bottom node (chassis #5)<br />

Note: P3 <strong>and</strong> P4 connectors not used at this time<br />

Serial connections to CMIC2 for diagnostics:<br />

• Com 1 (right) at 38.8 Kbps<br />

• Com 2 (left) -- unused<br />

CMIC2 reset button<br />

3 – 4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Service Subsystem (3U)<br />

Figure 3-1 Item<br />

H<br />

I<br />

J<br />

K<br />

L<br />

M<br />

N<br />

O<br />

P<br />

CMIC2 assembly LED: Green = Power on<br />

Slot 1 - Rack CMB<br />

Slot 2 - PTB for BYNET:<br />

• 1st port to 2U service subsystem chassis in NSC (external MLAN)<br />

• 2nd port from 2U service subsystem chassis in NSC (external MLAN)<br />

• 3rd port to top BYNET in rack<br />

• 4th port to bottom BYNET in rack<br />

Note: PTB is resident in all service subsystem chassis, regardless of rack type.<br />

Slots 3 <strong>and</strong> 4 - UMBs for node chassis #4 <strong>and</strong> #5, respectively:<br />

• top port to ICMB connector on node<br />

• bottom port to COM 2 connector on node<br />

Note: These slots are vacant in service subsystem for BYNET rack.<br />

UMB LEDs:<br />

Service (left): Green = Power on<br />

Status (right):<br />

Green = OK<br />

Amber = Critical fault<br />

Blinking = Board is faulted or booting<br />

Slots 6, 7, <strong>and</strong> 8 - CMBs for UPS chassis, as follows:<br />

• In processing rack<br />

Slot 6 to UPS/UIS chassis #6<br />

Slot 7 to UPS/UIS chassis #7<br />

Slot 8 to UPS/UIS chassis #8<br />

• In BYNET rack:<br />

Slot 6 is vacant<br />

Slot 7 to UPS/UIS chassis #4<br />

Slot 8 to UPS/UIS chassis #5<br />

“Y” communications cable is used for each chassis. It connects 15-pin communications port on<br />

the UPS input selector to the top <strong>and</strong> bottom ports of the respective CMB in service subsystem.<br />

CMB LED:<br />

Green = OK<br />

Amber = Problem with board or firmware flash in progress<br />

Blinking = Unconfigured board<br />

Dual AC power inlets, 120/220 volts each:<br />

• Top (inlet #1) to UPS 1<br />

• Bottom (inlet #2) to UPS 2<br />

Figure 3-1 Item Description<br />

“Collective Enabled” indicates that this 3U service subsystem model is enabled to support 2U<br />

“slave” service subsystems in disk racks in a collective environment.<br />

Note: For information about the 2U service subsystem chassis, see the product documentation<br />

for the <strong>NCR</strong> storage cabinet.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 5


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

BYNET Interconnect Subsystem<br />

The BYNET interconnect enables transaction passing among Symmetrical<br />

Multi-Processing (SMP) nodes in a high-speed, loosely coupled fashion.<br />

Following are the types of BYNET subsystems, based upon system<br />

configuration.<br />

BYA4P switch board <strong>4800</strong> system /<br />

1-4 nodes max.<br />

BYA4G switch board <strong>4850</strong> system /<br />

1-4 nodes max.<br />

BYA16G chassis <strong>5200</strong> <strong>and</strong> <strong>5250</strong> system /<br />

2-16 nodes max.<br />

BYA64GX chassis <strong>5200</strong> <strong>and</strong> <strong>5250</strong> system /<br />

18-64 nodes<br />

PCI adapter board, plugs into the I/O board in the<br />

processing node. One BYA4P is installed in each of the<br />

two nodes in the base cabinet.<br />

PCI adapter board, plugs into the I/O board in the<br />

processing node. One BYA4G is installed in each of the<br />

two nodes in the base cabinet.<br />

3U chassis. Two installed in base cabinet as Chassis<br />

IDs #2 <strong>and</strong> #3, respectively.<br />

12U chassis. Installed in BYA64G cabinet <strong>and</strong> in<br />

BYA64/BYB64 cabinet as Chassis ID #2.<br />

BYB64G chassis<br />

<strong>5200</strong> <strong>and</strong> <strong>5250</strong> system<br />

beyond 64 nodes<br />

<strong>5200</strong> <strong>and</strong> <strong>5250</strong> system<br />

beyond 64 nodes<br />

12U chassis. Installed in BYB64G cabinet <strong>and</strong> in<br />

BYA64/BYB64 cabinet as Chassis ID #3.<br />

BYA4P Subsystem<br />

Following is a summary the hardware components of the BYA4P subsystem<br />

type. Note that BYA4P interconnect is a board only, <strong>and</strong> is housed in the<br />

processing node, rather than in its own rack chassis.<br />

Figure 3-2<br />

• BYA4P switch board: Four-port BYNET network board provides bidirectional<br />

communication among a maximum of four SMP nodes.<br />

Supports four 10 MB per second taxi ports, compatible with BYNET v 1.0<br />

<strong>and</strong> v1.1.<br />

The BYA4P does not include the Diagnostic Processor (DP). BYNET DP<br />

functions for the BYA4P subsystem are h<strong>and</strong>led through driver software.<br />

Figure 3-2 identifies the BYA4P switch board faceplate, as it is presented at<br />

the node bulkhead. The BYA4P board is conventionally seated in PCI slot 10<br />

in the node adapter cage.<br />

BYA4P Connectors<br />

3 2 1 0<br />

3 – 6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

• BIC2G adapter: Circuit board providing connection to BYNET switch. Two<br />

10 MB per sec channels (Ports 2 <strong>and</strong> 3), compatible with BYNET v1.0 <strong>and</strong><br />

v1.1 switches, as shown below.<br />

3/v1 2/v1 1/v2 0/v2<br />

Connect to BYA4Ps<br />

BYA4G Subsystem<br />

Note: Two 1 Gbit per sec channels, compatible with BYNET v2.0 switches,<br />

(Ports 0 <strong>and</strong> 1) are not used. Only ports 2 <strong>and</strong> 3 are used to connect to the<br />

BYA4P switch in the current release of <strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong>.<br />

Following is a summary the hardware components of the BYA4G subsystem<br />

type. Note that BYA4G interconnect is a board only, <strong>and</strong> is housed in the<br />

processing node, rather than in its own rack chassis.<br />

• BYA4G switch board: Version 2 four-port network board provides bidirectional<br />

communication among a maximum of four SMP nodes.<br />

Supports four serial 1.0625 Gbit/sec Fibre Channel ports, compatible with<br />

BYNET v2 only. The 4G switch interfaces with the BIC2C adapter in the<br />

node.<br />

The BYA4G does not include the Diagnostic Processor (DP). BYNET DP<br />

functions for the BYA4G subsystem are h<strong>and</strong>led through driver software.<br />

The switch board faceplate is identical to the BYA4P, as shown earlier in<br />

Figure 3-2.<br />

• BIC2C adapter: Circuit board providing connection to BYA4G switch in the<br />

<strong>4850</strong> platform. Two 1 Gbit per sec channels, compatible with BYNET v2.0<br />

switches (Ports 0 <strong>and</strong> 1), as shown below.<br />

BIC2C<br />

1/v2 0/v2<br />

BYA16G Subsystem<br />

Following is a summary of the hardware <strong>and</strong> firmware components of the<br />

BYA16G subsystem. All listed components are located within the BYA16G<br />

chassis, except for the adapter card, which is installed in the processing node.<br />

The BYA16G chassis contains no field-replaceable components; it is serviced as<br />

a single replaceable unit in the rack.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 7


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

• BIC4G adapter (installed in processing node): Circuit board in processing<br />

node, provides access to BYNET switch. BIC4G has four 1 Gbit per sec<br />

channels (Ports 0-3, right to left, as shown below), compatible with BYNET<br />

v2.0 switches. Port 0 to BYNET 0, Port 1 to BYNET 1.<br />

3/v2 2/v2 1/v2 0/v2<br />

Note: BIC4G Ports 2 <strong>and</strong> 3 are not used in the current release of <strong>World</strong><strong>Mark</strong><br />

48xx/52xx.<br />

• BYA16G switch board: Stage A non-exp<strong>and</strong>able switch board. Supports<br />

maximum 16 links to nodes (through BIC4G adapters). The BYA16G switch<br />

board also includes the Diagnostic Processor (DP) <strong>and</strong> power supply<br />

interface.<br />

• Power supplies: Two AC-DC power supplies. Redundant in a 1+1<br />

configuration. Two separate AC feeds to accommodate dual AC input.<br />

• Fans: Three fans, 12V each, for chassis cooling.<br />

• BYNET CMB: Chassis management board that h<strong>and</strong>les out-of-b<strong>and</strong><br />

management functions within the BYNET chassis, including power control,<br />

reset, environmental monitoring. Provides the MLAN connection to the<br />

service subsystem.<br />

• BYNET CMB firmware: Runs on the BYNET CMB to monitor the status<br />

<strong>and</strong> functionality of the BYNET-DP/BYNET chassis <strong>and</strong> report status to the<br />

CMIC2 via the MLAN.<br />

Figure 3-3 identifies the LEDs <strong>and</strong> connectors on the BYA16G chassis.<br />

3 – 8<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

Figure 3-3<br />

BYA16G Subsystem Chassis (rear view)<br />

A<br />

C D<br />

Not Used<br />

SERVICE<br />

MLAN<br />

Not Used<br />

DP<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

Port 8<br />

Port 9<br />

Port A<br />

Port B<br />

Port C<br />

Port D<br />

Port E<br />

Port F<br />

ETHERNET<br />

E<br />

AC 1<br />

AC 2<br />

B<br />

F<br />

Figure 3-3 Item<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Figure 3-3 Item Description<br />

Diagnostic Processor (DP) LED:<br />

Off = Powered off<br />

Green, solid = Powered on, diagnostics passed<br />

Green, blinking = Awaiting IP address, diagnostics passed<br />

Amber or Red = Abnormal<br />

Note: Within 10 seconds of power-up, the BYNET switch board’s LED should go from red to<br />

amber to green.<br />

Node connections. 16 ports in two banks (Ports 0-7 in bank 1; Ports 8-F in bank 2) to BIC4G<br />

adapters in processing nodes.<br />

Indicator for BYNET chassis management board (CMB):<br />

Green = MLAN connection good<br />

Amber = Connection error or card flash underway<br />

Note: An LED on the front panel of the chassis reflects the state of the BYNET chassis’<br />

MLAN connection. It is on <strong>and</strong> green when the BYNET CMB is connected through the<br />

MLAN to a live service subsystem chassis.<br />

Management LAN (MLAN) connection from BYNET CMB to appropriate connector on the<br />

pass-through board (PTB) in slot 2 of the service subsystem chassis, as follows:<br />

• Top BYNET in rack to slot 2 PTB connector 3<br />

• Bottom BYNET in rack to slot 2 PTB connector 4<br />

Ethernet connection used for System LAN (SLAN) interface. Connections as follows:<br />

• From service subsystem chassis BNC connector to top BYNET in rack<br />

• From top BYNET to bottom BYNET in rack <strong>and</strong> terminated<br />

Dual AC power inputs, 120/220 volts each:<br />

• Top BYNET: left inlet (#1) to UPS 2, right inlet (#2) to UPS 3<br />

• Bottom BYNET: left inlet (#1) to UPS 1; right inlet (#2) to UPS 3<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 9


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

BYA64GX <strong>and</strong> BYB64G Subsystems<br />

Following is a summary of the hardware <strong>and</strong> firmware components of the<br />

BYA64GX <strong>and</strong> the BYB64G subsystems. All listed components are located<br />

within the BYNET chassis, except for the adapter card, which is installed in the<br />

processing node.<br />

Both the BYA64GX <strong>and</strong> BYB64G chassis are designed so that their components<br />

are field-replaceable; this allows for parts maintenance of the chassis in the<br />

field. Also note that several components are the same ones used for the<br />

BYA16G chassis.<br />

• BIC4G adapter (installed in processing node): Circuit board in processing<br />

node, provides access to BYNET switch. BIC4G has four 1 Gbit per sec<br />

channels (Ports 0-3, r-l), compatible with BYNET v2.0 switches. Port 0 to<br />

BYNET 0, Port 1 to BYNET 1. (See the BIC4G illustration in the previous<br />

section on BYA16G.)<br />

Note: BIC4G Ports 2 <strong>and</strong> 3 are not used in the current release of <strong>World</strong><strong>Mark</strong><br />

48xx/52xx.<br />

• Chassis Backpanel: BYA64GX backpanel supports 8 BYA8X switch boards<br />

<strong>and</strong> DP board. BYB64G backpanel supports 4 BYB16G switch boards <strong>and</strong><br />

DP board. See part descriptions below.<br />

• BYA8X switch board (in BYA64GX chassis): Stage A base switch board.<br />

Each board supports 8 links to nodes. The BYA64GX chassis can contain a<br />

maximum of 8 BYA8X switches, allowing for 64 links to nodes. In systems<br />

greater than 64 nodes, the BYA8GX switch boards also connect the<br />

BYA64GX chassis to BYB64G chassis through X-port connectors, one on<br />

each BYA8X board.<br />

• BYB16G switch board (in BYB64G chassis): Stage B expansion switch<br />

board. The BYB64G chassis contains 4 BYB16G boards. These boards<br />

interconnect through the BYB backpanel to provide 8 expansion ports. The<br />

expansion ports are used to interconnect BYA64GX chassis (through X-port<br />

connections on BYA8X switch boards). A maximum of 8 BYA64GX chassis<br />

can be interconnected to a maximum of 8 BYB64G chassis (one X-port<br />

connection from each BYA64 chassis to the expansion port on each BYB64<br />

chassis), thus providing up to 512-node switching capacity.<br />

• BYNET CMB: Chassis management board that h<strong>and</strong>les out-of-b<strong>and</strong><br />

management functions within the BYNET chassis, including power control,<br />

reset, environmental monitoring. Provides the MLAN connection to the<br />

service subsystem.<br />

• DP board: Diagnostic Processor board, provides the BYNET diagnostic<br />

interface <strong>and</strong> BYNET clock distribution.<br />

• Power supplies: Two AC-DC power supplies. Redundant in a 1+1<br />

configuration. Two separate AC feeds, each connecting to one of the two<br />

power supplies, accommodates dual AC input for high availability.<br />

• Fans: Three fans, 12V each, for chassis cooling.<br />

3 – 10<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

• Diagnostic Processor (DP) core firmware: Runs on BYNET switch board to<br />

enable diagnostics, self-configuring topology generation, exception<br />

h<strong>and</strong>ling, <strong>and</strong> event logging.<br />

• BYNET CMB firmware: Runs on the BYNET CMB to monitor the status<br />

<strong>and</strong> functionality of the BYNET-DP/BYNET chassis <strong>and</strong> report status to the<br />

CMIC2 via the MLAN.<br />

Figure 3-4 identifies the components <strong>and</strong> connectors located on the rear of the<br />

BYA64GX <strong>and</strong> BYB64G chassis:<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 11


Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 2Port 2<br />

Port 2Port 2<br />

Port 5Port 5<br />

Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

Figure 3-4<br />

BYA64GX <strong>and</strong> BYB64G Subsystem Chassis Connectors <strong>and</strong> LEDs<br />

BYA64GX Rear<br />

Slot 0 Slot 2 Slot 4 Slot 6 DP Slot 7 Slot 5 Slot 3 Slot 1<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

Not<br />

Used<br />

BYABGX<br />

Service<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Not MLAN<br />

Port 6<br />

Used<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 0<br />

Port 3<br />

Port 1<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Service<br />

Port 5 Clock<br />

Out<br />

Port 4<br />

Clock MLAN<br />

In<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Front BYA64GX & BYB64G<br />

B<br />

A<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

Not Port 6<br />

Used<br />

Port 7<br />

DPClock<br />

Out BYABGX<br />

Clock<br />

ETHERNET<br />

In<br />

X-Ports<br />

Not<br />

Used<br />

DP<br />

ETHERNET<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

X-Ports<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

Port 3<br />

Port 6<br />

Port 7<br />

Port BYABGX 4<br />

Port 5<br />

X-Ports<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

C<br />

D<br />

STATUS PS 1 PS 2<br />

BYB64G Rear<br />

E<br />

F<br />

Slot 0 Slot 1 Slot 2 Slot 3 DP<br />

BYB16G BYB16G 0-7<br />

8-F<br />

BYB16G<br />

BYB16G<br />

10-17<br />

18-1F<br />

20-27<br />

28-2F<br />

30-37<br />

38-3F<br />

Not<br />

Used<br />

MLAN<br />

Clock<br />

Out<br />

Clock<br />

In<br />

G<br />

H<br />

I<br />

DP<br />

Not<br />

Used<br />

ETHERNET<br />

J<br />

K<br />

3 – 12<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

BYNET Interconnect Subsystem<br />

Figure 3-4 Item<br />

Figure 3-4 Item Description<br />

A<br />

B<br />

C<br />

D<br />

MLAN connection LED:<br />

Green = OK<br />

Power supply LEDs: Green = OK<br />

Connectors on BYA8X switch board, providing interface to BIC4G adapters in processing<br />

nodes. 8 connectors (ports 0-7) per BYA8X board, 8 boards (slots 0-7) per BYA64GX chassis,<br />

for maximum 64 node connections.<br />

Note: The four left BYA8X boards are installed with the X-ports at the top; the four right<br />

BYA8X boards are inverted, with the X-ports at the bottom.<br />

X-ports, one on each BYA8X switch in the BYA64GX chassis. 8 X-ports per BYA64GX chassis<br />

to interface to BYB64G chassis. All 8 ports are used in any expansion system configuration<br />

beyond 64 nodes. The 8 X-port connections on each BYA64GX chassis are distributed equally<br />

among the BYB64G chassis in the network. For example:<br />

• In 65-128 node system with 2 BYA64GX <strong>and</strong> 2 BYB64G in a single BYNET network, each<br />

BYA64GX will have 4 connections to each BYB64G.<br />

Note: The system has a second, redundant BYNET network cabled in the same pattern.<br />

E 8 expansion ports on BYB64G, to interface with BYA64GX chassis through X-ports. All 8<br />

expansion ports are used. The 8 ports on each BYB64G are connected to each BYA64GX in a<br />

single network, with connections distributed equally. See the X-ports definition above.<br />

F<br />

G<br />

H<br />

I<br />

J<br />

K<br />

Dual AC power inputs, 120/220 volts each:<br />

• Left (inlet #1) to UPS Leg 1<br />

• Right (inlet #2) to UPS Leg 2<br />

Indicator for BYNET chassis management board (CMB):<br />

• Green = MLAN connection good<br />

• Amber = Connection error or card flash underway<br />

MLAN connection from BYNET CMB to appropriate connector on the pass-through board<br />

(PTB) in slot 2 of the service subsystem chassis, as follows:<br />

• BYA64GX to slot 2 PTB connector 3<br />

• BYB64G to slot 2 PTB connector 4<br />

Clock cabling connectors to link all BYNET chassis in single network. Chassis are<br />

daisy-chained, from Clock-Out on one chassis to Clock-In on next, starting with BYBs then<br />

moving to BYAs. First BYB in chain (no Clock-In cable) is master.<br />

Diagnostic Processor (DP) LED:<br />

Off = Powered off<br />

Green, solid = Powered on, diagnostics passed<br />

Green, blinking = Awaiting IP address, diagnostics passed<br />

Amber or Red = Abnormal<br />

Ethernet connection for System LAN (SLAN) interface.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 13


Chapter 3: Subsystems Features<br />

Processing Node Subsystem<br />

Processing Node Subsystem<br />

Node Components<br />

Two symmetrical multi-processing (SMP) node chassis are resident in a typical<br />

processing rack configuration. They are always referenced as chassis IDs #4 <strong>and</strong><br />

#5, top <strong>and</strong> bottom respectively.<br />

Note: In the single node rack configuration of the 48xx system model, only the<br />

bottom node, chassis #5, is present.<br />

The SMP node is the processor building block of the system, with each node<br />

containing a minimum configuration that includes:<br />

4 Pentium III CPUs, 1 MB cache (XEON modules)<br />

1 GB of EDO RAM<br />

1 BYNET interface adapter (BIC2G, BIC2C, or BIC4G, depending on model)<br />

1 dual 10/100 Ethernet adapter (PvtLAN)<br />

1 single-ended SCSI adapter (internal drives only)<br />

4 9GB 10,000 RPM disk drives<br />

1 8mm tape drive<br />

1 3.5-inch flex drive<br />

1 CD ROM drive<br />

Additional PCI-based options are available, as required per system site,<br />

including the <strong>NCR</strong> PCI Quad SCSI (PQS) adapter or high performance PQS<br />

(HP-PQS) adapter for mass external storage interface, <strong>and</strong> Teradata IBM<br />

channel adapter for mainframe interface.<br />

Hardware<br />

Following is a summary of the hardware components that comprise the SMP<br />

node subsystem:<br />

• A450NX system board set: Dual baseboard design that includes:<br />

– CPU baseboard<br />

– I/O baseboard<br />

– Interconnect backplane<br />

The baseboards are physically placed back to back, connected to each other<br />

by the interconnect backplane. Two exp<strong>and</strong>er buses (F16 buses) electrically<br />

connect the two baseboards together. Power to the board set is supplied<br />

through the interconnect backplane.<br />

• CPU baseboard: Faces the left side of the chassis, <strong>and</strong> supports the<br />

following features:<br />

3 – 14<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Processing Node Subsystem<br />

– Processors: Four Xeon processor modules, each containing the<br />

processor core <strong>and</strong> L2 cache components inside a single edge connect<br />

(S.E.C.) cartridge. The cartridges plug into the CPU baseboard, <strong>and</strong><br />

interconnect through the front side bus (FSB) to form 4-way SMP<br />

architecture.<br />

– Memory: Two high capacity DRAM memory boards. The <strong>4800</strong>/<strong>5200</strong><br />

node supports up to 4 GB of memory, using 16 dual in-line memory<br />

modules (DIMMs).<br />

• I/O baseboard: Faces the right side of the chassis, <strong>and</strong> provides the<br />

following connections:<br />

– 11 PCI bus master slots (one shared with ISA)<br />

– fast/wide SCSI II connection for flex drive<br />

– ultra/wide SCSI connection for 5.25-inch tape drive <strong>and</strong> CD-ROM<br />

– two IDE connectors<br />

– I/O panel including serial, parallel, <strong>and</strong> USB ports<br />

• ICMB (Intelligent Chassis Management Bus): Provides interface between<br />

the server management components within the node (i.e., Intel I 2 C<br />

microcontrollers) <strong>and</strong> the service subsystem in the rack. This interface of<br />

node to service subsystem accomplishes the overall chassis management<br />

strategy of the larger system.<br />

• Power: Three AC power inputs to three hot-plug 625-watt AC-DC power<br />

supplies. Each power supply connects to power adapter board, then to<br />

power translator board, then to power distribution backplane. The<br />

distribution backplane interfaces with the interconnect backplane to<br />

provide power to the CPU <strong>and</strong> I/O baseboards. It also distributes power to<br />

the SCSI backplane <strong>and</strong> fans.<br />

• Fans: Eight fans in three separate assemblies. CPU side of the chassis is<br />

cooled by a pair of dual fan arrays, at front <strong>and</strong> rear. I/O side of the chassis<br />

is cooled by a four-fan array at the front.<br />

• SCSI Drives/Backplane: Hot-swap drive backplane supports 5 available<br />

hot-swappable internal disk drives, 9 GB or 18 GB 10000 RPM.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 15


Chapter 3: Subsystems Features<br />

Processing Node Subsystem<br />

Software/Firmware<br />

Following is a list of the server software utilities available through the<br />

Diagnostic Partition (located on the first sector of the first partition on the first<br />

bootable hard drive in the node). These utilities are identified here as “server<br />

software”:<br />

• System Setup Utility (SSU): Used to configure the server; add, remove,<br />

<strong>and</strong> edit add-in boards; set passwords.<br />

• System Manager Event Log (SEL): Used to view, save, or clear the system<br />

event log.<br />

• BIOS Flash Utility (iflash): Used to update the BIOS as new versions<br />

become available.<br />

Following is a list of component firmware <strong>and</strong> software installed on the node:<br />

• Chassis enabling firmware: Enables front panel logic using front panel<br />

controller (FPC) code. Enables SCSI backplane using hot-swap SCSI<br />

backplane controller (HSC) code.<br />

• UMB software: Universal management board software, includes baseboard<br />

management controller (BMC) driver, UMB driver, <strong>and</strong> UMB agent.<br />

• BYNET driver software: BYNET Link Manager (BLM). UNIX STREAMS<br />

device driver that manages the physical device which connects a UNIX<br />

processor node to a BYNET.<br />

• BYNET adapter diagnostic software: BYNET utility program with<br />

comm<strong>and</strong> line interface that performs level 0 diagnostics through interface<br />

to the BIC adapter in node.<br />

• BYNET Administrative Menu (BAM) software: BYNET utility program<br />

with comm<strong>and</strong> line interface that determines BYNET configuration from<br />

node perspective for current installation.<br />

Figure 3-5 identifies the components <strong>and</strong> connectors on the rear of the<br />

processing node chassis:<br />

3 – 16<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Processing Node Subsystem<br />

Figure 3-5<br />

Processing Node Chassis (rear view) Components <strong>and</strong> Connectors<br />

B C E G<br />

A<br />

D<br />

F<br />

H<br />

I<br />

Figure 3-5 Item<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

Figure 3-5 Item Description<br />

Intelligent Chassis Management Board (ICMB) connection. To appropriate UMB in service<br />

subsystem chassis. as follows:<br />

• Top node in cabinet (chassis #4) to UMB, slot 3, top port<br />

• Bottom node in cabinet (chassis #5) to UMB, slot 4, top port<br />

Mouse (top) <strong>and</strong> keyboard (bottom) ports. Not used.<br />

Node console redirection connection. Quad cable assembly from CMIC2 serial port to node<br />

as follows:<br />

• Top node in cabinet (chassis #4) P1 connector<br />

• Bottom node in cabinet (chassis #5) P2 connector<br />

Note: P3 <strong>and</strong> P4 connectors of quad cable assembly unused at this time.<br />

MLAN connection to UMB in service subsystem chassis, as follows:<br />

• Top node in cabinet (chassis #4) to UMB, slot 3, bottom port<br />

• Bottom node in cabinet (chassis #5) to UMB, slot 4, bottom port<br />

Parallel port<br />

Video port. Not used.<br />

USB connector<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 17


Chapter 3: Subsystems Features<br />

Processing Node Subsystem<br />

Figure 3-5 Item<br />

H<br />

Figure 3-5 Item Description<br />

11 PCI bus master slots numbered 1-11, top to bottom:<br />

• Primary 32-bit PCI slots (bus/segment 0), P1-P2<br />

• Secondary 32-bit PCI slots (bus/segment 1), P3-P6<br />

• 64-bit PCI slots (bus/segment 2), P7-P11<br />

I AC power inputs, numbered left to right, #1-#3:<br />

• inlet #1 to UPS chassis #6<br />

• inlet #2 to UPS chassis #7<br />

• inlet #3 to UPS chassis #8<br />

Figure 3-6 identifies the features found on the front of the node chassis:<br />

Figure 3-6<br />

Processing Node Chassis (front view) Components, Controls, <strong>and</strong> LEDs<br />

D<br />

C<br />

E<br />

A<br />

B<br />

F G H<br />

I<br />

J<br />

3 – 18<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Processing Node Subsystem<br />

Figure 3-6 Item<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

I<br />

J<br />

Figure 3-6 Item Description<br />

LCD. Displays processor type information <strong>and</strong> failure codes.<br />

NMI switch. Causes non-maskable interrupt.<br />

DC power switch. May be disabled through BIOS secure mode.<br />

Caution: In st<strong>and</strong>ard operation, the node power is controlled through the AWS functions.<br />

The DC power switch does NOT completely remove AC power from the node. You must<br />

disconnect the AC power cord from the node chassis.<br />

Reset switch. Causes hard reset; power-on self test (POST) will run. May be disabled<br />

through BIOS secure mode.<br />

Power on LED, green. When lit, power is present (+5Vdc). When off, power is turned off or<br />

power source is disrupted.<br />

Power supply fail LED, yellow. When lit continuously, it indicates a power supply failure.<br />

When flashing, it indicates a 240 VA overload shutdown <strong>and</strong> power control failures.<br />

Fan fail LED, yellow. Flashing indicates a fan failure.<br />

Internal SCSI drive fault LED, yellow. When lit continuously, it indicates a fault status on<br />

one or more hard disk drives in the hot-dock bays. When flashing, it indicates drive reset in<br />

progress.<br />

3 removable media bays, populated as follows, left to right:<br />

• Flex (3.5 in.)<br />

• CD-ROM (5.25 in.)<br />

• Tape (5.25 in.)<br />

Five SCSI hot-swap bays in two separate compartments, with two bays on the left, three on<br />

the right. Drives identified left to right as follows:<br />

#1 (SCSI ID 0)<br />

#2 (SCSI ID 1) note: drive #3 connector is not accessible<br />

#4 (SCSI ID 3)<br />

#5 (SCIS ID 4)<br />

#6 (SCSI ID 5)<br />

LED light pipes above each drive bay are connected to the SCSI backplane to indicate drive<br />

power, activity, <strong>and</strong> fault.<br />

Note: The LEDs are visible only when the faceplate is removed.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 19


Chapter 3: Subsystems Features<br />

Power Subsystem<br />

Power Subsystem<br />

AC power to each cabinet in the system is provided by a power subsystem<br />

consisting of the following:<br />

Power Subsystem Chassis<br />

# in<br />

Processing<br />

Cabinet<br />

# in BYNET<br />

Cabinet<br />

# in <strong>NCR</strong><br />

Storage<br />

Cabinet<br />

Uninterruptible power supply (UPS) 3 2 2<br />

UPS input selector (UIS) 3 2 2<br />

The UPS <strong>and</strong> UIS chassis are paired in the rack, with a UIS mounted on the left<br />

rear of each UPS. UPS/UIS chassis are always the bottom-most chassis. Chassis<br />

IDs are #6, #7, <strong>and</strong> #8 in the processing rack; #4 <strong>and</strong> #5 in the BYNET rack.<br />

UIS Chassis<br />

The UIS chassis interfaces between the AC power sources <strong>and</strong> the UPS. It takes<br />

power from both sources, then selects one of the sources <strong>and</strong> delivers it to its<br />

respective UPS. The selected power source is always defaulted to Leg A.<br />

Figure 3-7 identifies the components <strong>and</strong> connectors on the rear panel of a UIS.<br />

Figure 3-7<br />

UIS Connectors <strong>and</strong> LEDs (rear view)<br />

A<br />

B<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

C<br />

DEF G H<br />

3 – 20<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Power Subsystem<br />

Figure 3-7 Item<br />

Figure 3-7 Item Description<br />

A AC power source inlet (Leg A)<br />

B AC power source inlet (Leg B)<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

AC power outlet (connects to the AC power inlet on its respective UPS)<br />

Leg A status LED:<br />

Green = Leg is operating normally (power present, within tolerance)<br />

Amber = Leg is out of tolerance or power is absent. If other leg’s LED is green, power has<br />

been switched to that leg; if other leg’s LED is amber, power will not switch to other leg, <strong>and</strong><br />

UPS will go on batteries<br />

Leg B status LED (same definition as Leg A status LED above)<br />

UIS fault LED:<br />

Green = UPS-IS is operating normally<br />

Amber = UPS-IS has a fault condition<br />

Management LAN (MLAN) connection. To appropriate UPS CMB in the service subsystem<br />

chassis, as follows:<br />

• In processing rack:<br />

UIS chassis #6 to slot 6 CMB<br />

UIS chassis #7 to slot 7 CMB<br />

UIS chassis #8 to slot 8 CMB<br />

• In BYNET rack:<br />

UIS chassis #4 to slot 7 CMB<br />

UIS chassis #5 to slot 8 CMB<br />

“Y” communications cable is used to connect this port on UIS to both the top <strong>and</strong> bottom<br />

ports of the respective CMB in the service subsystem.<br />

Communications port to connect UIS to UPS<br />

UPS Chassis<br />

The UPS chassis distributes 200-240V AC output to the other chassis to which it<br />

is connected in the cabinet. The UPS can provide approximately 10 minutes of<br />

battery backup to a processing node in case of power failure, thus allowing for<br />

orderly shutdown of the node or a power-fail memory dump.<br />

Figure 3-8 identifies the components <strong>and</strong> connectors located at the rear of the<br />

UPS chassis:<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 21


Chapter 3: Subsystems Features<br />

Power Subsystem<br />

Figure 3-8<br />

UPS Chassis (rear view)<br />

A<br />

C<br />

E<br />

B<br />

D<br />

F<br />

Figure 3-8 Item<br />

Figure 3-8 Item Description<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

AC inlet for UIS power cord.<br />

unused<br />

Four circuit breakers; one for each of the three outlet groups (see D) <strong>and</strong> one for all outlet<br />

groups.<br />

Outlets for chassis power cords. Outlets are grouped vertically, groups are numbered right to<br />

left (1,2,3). Within each group, outlets are lettered top to bottom (A,B,C). Groups <strong>and</strong> outlets<br />

are critical to chassis cabling protocol.<br />

Serial communications port to UIS.<br />

Emergency power off (EPO) connector that can be wired to a remote EPO switch. Enables<br />

shutdown of both AC power <strong>and</strong> battery backup power from a remote EPO switch<br />

3 – 22<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 3: Subsystems Features<br />

Power Subsystem<br />

Figure 3-9 identifies the controls <strong>and</strong> LEDs located on the front panel of the<br />

UPS chassis:<br />

Figure 3-9<br />

UPS Front Panel LEDs<br />

Battery Charge<br />

AC Input<br />

Load Level<br />

On LED<br />

On Button<br />

St<strong>and</strong>by Button<br />

Comm. Port<br />

Battery Service<br />

Site Wiring<br />

Test/Alarm Reset<br />

Button<br />

Figure 3-9 Item<br />

On Button<br />

Figure 3-9 Item Description<br />

Turns on the UPS <strong>and</strong> provides power to the outlets in the rear panel; the UPS performs a<br />

five-second self-test when powered on.<br />

When the UPS is unplugged from the AC source, power can be run from the battery by<br />

pressing the On button for three seconds.<br />

St<strong>and</strong>by Button<br />

Test/Alarm<br />

Reset Button<br />

On LED<br />

Site Wiring Fault<br />

Removes power from the load groups <strong>and</strong> places UPS on st<strong>and</strong>by. (Caution: UPS must be<br />

unplugged from the AC source for complete power-off.)<br />

Turns off the alarm. (The alarm sounds when there is a problem with the UPS). Runs a selftest<br />

when pressed for three seconds.<br />

Green = Power is available in the outlets in the rear panel of the UPS<br />

Off = Normal<br />

Red = Large voltage difference between ground <strong>and</strong> neutral<br />

(Note: LED disabled if site wiring configuration is line to line)<br />

Battery Service<br />

Off = Normal<br />

Red <strong>and</strong> alarm active = Potential battery failure detected<br />

Comm. Port<br />

Green, steady = Establishing communication with service subsystem<br />

Green, flashing = Transferring data between service subsystem, UPS<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 23


Chapter 3: Subsystems Features<br />

Power Subsystem<br />

Figure 3-9 Item<br />

AC Input<br />

(4 LEDs)<br />

Top<br />

Upper<br />

Middle<br />

Lower<br />

Middle<br />

Bottom<br />

Figure 3-9 Item Description<br />

Off = Normal<br />

Red, steady = Overvoltage condition; UPS operating on batteries<br />

Red, flashing = Pre-existing overvoltage condition, at battery shutdown<br />

Green = AC input OK<br />

Green = AC input low but UPS not on battery power<br />

Off = Normal<br />

Red, steady = AC input is too low (power failure), UPS on battery power<br />

Red, flashing = Pre-existing low voltage condition, at battery shutdown<br />

Battery Charge<br />

(4 LEDs)<br />

All Battery Charge LEDs are green when the battery is fully charged. As the loads use<br />

battery power, the green LEDs turn off one at a time from top to bottom. When the battery is<br />

charging, the LEDs turn on one at a time from bottom to top.<br />

Top Green = Battery charge > 90%<br />

Load Level<br />

(4 LEDs)<br />

Upper<br />

Middle<br />

Lower<br />

Middle<br />

Bottom<br />

Top<br />

Upper<br />

Middle<br />

Lower<br />

Middle<br />

Green = Battery charge > 66-90%<br />

Green = Battery charge > 33-66%<br />

Red = Battery low; 3-5 minutes left<br />

Off = Normal<br />

Red = Overload (load currents or watts exceed UPS load capacity)<br />

Green = Load current or watts > 66-100%<br />

Green = Load current or watts > 33-66%<br />

Bottom Green = Load current or watts > 5-33%<br />

3 – 24<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


SLAN <strong>and</strong> PvtLAN Hardware<br />

Chapter 3: Subsystems Features<br />

SLAN <strong>and</strong> PvtLAN Hardware<br />

Hub <strong>and</strong> switch hardware is used in the <strong>World</strong><strong>Mark</strong> 48xx/52xx configurations<br />

to provide for consistent SLAN <strong>and</strong> PvtLAN cabling protocol, from small to<br />

expansion systems. Hardware components of the System LAN (SLAN) <strong>and</strong> the<br />

Private LAN (PvtLAN) are as follows:<br />

Component Description Locations<br />

SLAN hub<br />

8-port 10BaseT hub*<br />

4-port 10Base2 hub<br />

At the AWS console.<br />

In every BYA64 cabinet <strong>and</strong> BYA64/BYB64 cabinet.<br />

Installed below service subsystem chassis.<br />

PvtLAN hub 8-port 10BaseT hub At the AWS console.<br />

In every expansion cabinet. Installed below service<br />

subsystem chassis.<br />

Also included with AWS.<br />

PvtLAN switch 24-port 10/100BaseT switch In every BYA64 cabinet <strong>and</strong> BYA64/BYB64 cabinet.<br />

Installed below SLAN hub.<br />

* The 10BaseT SLAN hub is not included in system configurations that use an earlier AWS model with an<br />

internal 10Base2 network interface card.<br />

SLAN Hubs<br />

10BaseT SLAN Hub at AWS<br />

The SLAN hub at the AWS is the same model that is used for the PvtLAN hub<br />

throughout the system. See “PvtLAN Hub” later in this chapter for a hardware<br />

description.<br />

Note: In system configurations of 16 nodes or less, there are two 10BaseT hubs<br />

located at the AWS, one for the SLAN connection <strong>and</strong> one for the PvtLAN. You<br />

can differentiate the SLAN hub by the 10Base2 (coaxial) cable going into it from<br />

the processing cabinets.<br />

Note: The 10BaseT SLAN hub is not included in system configurations that use<br />

an earlier AWS model with an internal 10Base2 network interface card (NIC).<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 25


Chapter 3: Subsystems Features<br />

SLAN <strong>and</strong> PvtLAN Hardware<br />

10Base2 SLAN Hub<br />

Figure 3-10 SLAN Hub Connectors <strong>and</strong> LEDs *<br />

The following identifies the significant connectors <strong>and</strong> LEDs on the 10Base2<br />

SLAN hub, as applicable to this network:<br />

A<br />

Front<br />

View<br />

CentreCOM<br />

3004SL<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

4 PORT REPEATER<br />

10 BASE2 PORTS<br />

1 2 3 4<br />

ON-LINE<br />

ON-LINE<br />

ON-LINE<br />

ON-LINE<br />

RECEIVE RECEIVE<br />

RECEIVE RECEIVE<br />

COLLISION COLLISION<br />

COLLISION COLLISION<br />

AUI<br />

PORT<br />

ON-LINE<br />

RECEIVE<br />

COLLISION<br />

ACTIVE<br />

POWER<br />

D<br />

Rear<br />

View<br />

AUI<br />

PORT<br />

4<br />

10 BASE2 PORTS<br />

3 2 1<br />

CentreCOM<br />

3004SL<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

4 PORT REPEATER<br />

POWER<br />

B<br />

C<br />

E<br />

Figure 3-10 Item<br />

Figure 3-10 Item Description<br />

A<br />

B<br />

C<br />

D<br />

Port status LEDs (4 sets of LEDs, one per port, as labeled):<br />

• Yellow = On-line. Port is connected to another On-line port.<br />

• Blue = Receive. Port is functional <strong>and</strong> incoming traffic is present.<br />

• Red = Collision. Flickering LED indicates data collision. (Occasional collisions are<br />

common; excessive collisions may indicate problem on segment.) If lit continuously,<br />

problem with port, cabling, or excessive traffic may exist.<br />

AUI connector, used to link AWS to each BYNET rack in daisy chain (primary segment).<br />

BNC ports 4 - 1, left to right, each representing a segment:<br />

• Port 4: to service subsystem chassis within cabinet (internal segment)<br />

• Ports 3, 2, <strong>and</strong> 1: each to group of expansion cabinets (in daisy chain via service<br />

subsystem in each cabinet)<br />

Note: No more than 30 connections supported per segment, including the SLAN hub port.<br />

Termination/ground switch at each BNC connector. Default is on.<br />

E Single power inlet to UPS 1.<br />

* Note: The hub is mounted in the BYNET rack at the rear, with the BNC connectors accessible from the back of<br />

the rack. The LEDs on the front of the hub are visible only when the appropriate filler panel on the front of the<br />

rack is removed.<br />

3 – 26<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


PvtLAN Hub<br />

Figure 3-11 PvtLAN Hub Connectors <strong>and</strong> LEDs *<br />

Chapter 3: Subsystems Features<br />

SLAN <strong>and</strong> PvtLAN Hardware<br />

The following identifies the significant connectors <strong>and</strong> LEDs on the PvtLAN<br />

hub:<br />

Front<br />

View<br />

IEEE 802.3 10BASE-T/AUI<br />

MULTIPORT MICRO-HUB REPEATER<br />

TM<br />

NETWORK LOAD<br />

LINK OK<br />

10BASE-T NETWORK PORTS<br />

1 2 3 4 5 6 7 8<br />

HUB STATUS<br />

1 2 4 8 16 32 64 84 + %<br />

RECIEVE 1 2 3 4 5 6 7 8<br />

ACTIVITY COLLISION POWER<br />

D<br />

E<br />

F<br />

Rear<br />

View<br />

10BASE-T NETWORK PORTS<br />

8 7 6 5 4 3 2 1<br />

X X X X X X<br />

X<br />

10BASE2/AUI BACKBONE PORTS<br />

AUX<br />

POWER<br />

A<br />

B**<br />

C<br />

Figure 3-11 Item<br />

Figure 3-11 Item Description<br />

A<br />

B**<br />

8 STP/UTP 10BaseT (RJ45) ports for node-to-hub connections within rack (using straightthrough<br />

cable), <strong>and</strong> for hub-to-hub connections between racks (using crossover cable).<br />

BNC port for connecting SLAN 10Base2 network to AWS 10BaseT network interface card.<br />

C Single power inlet to UPS 2.<br />

D<br />

E<br />

F<br />

Network load LEDs. Indicate percentage of network use.<br />

Port status LEDs, two for each RJ45 port:<br />

• Link OK: No light = physical connection problem. Green steady = valid link<br />

• Receive: Amber flashing = Link OK <strong>and</strong> there is activity on port<br />

Hub status LEDs.<br />

• Power: Green = power on<br />

• Collision: Amber flashing = SQE or frame collisions. May be caused by overloaded<br />

segment, faulty cable, or loose connection. (Occasional collisions are normal; constant<br />

illumination may indicate excessive traffic problems.)<br />

• Activity: Green = hub is functional <strong>and</strong> is transmitting packets<br />

* Note: The hub is mounted in the processor expansion rack at the rear, with the Ethernet connectors accessible<br />

from the back of the rack. The LEDs on the front of the hub are visible only when the appropriate filler panel on<br />

the front of the rack is removed.<br />

** Note: The BNC connector is used only on a 10BaseT hub serving as an SLAN hub at the AWS. See “SLAN<br />

Hubs” for explanation.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 3 – 27


STATUS<br />

FAULT<br />

POWER<br />

RESET<br />

Chapter 3: Subsystems Features<br />

SLAN <strong>and</strong> PvtLAN Hardware<br />

PvtLAN Switch<br />

The following identifies the significant connectors <strong>and</strong> LEDs on the PvtLAN<br />

switch, as applicable to this network:<br />

Figure 3-12 PvtLAN Switch Connectors <strong>and</strong> LEDs *<br />

Note: Your switch model may vary slightly in appearance from the one shown<br />

here but the functionality remains the same.<br />

E<br />

Front<br />

View<br />

Rear<br />

View<br />

CentreCOM 8124XL<br />

10 BASE-T/100 BASE-TX<br />

FAST ETHERNET SWITCH<br />

10 BASE-T/100BASE-TX PORT ACTIVITY RS-232<br />

9x 11x 13x 15x TERMINAL PORT<br />

1x 3x 5x 7x 17x 19x 21x 23x<br />

1 3 57 9 11 1315 1719 21 23<br />

24 6810 12 1416 18 20 22 24<br />

2x 4x 6x 8x 10x 12x 14x 16x 18x 20x 22x 24x<br />

D<br />

A<br />

B<br />

C<br />

Figure 3-12 Item<br />

A<br />

B<br />

C<br />

D<br />

Figure 3-12 Item Description<br />

24 auto-negotiating 10Base-T/100Base-TX ports for hub-to-switch segment connections.<br />

Port activity LEDs, two for each 10Base-T/100Base-TX port:<br />

• Link OK/Receive (top LED per port):<br />

Green steady = physical link with device<br />

Green flashing = port is receiving packets<br />

• 100M (bottom LED per port):<br />

Amber = port is operating at 100Mbps<br />

Unlit = port is operating at 10 Mbps<br />

Power LED:<br />

• Green steady = power on, voltage within range, power supply working<br />

Fault LED.<br />

• Red steady = switch or management software malfunctioning<br />

• Red flashing = switch is booting, running diagnostics, writing image to flash, transferring<br />

files via XMODEM<br />

E Single power inlet to UPS 2.<br />

* Note: The switch unit is mounted in the BYNET rack at the rear, with the Ethernet connectors accessible from<br />

the back of the rack. The power connector for the unit faces the front of the rack.<br />

3 – 28<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 4:<br />

System Management <strong>and</strong> Maintenance<br />

This chapter provides the following information on system management <strong>and</strong><br />

maintenance:<br />

• Initialization<br />

• Power On/Off<br />

• Administration<br />

• Logs<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 4 – 1


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Initialization<br />

Initialization<br />

The system is self-configuring upon power-up through the functions of the<br />

service subsystem in each rack.<br />

The CMIC2 in the service subsystem detects the type of chassis connected to it<br />

by the management boards <strong>and</strong> their location. The CMIC2’s ability to identify<br />

the rack components enables it to generate information for the system<br />

configuration at power-up.<br />

This auto-configuration routine requires about three minutes, while each<br />

chassis establishes communications with the service subsystem in the rack.<br />

Once initialized, the system will continue to recognize physical <strong>and</strong><br />

environmental changes, as well as communicate on-line operating events.<br />

4 – 2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Power On/Off<br />

Power On/Off<br />

The system’s power is controlled <strong>and</strong> monitored through the Administration<br />

Workstation (AWS). Note that the control panel power switch on the node<br />

chassis is not used for power control under normal operating conditions.<br />

When power is available at the UPS/UIS <strong>and</strong> all cables are connected, the<br />

service subsystem <strong>and</strong> BYNET chassis are set to power on automatically. The<br />

nodes, as well as disk arrays that are physically connected to the AWS, must be<br />

powered on through the AWS.<br />

Note: 627x disk arrays are not controlled through the AWS. See “System<br />

Platform Interfaces” in Chapter 2 for more about disk array interfaces.<br />

Following are the strategies for powering on <strong>and</strong> powering off the nodes <strong>and</strong><br />

disk arrays physically connected through the AWS.<br />

AWS Function<br />

System Level<br />

Power On/Off<br />

Cabinet Level<br />

Power On/Off<br />

Chassis Level<br />

Power On/Off<br />

Chassis Component<br />

Level Power On/Off<br />

Result<br />

Powers on/off all nodes, <strong>and</strong> <strong>NCR</strong> storage cabinet (NSC) or <strong>World</strong><strong>Mark</strong> enterprise<br />

storage (WES) disk arrays in the system environment. Service subsystem, BYNET,<br />

<strong>and</strong> UPS chassis across the system remain on-line.<br />

Note: BYNET power-off is optional during system power-off routine.<br />

Powers on/off both nodes within a target cabinet, <strong>and</strong> connected NSC or WES disk<br />

arrays. Service subsystem, BYNET, <strong>and</strong> UPS chassis in the target cabinet remain<br />

on-line.<br />

Note: BYNET power-off is optional during cabinet power-off routine, but it is not<br />

recommended if other nodes are attached to the BYNET switch boards.<br />

Powers on/off an individual chassis in the rack. AWS/UNIX allows for this<br />

function on each chassis type in rack, under the FRU power on/off function.<br />

AWS/NT allows for this function on the node chassis only; the other chassis types<br />

in the rack can be powered on/off individually at the chassis switch.<br />

Note: Disconnect the power cords from the chassis to completely remove power.<br />

On AWS/UNIX only, the FRU Replace function removes power from a targeted<br />

hot-plug component in a selected chassis.<br />

Caution: This is a servicing function. It should be used only by technically<br />

qualified field service personnel.<br />

At power-on, wait three minutes to allow each chassis in the cabinet to<br />

establish communication with the service subsystem. This is the autoconfiguration<br />

process. Once the power-on is complete, make sure the service<br />

subsystem can communicate with each chassis, by checking cabinet status<br />

through the AWS.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 4 – 3


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Administration<br />

Administration<br />

The Administration Workstation (AWS) is the interface used by system<br />

administrators to configure <strong>and</strong> monitor the <strong>World</strong><strong>Mark</strong> systems. The AWS<br />

provides single-point administration in a multi-node configuration.<br />

AWS on UNIX<br />

The AWS under the UNIX operating system provides a graphical<br />

representation of the system configuration. The main window displays an<br />

appropriate icon for each cabinet in the configuration, as follows:<br />

AWS<br />

AWS<br />

AWS console:<br />

There is always only one AWS icon, even in a dual<br />

AWS configuration. Under dual AWS, the icon<br />

shown on the screen represents the console at which<br />

you are sitting.<br />

48xx/52xx processing cabinet:<br />

This icon will reflect each subsystem detected in the<br />

cabinet.<br />

BYNET cabinet:<br />

This icon will reflect each subsystem detected in the<br />

cabinet.<br />

4 – 4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Administration<br />

6000 <strong>NCR</strong> storage cabinet (NSC):<br />

This icon will reflect each subsystem detected in the<br />

cabinet.<br />

EMC<br />

CAB101<br />

627x disk array:<br />

This icon (for the 627x series disk arrays) is not<br />

generated automatically, as are the preceding icons.<br />

You can create the icon through the Edit Node<br />

Records function of the AWS. The icon will reflect<br />

the operational status of the 627x cabinet. However,<br />

because the 627x disk array has no physical<br />

connection to the AWS, you cannot perform control<br />

or maintenance functions through selection of this<br />

icon.<br />

From the cabinet-level view at the AWS main window, you can select a single<br />

cabinet <strong>and</strong> bring up a processor-level view of that cabinet. Through icon <strong>and</strong><br />

menu selections, you can effectively monitor the system <strong>and</strong> its subsystems,<br />

<strong>and</strong> perform the necessary administrative <strong>and</strong> control functions.<br />

For complete information on using the AWS on UNIX to administer the system,<br />

see the Administration Workstation User <strong>Guide</strong>.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 4 – 5


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Administration<br />

AWS on Windows<br />

The AWS under the Windows NT or the Windows 2000 (when available)<br />

operating system provides a tree-based view of the system configuration. The<br />

main console window lists all of the managed components in a hierarchal<br />

arrangement, beginning at the enterprise level <strong>and</strong> branching downward to<br />

include systems, cabinets, chassis <strong>and</strong> their subcomponents, as in the following<br />

sample:<br />

From the tree view, you can choose a managed component of the system. The<br />

menu bar at the top of the main window allows you to select categories from<br />

which to perform administrative functions. The results window pane on the<br />

right shows the results of comm<strong>and</strong>s you have issued.<br />

For complete information on using the AWS on Windows NT or Windows 2000<br />

to administer the system, see the AWS User <strong>Guide</strong> for your system.<br />

4 – 6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Logs<br />

Logs<br />

Event Log<br />

Server Support Log<br />

Events are generated through system software to execute functions <strong>and</strong><br />

communicate the operational status of the overall system <strong>and</strong> its components.<br />

There are four event types, including:<br />

• Critical events: Indicate potential system loss, such as AC failure,<br />

subsystem failures, or high temperature.<br />

• Informational events: General logs, status messages <strong>and</strong> ungraded events.<br />

• Comm<strong>and</strong> events: Dispatched from an AWS or other sending agent <strong>and</strong><br />

acted on by all CMIC2s.<br />

• Comm<strong>and</strong> completion events: Contain return status after a comm<strong>and</strong> event<br />

has been processed. (Not all comm<strong>and</strong> events generate a comm<strong>and</strong><br />

completion event.)<br />

These system events are distributed over the SLAN <strong>and</strong> recorded in the Event<br />

Log. The Event Log is accessible through the AWS. You can use it to monitor<br />

the system.<br />

In a multiple AWS configuration, the SLAN comm<strong>and</strong>s sent out by one AWS<br />

will show up in the Event Log of all AWS consoles on the SLAN, ensuring a<br />

consistent single operational view of the system.<br />

Note: Each AWS is able to simultaneously execute unrestricted operations,<br />

such as alert monitoring or status review. However, only one AWS can enable<br />

<strong>and</strong> execute management functions at a time, thus locking out the other AWS<br />

from security operations.<br />

For information on accessing <strong>and</strong> using the Event Log, see the user guide for<br />

your AWS.<br />

When system support or service is required, use the Server Support Log for<br />

reference <strong>and</strong> documentation.<br />

The Server Support Log provides information on how to contact <strong>NCR</strong> support<br />

services. It also serves as a central place to record <strong>and</strong> store the system<br />

hardware <strong>and</strong> software history. The log includes forms for keeping the<br />

following records on the system:<br />

• System component <strong>and</strong> peripheral identification<br />

• Hardware/software performance <strong>and</strong> service<br />

• Preventive maintenance activities<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> 4 – 7


Chapter 4: System Management <strong>and</strong> Maintenance<br />

Logs<br />

These forms, if filled out accurately <strong>and</strong> on a regular basis, will provide<br />

information for the system operator <strong>and</strong> field service personnel to ensure<br />

successful operation of the server.<br />

4 – 8<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix A:<br />

<strong>Product</strong> Statements<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> A – 1


Appendix A: <strong>Product</strong> Statements<br />

Regulatory <strong>and</strong> Technical Compliance<br />

Regulatory <strong>and</strong> Technical Compliance<br />

Safety<br />

Cabinets in 48xx/52xx systems comply with the following safety st<strong>and</strong>ards:<br />

USA<br />

UL 1950, 3rd edition<br />

Canada CSA C22.2 No. 950-M95<br />

Europe<br />

CE Directive 73/23/EEC<br />

EN60950, 2nd edition<br />

IEC 950, 2nd edition<br />

EMI Emissions <strong>and</strong> Immunity<br />

Note: When installing an international modem that interfaces to the public<br />

telecommunications network, it is essential that it be certified by the authority<br />

having jurisdiction.<br />

Declaration of Conformity<br />

This product is in conformity with European Union EMC Directive<br />

89/336/EEC, using the following st<strong>and</strong>ards:<br />

• EN55022 (Class A)<br />

• EN55024<br />

• EN50081-1<br />

• EN50082-1<br />

The <strong>World</strong><strong>Mark</strong> 48xx/52xx system complies with the following st<strong>and</strong>ards for<br />

Electromagnetic Interference (EMI) <strong>and</strong> Susceptibility:<br />

A – 2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix A: <strong>Product</strong> Statements<br />

Regulatory <strong>and</strong> Technical Compliance<br />

DECLARATION OF CONFORMITY<br />

Type of Equipment:<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> Enterprise System<br />

Model Number: Class 9100<br />

Power Rating:<br />

200-240 VAC; 16 Amps; 50/60 Hz; Single phase<br />

EU Directive Harmonized St<strong>and</strong>ard(s) File/Test Report Number<br />

Directive EMC 89/336/EEC<br />

EMC 92/31/EEC<br />

EN 50081-1 : 1992 Emissions<br />

EN 55022 : 1994<br />

Test Report 007-0007165<br />

CISPR 22 : 1993 Class A Test Report 007-0007165<br />

EN 50082-1 : 1992 Immunity<br />

EN 61000-4-2 IEC 1000-4-2 : 1995 Test Report 007-0007165<br />

EN 61000-4-3 IEC 1000-4-3 : 1997 Test Report 007-0007165<br />

EN 61000-4-4 IEC 1000-4-4 : 1995 Test Report 007-0007165<br />

Directive LVD 73/23 EN 60950 Safety Test Report 007-0006668<br />

“<strong>NCR</strong>, headquarters at 1700 South Patterson Boulevard, Dayton, Ohio, 45479, USA declares that the<br />

equipment specified above conforms to the referenced EU Directives <strong>and</strong> Harmonized St<strong>and</strong>ards.”<br />

Signature: (original signed by Alan Chow) Date:<br />

Alan Chow, Vice President, Data Warehousing Solutions Division<br />

<strong>NCR</strong> Corporation<br />

17095 Via del Campo<br />

San Diego, CA 92127 USA<br />

“Having received the Declaration of Conformity for the above product, signed by the responsible<br />

Director of Operations, I am authorized to countersign this Declaration of Conformity on behalf of<br />

<strong>NCR</strong>.”<br />

Signature: (original signed by Fidelma Cleary) Date:<br />

Name (printed):<br />

Fidelma Cleary, Attorney<br />

European Patent Attorney<br />

<strong>NCR</strong> Limited<br />

206 Marylebone Road<br />

London NW1 6LY, Engl<strong>and</strong><br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> A – 3


Appendix A: <strong>Product</strong> Statements<br />

Regulatory <strong>and</strong> Technical Compliance<br />

Electromagnetic Compatibility<br />

Both conducted <strong>and</strong> radiated emissions meet the following requirements:<br />

USA Federal Communications Commission (FCC) 47<br />

Class A CFR Parts 2 <strong>and</strong> 15<br />

Canada<br />

Europe<br />

International<br />

Australia<br />

Taiwan<br />

Japan<br />

Industry Canada (IC) ICES-003 Class A<br />

EMC Directive 89 / 336 / EEC<br />

(European Economic Community)<br />

EN55022 Class A<br />

EN50081-1<br />

EN50082-1<br />

EN61000-4-2<br />

EN61000-4-3<br />

EN61000-4-4<br />

International Special Committee on Radio Interference (CISPR)<br />

Class A<br />

AS/NZS 3548, C-Tick <strong>Mark</strong><br />

EMC Certification CNS13438<br />

VCCI (Voluntary Control Council for Interference)<br />

1st Class<br />

Electromagnetic Compatibility Notices<br />

The following table lists electromagnetic compatibility notices for this product:<br />

A – 4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix A: <strong>Product</strong> Statements<br />

Regulatory <strong>and</strong> Technical Compliance<br />

USA<br />

This equipment has been tested <strong>and</strong> found to comply with the limits for a Class A digital device,<br />

pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection<br />

against harmful interference when the equipment is operated in a commercial environment.<br />

This equipment generates, uses, <strong>and</strong> can radiate radio frequency energy, <strong>and</strong>, if not installed <strong>and</strong><br />

used in accordance with the instruction manual, may cause harmful interference to radio<br />

communications. Operation of this equipment in a residential area is likely to cause harmful<br />

interference in which case the user will be required to correct the interference at his own<br />

expense.<br />

CAUTION: Changes or modifications not expressly approved by <strong>NCR</strong> Corporation could<br />

void the user’s authority to operate this equipment.<br />

Japan<br />

Translation: This is a Class A product based on the st<strong>and</strong>ard of the Voluntary Control Council<br />

for Interference by Information Technology Equipment (VCCI). If this equipment is used in a<br />

domestic environment, radio disturbance may arise. When such trouble occurs, the user may be<br />

required to take corrective actions.<br />

Canada<br />

European<br />

Union<br />

Disclaimer<br />

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites<br />

applicables aux appareils numériques de la classe A prescrites dans le Règlement sur le<br />

brouillage radioélectrique édicté par le ministère des Communications du Canada.<br />

Translation: This digital apparatus does not exceed the Class A limits for radio noise emissions<br />

from digital apparatus set out in the Radio Interference Regulations of the Canadian<br />

Department of Communications.<br />

In accordance with meeting the requirements of EMC 89/336/ EEC (as amended 92/31/ EEC),<br />

the rack mount system meets the EMI emissions <strong>and</strong> immunity st<strong>and</strong>ards of CENELEC<br />

(Committee for European Electrotechnical St<strong>and</strong>ardization) EN55022, EN50081-1, EN50082-1<br />

<strong>and</strong> IEC (International Electrotechnical Committee) IEC 1000-4-2, 3, 4.<br />

WARNING: This is a Class A product. In a domestic environment this product may cause<br />

radio interference in which case the user may be required to take adequate measures.<br />

<strong>NCR</strong> is not responsible for any radio or television interference caused by<br />

unauthorized modifications of this equipment or the substitution or attachment<br />

of connecting cables <strong>and</strong> equipment other than those specified by <strong>NCR</strong>. The<br />

correction of interference caused by such unauthorized modifications,<br />

substitution or attachment will be the user’s responsibility.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> A – 5


Appendix A: <strong>Product</strong> Statements<br />

Cautions <strong>and</strong> Warnings<br />

Cautions <strong>and</strong> Warnings<br />

The subsystem chassis in the <strong>World</strong><strong>Mark</strong> 48xx/52xx platform system contain<br />

no user-serviceable components. Only a technically qualified field engineer<br />

should service the system.<br />

The following warnings <strong>and</strong> cautions apply:<br />

Proper cooling <strong>and</strong> airflow<br />

Adequate ventilation must be maintained in the front <strong>and</strong> rear of the rack. The<br />

maximum temperature for the equipment in this environment is 40 o C (104 o F).<br />

Grounding<br />

Reliable earthing of the rack equipment must be maintained. Particular<br />

attention should be given to supply connections when connecting to power<br />

strips, rather than direct connections to the branch circuit.<br />

Rack Stabilization<br />

Front <strong>and</strong> rear stabilizers on the bottom of the rack frame must remain in place<br />

as installed.<br />

No more than one node chassis drawer should be extended at one time.<br />

Extension of more than one loaded module could cause the rack to tip or fall.<br />

A top-heavy rack could tip or fall. Proper weight distribution must be<br />

maintained.<br />

Power on/off<br />

The power on/off switch on subsystem chassis do not completely remove AC<br />

power. After shutting down <strong>and</strong> turning off a subsystem, the AC power cords<br />

must be unplugged from the chassis.<br />

Hazardous electrical conditions<br />

Hazardous electrical conditions may be present on power, telephone, <strong>and</strong><br />

communication cables. Power must be properly removed to access equipment.<br />

Consult the field service technician.<br />

Hazardous energy levels are present behind the protective cover over the<br />

power distribution backplane in the node chassis. There are no user-serviceable<br />

parts; servicing should be done by technically qualified personnel.<br />

A – 6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix B:<br />

Cabling Maps<br />

This appendix illustrates the cabling of the system interfaces described in<br />

Chapter 2 of this guide. Use the following table to link to the descriptions<br />

<strong>and</strong>/or the illustrations of the <strong>World</strong><strong>Mark</strong> 48xx/52xx system interfaces:<br />

System Interface Description<br />

System Interface Illustration<br />

SLAN Figure B-1, Figure B-2<br />

PvtLAN Figure B-3, Figure B-4<br />

MLAN Figure B-5, Figure B-6<br />

BYNET Network<br />

Figure B-7, Figure B-8, Figure B-9, Figure B-10,<br />

Figure B-11, Figure B-12<br />

Cabinet Power Figure B-13, Figure B-14<br />

SCSI Figure B-15, Figure B-16<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 1


8<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

8 7 6 5 4 3 2 1<br />

X X X X X X X<br />

Appendix B: Cabling Maps<br />

SLAN Cabling<br />

SLAN Cabling<br />

Figure B-1<br />

SLAN: 1 to 4 Nodes, <strong>and</strong> 2 to 16 Nodes<br />

1-4 Nodes<br />

AWS<br />

Console<br />

AWS SLAN Hub*<br />

*Not present with<br />

earlier AWS models<br />

2-16 Nodes<br />

AWS<br />

Console<br />

AWS SLAN Hub*<br />

B – 2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


10BASE-T NETWORK PORTS<br />

8 7 6 5 4 3 2 1<br />

X X X X X X X X<br />

10BASE-T NETWORK PORTS<br />

8 7 6 5 4 3 2 1<br />

X X X X X X X X<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

10BASE-T NETWORK PORTS<br />

8 7 6 5 4 3 2 1<br />

X X X X X X X X<br />

10BASE-T NETWORK PORTS<br />

8 7 6 5 4 3 2 1<br />

X X X X X X X X<br />

AUI<br />

PORT<br />

AUI<br />

PORT<br />

Port 1 Port 1 Port 1<br />

Port 1 Port 1 Port 1<br />

1x<br />

2x<br />

1x<br />

2x<br />

7x<br />

8x<br />

7x<br />

8x<br />

Port 3<br />

Port 2<br />

Port 1Port 1<br />

Port 3<br />

Port 2<br />

Port 1Port 1<br />

Port 0<br />

Port 0<br />

Port 5<br />

Port 5<br />

4 PORT REPEATER<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

X-Ports<br />

4 PORT REPEATER<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

X-Ports<br />

Port 2<br />

Port 2<br />

Port 2<br />

Port 2<br />

Appendix B: Cabling Maps<br />

SLAN Cabling<br />

Figure B-2<br />

SLAN: 18 to 64 Nodes<br />

18-64 Nodes<br />

CentreCOM<br />

3004SL<br />

AWS<br />

Console<br />

AWS SLAN Hub **<br />

* *<br />

*<br />

CentreCOM<br />

3004SL<br />

***<br />

*Maximum 29 expansion<br />

cabinets per segment<br />

** Not present with<br />

earlier AWS models<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 3


8<br />

8<br />

10BASE-T NETWORK PORTS<br />

10BASE-T NETWORK PORTS<br />

1<br />

10BASE2/AUI BACKBONE PORTS<br />

X X X X X<br />

POWER<br />

X<br />

X X<br />

1<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

10BASE-T NETWORK PORTS<br />

8 7 6 5 4 3 2 1<br />

X X X X X X X X<br />

10BASE-T NETWORK PORTS<br />

8<br />

8 7 6 5 4 3 2 1<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

X X<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

10BASE-T NETWORK PORTS<br />

8<br />

8 7 6 5 4 3 2 1<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

10BASE2/AUI BACKBONE PORTS<br />

POWER<br />

X X X X X X X X<br />

X<br />

X<br />

Appendix B: Cabling Maps<br />

PvtLAN Cabling<br />

PvtLAN Cabling<br />

Figure B-3<br />

PvtLAN: 3 Nodes <strong>and</strong> 16 Nodes<br />

3 Nodes<br />

AWS<br />

Console<br />

AWS PvtLAN Hub<br />

7 6 5 4 3 2 1<br />

Up to 16 Nodes<br />

AWS<br />

Console<br />

AWS PvtLAN Hub<br />

7 6 5 4 3 2 1<br />

X X X<br />

****<br />

*To Expansion Cabinet<br />

B – 4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


FAST ETHERNET SWITCH<br />

FAST ETHERNET SWITCH<br />

AUI<br />

PORT<br />

AUI<br />

PORT<br />

4<br />

4<br />

10 BASE2 PORTS<br />

3 2 1<br />

10 BASE2 PORTS<br />

3 2 1<br />

3004SL<br />

4 PORT REPEATER<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

3004SL<br />

4 PORT REPEATER<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

POWER<br />

POWER<br />

1<br />

3 5 7 9 11 1315 1719 21 23<br />

2 4 6 8 10 12 1416 18 20 22 24<br />

1<br />

3 5 7 9 11 1315 1719 21 23<br />

2 4 6 8 10 12 1416 18 20 22 24<br />

STATUS<br />

FAULT<br />

POWER<br />

STATUS<br />

FAULT<br />

POWER<br />

RESET<br />

RESET<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

10BASE2/AUI BACKBONE PORTS<br />

X X X X X X<br />

POWER<br />

X X AUX<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

X X X X X X X X<br />

10BASE2/AUI BACKBONE PORTS<br />

AUX<br />

POWER<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

10BASE2/AUI BACKBONE PORTS<br />

X X X X X X<br />

POWER<br />

X X AUX<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

X X X X X X X X<br />

10BASE2/AUI BACKBONE PORTS<br />

AUX<br />

POWER<br />

Appendix B: Cabling Maps<br />

PvtLAN Cabling<br />

Figure B-4<br />

PvtLAN: 64 Nodes<br />

64 Nodes<br />

AWS<br />

Console<br />

CentreCOM<br />

CentreCOM 8124XL<br />

10 BASE-T/100 BASE-TX<br />

10 BASE-T/100BASE-TX PORT ACTIVITY RS-232<br />

1x 3x 5x 7x 9x 11x 13x 15x 17x 19x 21x 23x<br />

TERMINAL PORT<br />

2x 4x 6x 8x 10x 12x 14x 16x 18x 20x 22x<br />

24x<br />

*<br />

*<br />

CentreCOM 8124XL<br />

10 BASE-T/100 BASE-TX<br />

CentreCOM<br />

10 BASE-T/100BASE-TX PORT ACTIVITY RS-232<br />

1x 3x 5x 7x 9x 11x 13x 15x 17x 19x 21x 23x<br />

TERMINAL PORT<br />

*<br />

2x 4x 6x 8x 10x 12x 14x 16x 18x 20x 22x<br />

24x<br />

*<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 5


15 AMP<br />

15 AMP<br />

15 AMP<br />

15<br />

AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

Not Used<br />

Not Used<br />

SERVICE<br />

SERVICE<br />

MLAN<br />

MLAN<br />

Not Used<br />

ETHERNET<br />

Not Used<br />

ETHERNET<br />

Appendix B: Cabling Maps<br />

MLAN<br />

MLAN<br />

Figure B-5<br />

MLAN: Processing Rack<br />

in/out ports for<br />

WES <strong>and</strong> NSC<br />

connection<br />

(if no WES or NSC<br />

present, loopback<br />

cable required)<br />

Collective<br />

Enabled<br />

Not Used<br />

SERVICE<br />

MLAN<br />

Not Used<br />

ETHERNET<br />

Not Used<br />

SERVICE<br />

MLAN<br />

Not Used<br />

ETHERNET<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

B – 6<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


10 BASE-T/100 BASE-TX<br />

FAST ETHERNET SWITCH<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15<br />

AMP<br />

15 AMP<br />

15 AMP<br />

AUI<br />

PORT<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

X-Ports<br />

BYABGX<br />

10 BASE-T/100BASE-TX PORT ACTIVITY RS-232<br />

1x 3x 5x 7x 9x 11x 13x 15x 17x 19x 21x 23x<br />

TERMINAL PORT<br />

2x 4x 6x 8x 10x 12x 14x 16x 18x 20x 22x 24x<br />

15 AMP<br />

15 AMP<br />

4<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

10 BASE2 PORTS<br />

3 2 1<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

4 PORT REPEATER<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

Port 5Port 5<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 6<br />

Port 7<br />

1 3 5 7 9 11 13 15 17 19 21 23<br />

2 4 6 8 10 12 1416 18 20 22 24<br />

BYABGX<br />

X-Ports<br />

X-Ports<br />

Port 0<br />

Port 1<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

POWER<br />

Port 0<br />

Port 1<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

STATUS<br />

FAULT<br />

POWER<br />

BYABGX<br />

X-Ports<br />

RESET<br />

Appendix B: Cabling Maps<br />

MLAN<br />

Figure B-6<br />

MLAN: BYNET Rack<br />

Collective<br />

Enabled<br />

CentreCOM<br />

3004SL<br />

CentreCOM 8124XL<br />

Not<br />

Used<br />

Port 2 2Port<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Service<br />

MLAN<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Not<br />

Used<br />

DP<br />

ETHERNET<br />

BYB16G<br />

BYB16G<br />

Conn 0<br />

BYB16G<br />

BYB16G<br />

Not<br />

Used<br />

Conn 1<br />

Conn 2<br />

Not MLAN<br />

Used<br />

Conn 3<br />

Conn 4<br />

Service<br />

Clock<br />

Out<br />

Clock<br />

MLAN<br />

In<br />

Conn 5<br />

Conn 6<br />

Conn 7<br />

Not<br />

Used<br />

Clock<br />

DP<br />

Out<br />

ETHERNET Clock<br />

In<br />

Not<br />

Used<br />

DP<br />

ETHERNET<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 7


Appendix B: Cabling Maps<br />

BYNET Network<br />

BYNET Network<br />

Figure B-7 BYNET to Node Connections:<br />

BYA4P Network to 4 Nodes<br />

3 2 1 0<br />

BIC2G<br />

3 2 1 0<br />

BYA4P Network 0<br />

Node 3<br />

Node 1<br />

BYA4P<br />

Network 1<br />

Node 4<br />

General Cabling Protocol:<br />

Node 2<br />

BIC2G Port 2 to BYNET Network 0<br />

BIC2G Port 3 to BYNET Network 1<br />

Node 1 to BYA4P Port 0<br />

Node 2 to BYA4P Port 1<br />

Node 3 to BYA4P Port 2<br />

Node 4 to BYA4P Port 3<br />

B – 8<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix B: Cabling Maps<br />

BYNET Network<br />

Figure B-8 BYNET to Node Connections:<br />

BYA4G Network to 4 Nodes<br />

1 0<br />

BIC2C<br />

3<br />

2<br />

1<br />

0<br />

BYA4G Network 0<br />

Node 3<br />

Node 1<br />

BYA4G<br />

Network 1<br />

Node 4<br />

General Cabling Protocol<br />

Node 2<br />

BIC2C Port 0 to BYNET Network 0<br />

BIC2C Port 1 to BYNET Network 1<br />

Node 1 to BYA4G Port 0<br />

Node 2 to BYA4G Port 1<br />

Node 3 to BYA4G Port 2<br />

Node 4 to BYA4G Port 3<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 9


DP<br />

DP<br />

Appendix B: Cabling Maps<br />

BYNET Network<br />

Figure B-9 BYNET to Node Connections:<br />

BYA16GX Network to 16 Nodes<br />

BYA16G<br />

(Network 0)<br />

Not Used<br />

SERVICE<br />

MLAN<br />

Not Used<br />

ETHERNET<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

Port 8<br />

Port 9<br />

Port A<br />

Port B<br />

Port C<br />

Port D<br />

Port E<br />

Port F<br />

AC 1<br />

AC 2<br />

BYA16G<br />

(Network 1)<br />

Not Used<br />

SERVICE<br />

MLAN<br />

Not Used<br />

ETHERNET<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

Port 8<br />

Port 9<br />

Port A<br />

Port B<br />

Port C<br />

Port D<br />

Port E<br />

Port F<br />

AC 1<br />

AC 2<br />

Node 3<br />

Node 5<br />

3 2 1 0 BIC4G<br />

Node 7<br />

Node 1<br />

Node 4<br />

Node 6<br />

Node 2<br />

General Cabling Protocol:<br />

BIC4G Port 0 to BYNET Network 0<br />

BIC4G Port 1 to BYNET Network 1<br />

Node 8<br />

Nodes are distributed as evely as<br />

possible between the two banks of<br />

BYNET connectors (0-7 & 8-F).<br />

B – 10<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix B: Cabling Maps<br />

BYNET Network<br />

Figure B-10 BYNET to Node Connections:<br />

BYA64GX Network to 64 Nodes<br />

BYA64GX<br />

(Network 0)<br />

Slot<br />

0<br />

Slot<br />

2<br />

Slot<br />

4<br />

Slot<br />

6<br />

Slot<br />

7<br />

Slot<br />

5<br />

Slot<br />

3<br />

Slot<br />

1<br />

Node 8<br />

Node 7<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

X-Ports<br />

Not<br />

Used<br />

BYABGX<br />

Service<br />

Port 7<br />

MLAN<br />

Port 6<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 2<br />

Port 3<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 2<br />

Port 3<br />

Node 9<br />

Node 10<br />

Node 11<br />

Node 12<br />

Node 6<br />

Node 5<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Node 13<br />

Node 14<br />

Node 4<br />

Node 3<br />

Node 2<br />

Node 1<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

Port 3<br />

Port 3<br />

Port 2<br />

Port 2<br />

Port 1<br />

Port 1<br />

Port 0<br />

Port 0<br />

Not Port 6<br />

Used<br />

Port 7<br />

DP<br />

BYABGX<br />

ETHERNET<br />

X-Ports<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

X-Ports<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

Node 15<br />

Node 16<br />

BYNET Network 0<br />

BYNET Network 1<br />

Nodes<br />

17-24<br />

Node 1<br />

Nodes<br />

33-40<br />

Nodes<br />

49-56<br />

Nodes<br />

57-64<br />

Nodes<br />

41-48<br />

Nodes<br />

25-32<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

BYA64GX<br />

(Network 1)<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

X-Ports<br />

Not<br />

Used<br />

BYABGX<br />

Service<br />

Port 7<br />

MLAN<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Not<br />

Used<br />

DP<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 5<br />

Port 6<br />

Port 7<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

3 2 1 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 1<br />

Port 0<br />

Port 0<br />

BYABGX<br />

ETHERNET<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

General Cabling Protocol:<br />

BIC4G Port 0 to BYNET Network 0<br />

BIC4G Port 1 to BYNET Network 1<br />

Nodes are cabled in pattern that works from<br />

outer slots to inner slots of BYNET chassis,<br />

filling ports <strong>and</strong> slots in numerical sequence.<br />

Node 2<br />

Up to 64 Nodes<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 11


Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 5Port 5<br />

Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 5Port 5<br />

Appendix B: Cabling Maps<br />

BYNET Network<br />

Figure B-11 BYA64GX to BYB64G Connections:<br />

Expansion Port Cabling per BYNET Network<br />

(Sample 65-128 Node System) *<br />

BYA64GX<br />

(1)<br />

BYA64GX<br />

(2)<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

Not<br />

Used<br />

Service<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

Not<br />

Used<br />

Service<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

MLAN<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

MLAN<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Not<br />

Used<br />

DP<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Not<br />

Used<br />

DP<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

ETHERNET<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

ETHERNET<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

BYB16G<br />

BYB16G<br />

Conn 0<br />

BYB16G<br />

BYB16G<br />

Not<br />

Used<br />

BYB16G<br />

BYB16G<br />

0-7<br />

BYB16G<br />

BYB16G<br />

Not<br />

Used<br />

Conn 1<br />

Conn 1<br />

Conn 2<br />

MLAN<br />

Conn 2<br />

MLAN<br />

Conn 3<br />

20-27<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Conn 3<br />

20-27<br />

Clock<br />

Out<br />

Clock<br />

In<br />

28-2F<br />

30-37<br />

38-3F<br />

Not<br />

Used<br />

DP<br />

ETHERNET<br />

28-2F<br />

30-37<br />

38-3F<br />

Not<br />

Used<br />

DP<br />

ETHERNET<br />

BYB64G<br />

(1)<br />

BYB64G<br />

(2)<br />

General Cabling Protocol:<br />

All expansion ports on the BYA <strong>and</strong> BYB chassis are used. X-port connections on the BYA<br />

chassis are distributed as evenly as possible among all BYB chassis in a single BYNET network.<br />

B – 12<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 5Port 5<br />

Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 5Port 5<br />

Appendix B: Cabling Maps<br />

BYNET Network<br />

Figure B-12 BYA64GX to BYB64G Connections:<br />

Clock Cabling per BYNET Network<br />

(Sample 65-128 Node System)<br />

BYA64GX<br />

(1)<br />

BYA64GX<br />

(2)<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

Not<br />

Used<br />

Service<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

X-Ports<br />

BYABGX<br />

Not<br />

Used<br />

Service<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

MLAN<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

MLAN<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Clock<br />

Port 4<br />

Out<br />

Port 5<br />

Clock<br />

In<br />

Port 4<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 4<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Clock<br />

Port 4<br />

Out<br />

Port 5<br />

Clock<br />

In<br />

Port 4<br />

Port 4<br />

Port 5<br />

Port 4<br />

Port 5<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Not<br />

Used<br />

DP<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Port 3<br />

Port 2<br />

Not<br />

Used<br />

DP<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

Port 6<br />

Port 7<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

BYABGX<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

ETHERNET<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

Port 1<br />

Port 0<br />

ETHERNET<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

X-Ports<br />

BYB16G BYB16G 0-7<br />

BYB16G<br />

BYB16G<br />

Not<br />

Used<br />

BYB16G<br />

BYB16G<br />

0-7<br />

BYB16G<br />

BYB16G<br />

Not<br />

Used<br />

8-F<br />

10-17<br />

MLAN<br />

8-F<br />

10-17<br />

MLAN<br />

18-1F<br />

20-27<br />

28-2F<br />

30-37<br />

38-3F<br />

DP<br />

Not<br />

Used<br />

ETHERNET<br />

Clock<br />

Out<br />

Clock<br />

In<br />

18-1F<br />

20-27<br />

28-2F<br />

30-37<br />

38-3F<br />

DP<br />

Clock<br />

Clock<br />

Out Out<br />

Clock Clock<br />

In<br />

In<br />

Not<br />

Used<br />

ETHERNET<br />

BYB64G<br />

(1)<br />

BYB64G<br />

(2)<br />

General Cabling Protocol:<br />

All BYNET Chassis in a single network are daisy chained, from Clock-Out on one<br />

chassis to Clock-In on next, beginning with BYBs <strong>and</strong> moving to BYAs.<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 13


Not Used<br />

Not Used<br />

SERVICE<br />

SERVICE<br />

MLAN<br />

MLAN<br />

Not Used<br />

ETHERNET<br />

Not Used<br />

ETHERNET<br />

8<br />

10BASE-T NETWORK PORTS<br />

7 6 5 4 3 2 1<br />

X X X X X X X<br />

10BASE2/AUI BACKBONE PORTS<br />

AUX<br />

Appendix B: Cabling Maps<br />

Cabinet Power<br />

Cabinet Power<br />

Figure B-13<br />

Power: Processing Rack<br />

Collective<br />

Enabled<br />

!<br />

!<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

POWER<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

B – 14<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


10 BASE-T/100 BASE-TX<br />

FAST ETHERNET SWITCH<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

15 AMP<br />

15 AMP<br />

15 AMP<br />

15<br />

AMP<br />

15 AMP<br />

15 AMP<br />

AUI<br />

PORT<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

X-Ports<br />

BYABGX<br />

10 BASE-T/100BASE-TX PORT ACTIVITY RS-232<br />

1x 3x 5x 7x 9x 11x 13x 15x 17x 19x 21x 23x<br />

TERMINAL PORT<br />

2x 4x 6x 8x 10x 12x 14x 16x 18x 20x 22x 24x<br />

15 AMP<br />

15 AMP<br />

4<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 3<br />

Port 2<br />

Port 1<br />

Port 0<br />

10 BASE2 PORTS<br />

3 2 1<br />

X-Ports<br />

BYABGX<br />

Port 7<br />

Port 6<br />

Port 5<br />

Port 4<br />

Port 2Port 2<br />

Port 0Port 0<br />

Port 3Port 3<br />

Port 1Port 1<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

4 PORT REPEATER<br />

IEEE 802.3 10 BASE2 ETHERNET<br />

Port 5Port 5<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

Port 4<br />

Port 6<br />

Port 7<br />

1 3 5 7 9 11 13 15 17 19 21 23<br />

2 4 6 8 10 12 1416 18 20 22 24<br />

BYABGX<br />

X-Ports<br />

X-Ports<br />

Port 0<br />

Port 1<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

BYABGX<br />

X-Ports<br />

POWER<br />

Port 0<br />

Port 1<br />

Port 4<br />

Port 5<br />

Port 6<br />

Port 7<br />

STATUS<br />

FAULT<br />

POWER<br />

BYABGX<br />

X-Ports<br />

RESET<br />

Appendix B: Cabling Maps<br />

Cabinet Power<br />

Figure B-14<br />

Power: BYNET Rack<br />

Collective<br />

Enabled<br />

CentreCOM<br />

3004SL<br />

CentreCOM 8124XL<br />

Not<br />

Used<br />

Service<br />

MLAN<br />

Port 2 2Port<br />

Port 3<br />

Port 2 2Port<br />

Port 3<br />

Clock<br />

Out<br />

Clock<br />

In<br />

DP<br />

Not<br />

Used<br />

ETHERNET<br />

BYB16G<br />

BYB16G<br />

Conn 0<br />

BYB16G<br />

BYB16G<br />

Not<br />

Used<br />

Conn 1<br />

Conn 2<br />

MLAN<br />

Conn 3<br />

Conn 4<br />

Clock<br />

Out<br />

Clock<br />

In<br />

Conn 5<br />

Conn 6<br />

Not<br />

Used<br />

Conn 7<br />

DP<br />

ETHERNET<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

!<br />

Caution !<br />

Double-pole neutral<br />

overcurrent protection<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 15


Appendix B: Cabling Maps<br />

SCSI<br />

SCSI<br />

Figure B-15<br />

Shared SCSI: 4-Node Clique with <strong>NCR</strong> Storage Cabinet (NSC)<br />

Node<br />

Cabinet<br />

NSC Disk<br />

Cabinet<br />

1440<br />

NSC Disk<br />

Cabinet<br />

1440<br />

Node<br />

Cabinet<br />

Q-s<br />

Q-u<br />

IN OUT<br />

Q-s<br />

Q-u<br />

Q-u<br />

Q-s<br />

1440<br />

1440<br />

Q-u<br />

Q-s<br />

....Repeat cabling for path to each redundant disk array controller...<br />

B – 16<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Appendix B: Cabling Maps<br />

SCSI<br />

Figure B-16<br />

Point-to-Point SCSI: 4-Node Clique with <strong>World</strong><strong>Mark</strong> Enterprise Storage (WES)<br />

Node<br />

1<br />

Node<br />

2<br />

Node<br />

3<br />

Node<br />

4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> B – 17


Appendix B: Cabling Maps<br />

SCSI<br />

B – 18<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Index<br />

0<br />

Numerics<br />

6000 <strong>NCR</strong> storage cabinet See NSC<br />

6000 <strong>World</strong><strong>Mark</strong> enterprise storage See WES<br />

627x storage cabinet 1–3, 2–11<br />

disk arrays supported 2–11<br />

A<br />

AWS (Administration Workstation) 2–12<br />

icons 4–4<br />

network hubs at 2–12<br />

redundant consoles 2–12<br />

remote consoles 2–12<br />

BYB64G cabinet 1–9<br />

BYNET CMB (chassis management board) 3–2<br />

BYNET network 1–3, 2–19<br />

cabling description 2–19, 3–13<br />

cabling diagram B–8, B–9, B–10, B–11, B–12,<br />

B–13<br />

BYNET rack 1–3, 2–6<br />

cable management 2–22<br />

BYNET subsystem 3–6<br />

in 48xx 1–5<br />

in 52xx system, 18 to 64 nodes 1–7<br />

in 52xx system, 2 to 16 nodes 1–7<br />

in 52xx system, greater than 64 nodes 1–9<br />

types 1–3, 3–6<br />

C<br />

B<br />

base cabinet<br />

in 48xx 1–5<br />

in 48xx system 2–6<br />

in 52xx system 1–7, 2–7<br />

BIC2C 1–5, 3–7<br />

BIC2G 1–5, 3–7<br />

BIC4G 1–7, 3–8, 3–10<br />

bus <strong>and</strong> tag 2–21<br />

BYA16G subsystem 1–7<br />

components 3–7<br />

connectors 3–9<br />

LEDs 3–9<br />

BYA4G 1–5<br />

BYA4G subsystem<br />

components 3–7<br />

BYA4P 1–5<br />

BYA4P subsystem<br />

components 3–6<br />

connectors 3–6<br />

BYA64 cabinet 1–7, 2–8<br />

BYA64 subsystem<br />

components 3–10<br />

connectors <strong>and</strong> LEDs 3–12<br />

BYA64/BYB64 cabinet 1–9, 2–9<br />

BYB64 cabinet 2–9<br />

BYB64 subsystem<br />

components 3–10<br />

connectors <strong>and</strong> LEDs 3–12<br />

cabinets, types of<br />

in 48xx system 2–6<br />

in 520xx system, 65 to 512 nodes 2–9<br />

in 52xx system, 18 to 64 nodes 2–8<br />

in 52xx system, 2 to 16 nodes 2–7<br />

cable management 2–22<br />

cabling diagrams B–1, B–2<br />

BYNET network B–8, B–9, B–10, B–11, B–12,<br />

B–13<br />

MLAN B–6, B–7<br />

power B–14, B–15<br />

PvtLAN B–4, B–5<br />

SCSI B–16, B–17<br />

SLAN B–3<br />

cautions <strong>and</strong> warnings A–6<br />

CD-ROM, software 2–14<br />

CDROM, software 2–14<br />

chassis ID<br />

numbering conventions in rack 2–5<br />

clique 1–3, 2–20<br />

CMB (chassis management board) 3–2<br />

CMIC2 4–2<br />

CMIC2 (Cabinet Module Interface Controller) 2–17<br />

coexistence 1–10<br />

collective 2–18<br />

compliance, statements of A–2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> Index –1


Index<br />

D<br />

Declaration of Conformity A–3<br />

disk storage 1–2, 1–3<br />

types 2–10<br />

dual AC 2–20<br />

dual AWS 2–12<br />

BYA16G subsystem chassis 3–9<br />

BYA64 <strong>and</strong> BYB64 chassis 3–12<br />

node subsystem 3–18<br />

PvtLAN hub 3–27<br />

PvtLAN switch 3–28<br />

service subsystem 3–4<br />

SLAN hub 3–26<br />

UIS chassis 3–20<br />

UPS chassis 3–23<br />

E<br />

EIA rails 2–2<br />

ESCON 2–21<br />

Ethernet LANs See interfaces, system platform<br />

event log 4–7<br />

events, system 2–17<br />

expansion cabinet<br />

in 48xx 1–5<br />

in 48xx system 2–6<br />

in 52xx system 2–7, 2–8, 2–9<br />

in 52xx system, 2 to 16 nodes 1–7<br />

in 52xx systems greater than 16 nodes 1–7<br />

M<br />

maintenance, system 4–8<br />

management boards 2–18, 3–2<br />

memory See node subsystem, components<br />

MLAN (Management Local Area Network) 1–3,<br />

2–18<br />

cabling description 2–18<br />

cabling diagram B–6, B–7<br />

external to NSC 2–18<br />

F<br />

firmware<br />

BYNET 3–8, 3–11<br />

node subsystem 3–16<br />

service subsystem 3–3<br />

I<br />

ICMB (intelligent chassis management bus) 3–15<br />

interfaces, system platform 2–15<br />

BYNET network 2–19<br />

cabinet power 2–20<br />

MLAN 2–18<br />

MLAN, external 2–18<br />

PvtLAN 2–17<br />

SCSI 2–20<br />

SLAN 2–15<br />

Teradata IBM channel 2–21<br />

L<br />

LANs See interfaces, system platform<br />

LEDs<br />

N<br />

node subsystem 1–2, 3–14<br />

components 3–14<br />

connectors 3–17<br />

LEDs, front 3–18<br />

non-TPA (trusted parallel applications) node 1–2<br />

NSC (<strong>NCR</strong> storage cabinet) 1–3, 2–10<br />

disk arrays supported 2–11<br />

external MLAN connection 2–19<br />

P<br />

power on/off<br />

auto-configuration at power-on 4–2<br />

caution A–6<br />

power subsystem<br />

chassis specifications 3–20<br />

chassis types 1–2<br />

summary 1–3<br />

power, cabinet<br />

cabling description 2–20, B–14<br />

cabling diagram B–15<br />

processing node See node subsystem<br />

processing rack 1–2, 2–6<br />

cable management 2–22<br />

Index –2<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>


Index<br />

processors See node subsystem, components<br />

PTB (pass-through board) 3–2<br />

PvtLAN (Private Local Area Network) 1–3, 2–17<br />

cabling description 2–17<br />

cabling diagram B–4, B–5<br />

hub <strong>and</strong> switch hardware 2–17, 3–25<br />

hub connectors <strong>and</strong> LEDs 3–27<br />

switch connectors <strong>and</strong> LEDs 3–28<br />

types in <strong>World</strong><strong>Mark</strong> 48xx/52xx 1–2<br />

system cabinet See base cabinet<br />

system console 2–12<br />

systems, 48xx/52xx configurations 1–4<br />

48xx, 1-4 nodes 1–5<br />

52xx, 18 to 64 nodes 1–7<br />

52xx, 2 to 16 nodes 1–6<br />

52xx, greater than 64 nodes 1–9<br />

R<br />

rack<br />

chassis placement in 2–3<br />

specifications of 2–2<br />

rack CMB (chassis management board) 3–2<br />

rack mount architecture 1–2<br />

remote console 2–12<br />

T<br />

TCP/IP login See PvtLAN<br />

Teradata IBM channel 2–21<br />

Teradata node 1–2<br />

Teradata Warehouse 1–2, 2–14<br />

TPA (trusted parallel applications) 1–2<br />

S<br />

SCSI<br />

cabling description 2–20<br />

cabling diagram B–16, B–17<br />

drives <strong>and</strong> controllers See node subsystem,<br />

components<br />

SDW See Teradata Warehouse<br />

server management See service subsystem<br />

Server Support Log 4–7<br />

service subsystem 3–2<br />

2U in NSC 2–10, 2–19<br />

components 3–2<br />

connectors 3–4<br />

LEDs 3–4<br />

serviceability A–6<br />

single node cabinet 1–5, 1–7, 2–6, 2–7, 2–8<br />

SLAN (System Local Area Network) 1–3, 2–15<br />

cabling description 2–16<br />

cabling diagram B–2, B–3<br />

hub hardware 2–15, 3–25<br />

connectors <strong>and</strong> LEDs 3–26<br />

SMP (symmetrical multi-processing) See node<br />

subsystem<br />

software<br />

BYNET 3–16<br />

server-level 2–14, 3–16<br />

system-level 2–14<br />

subsystems<br />

chassis IDs 2–5<br />

chassis placement in rack 2–3<br />

U<br />

U (unit of vertical space in rack) 2–2<br />

UIS (UPS input selector) 1–3, 3–20<br />

connectors <strong>and</strong> LEDs 3–20<br />

UMB (universal management board) 3–2<br />

UNIX operating system 2–14<br />

UPS (uninterruptible power supply) 1–3, 3–21<br />

connectors 3–22<br />

LEDs 3–23<br />

W<br />

WES (<strong>World</strong><strong>Mark</strong> enterprise storage) 1–3, 2–10<br />

disk arrays supported 2–11<br />

external MLAN connnection 2–19<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong> Index –3


Index<br />

Index –4<br />

<strong>World</strong><strong>Mark</strong> <strong>4800</strong>/<strong>5200</strong> <strong>and</strong> <strong>4850</strong>/<strong>5250</strong> <strong>Product</strong> <strong>Guide</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!