15.11.2012 Views

MICROSYSTEMS TECHNOLOGY IN GERMANY - AHK

MICROSYSTEMS TECHNOLOGY IN GERMANY - AHK

MICROSYSTEMS TECHNOLOGY IN GERMANY - AHK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MICROSYSTEMS</strong> <strong>TECHNOLOGY</strong><br />

<strong>IN</strong> <strong>GERMANY</strong><br />

2008<br />

2008<br />

MIKROSYSTEMTECHNIK<br />

<strong>IN</strong> DEUTSCHLAND


Table of Contents<br />

4<br />

6 Welcoming Address<br />

Grußwort<br />

Dr. Annette Schavan<br />

Federal Minister for Education and Research<br />

Bundesministerin für Bildung und Forschung<br />

8 Positioning in International<br />

Competition<br />

Zur Positionierung im<br />

internationalen Wettbewerb<br />

10 VDE-GMM: Microsystems Technology Drives<br />

Innovation in Leading Markets<br />

Mikrosystemtechnik – Innovationstreiber<br />

für Leitmärkte<br />

13 Contributions to<br />

Topical Fields of Innovation<br />

Beiträge zu aktuellen<br />

Innovationsfeldern<br />

14 Helmut Seidel, Universität des Saarlandes:<br />

Microactuators<br />

16 Peter Woias, IMTEK:<br />

MicroEnergy Harvesting – Energy Supply for distributed<br />

embedded Microsystems<br />

18 Jürgen Mohr, Forschungszentrum Karlsruhe:<br />

Micro-Optics<br />

20 OSRAM Opto Semiconductors:<br />

High Brightness LEDs for Light Engines<br />

22 Thomas Stieglitz, IMTEK:<br />

Intelligent Implants<br />

24 Johannes Dehm, DGBMT im VDE:<br />

Latest Results and Solutions in Preventive<br />

Micromedicine<br />

26 Reiner Wichert, Fraunhofer-Verbund Mikroelektronik:<br />

The Fraunhofer Alliance „Ambient Assisted Living“<br />

28 Katrin Gaßner, VDI/VDE-IT:<br />

Smart Labels for Logistic Applications<br />

30 Hartmut Strese, VDI/VDE-IT:<br />

Intelligent Technical Textiles<br />

32 Herbert Reichl, Fraunhofer IZM, at al:<br />

More than Moore, Hetero System Integration<br />

and Smart System Integration –<br />

Three Approaches – one Goal: Smarter Products<br />

and Processes<br />

38 The 2 nd German Congress<br />

on Microsystem Technologies<br />

2007<br />

Der 2. Deutsche Mikrosystemtechnik-Kongress<br />

2007<br />

40 Thomas Gessner, TU Chemnitz:<br />

Review of the 2 nd German Congress on<br />

Microsystem Technologies<br />

42 Roland Zengerle, IMTEK, et al:<br />

Microfl uidic Platforms for Miniaturization, Integration<br />

and Automation of Biochemical Assays<br />

44 Christian Voss, Jörg Müller, TU Hamburg-Harburg:<br />

A Mechanical Microsystem for Restoration of<br />

Spinal Cord Continuity after Paraplegia<br />

46 Kathrin Knese, Robert Bosch GmbH, et al:<br />

Novel Surface Micromachining Technology<br />

for Fabrication of Capacitive Pressure Sensors<br />

Based on Porous Silicon<br />

48 Thomas Otto, Ray Saupe, Fraunhofer IZM, et al:<br />

Forensic Investigation Using MEMS-Spectrometers<br />

50 Anna Gerken, Johannes Paul, Sensitec GmbH:<br />

Use of the Tunnelmagnetoresistive Effect for Sensor<br />

Applications<br />

52 Katrin Müller, Motorola GmbH:<br />

Nutriwear – Nutrition Management Using Smart Textiles


54 Jan-Uwe Schmidt, Fraunhofer IPMS, et al:<br />

Technology Development for 1 Megapixel-Micromirror<br />

Arrays with High Optical Fill Factor and Stable<br />

Analogue Defl ection<br />

57 Associations and Networks<br />

Verbände und Netzwerke<br />

58 ZVEI<br />

60 AMA<br />

62 IVAM<br />

64 Mikrotechnik Thüringen with<br />

∙ Micro-Hybrid Electronic GmbH<br />

∙ Hermsdorfer Institut für Technische Keramik e. V.<br />

68 Zentrum für Mikrosystemtechnik Berlin<br />

71 Current Results and Portfolios<br />

of Research Institutions<br />

Aktuelle Ergebnisse und<br />

Leistungen aus Forschungseinrichtungen<br />

72 Fraunhofer IFAM<br />

74 ZfM Zentrum für Mikrotechnologien Technische<br />

Universität Chemnitz<br />

76 NMI Naturwissenschaftliches und Medizinisches<br />

Institut an der Universität Tübingen, Reutlingen<br />

78 IPHT Institut für Photonische Technologien, Jena<br />

80 IMM Institut für Mikrotechnik Mainz<br />

82 Hahn-Schickard-Gesellschaft<br />

84 IMN Institut für Mikro- und Nanotechnologien<br />

der Technischen Universität Ilmenau<br />

86 Fraunhofer IKTS<br />

87 Current Innovations and<br />

Competencies of Companies<br />

Aktuelle Innovationen und<br />

Kompetenzen aus Unternehmen<br />

Inhaltsverzeichnis<br />

Microsystems Technology Products and Solutions<br />

Mikrosystemtechnische Produkte und Lösungen<br />

88 Infi neon Technologies AG<br />

90 Carl-Zeiss MicroImaging GmbH<br />

92 UST Umweltsensortechnik GmbH<br />

93 Greiner Bio-One GmbH<br />

94 Plan Optik AG<br />

96 MMT Micro Mechatronic Technologies GmbH<br />

97 pro-micron GmbH & Co. KG<br />

Products and Solutions for Microsystems Technology<br />

Produkte und Lösungen für die Mikrosystemtechnik<br />

98 Carl Zeiss Industrielle Messtechnik GmbH<br />

100 Lumera Laser GmbH<br />

101 Physik Instrumente (PI) GmbH & Co KG<br />

102 Polytec GmbH<br />

104 3D-Micromac AG<br />

105 Rohwedder AG<br />

106 LIMO Lissotschenko Mikrooptik GmbH<br />

108 SONOSYS Ultraschallsysteme GmbH<br />

109 MPD GmbH Microelectronic Packaging Dresden<br />

110 technotrans AG<br />

112 SCHUNK GmbH & Co. KG Spann- und<br />

Greiftechnik<br />

113 ZMD Zentrum Mikroelektronik Dresden AG<br />

114 Impressum<br />

Photo Credits/Bildnachweise<br />

5


Welcoming Adress<br />

With the introduction of the High-Tech<br />

Strategy for Germany just over a year<br />

ago, the Federal Government gave a<br />

clear signal that it intended to strengthen<br />

our country’s innovative strength in the<br />

long term. For the fi rst time ever, we<br />

have a national strategy covering all<br />

fi elds of politics and aimed at leading<br />

Germany to the top in the most important<br />

markets of the future.<br />

One priority of the High-Tech Strategy,<br />

which is coordinated by the Federal<br />

Ministry of Education and Research, is<br />

the fi eld of microsystems technology.<br />

This cutting-edge fi eld has enormous<br />

potential. Microsystems technology<br />

can be used in almost all branches of<br />

industry to develop new products and<br />

improve existing ones.<br />

At the same time, microsystems technology<br />

is increasingly becoming a key<br />

technology for tackling diverse societal<br />

challenges, such as the problems of demographic<br />

change and climate change.<br />

Microsystems technology supplies the<br />

technical solutions to these problems.<br />

6<br />

With an annual growth rate of 16 percent<br />

and a turnover of more that 277<br />

billion Euros, microsystems technology<br />

is one of the major job machines in our<br />

country today. Some 680,000 jobs in<br />

Germany are closely connected with<br />

microsystems technology: fi fty thousand<br />

of them are in the immediate production<br />

of microsystems. And the trend is rising.<br />

For example, the fi eld of sensor technology,<br />

an important area of microsystems<br />

technology, is creating more jobs than<br />

ever before. More than 13,000 new jobs<br />

were created in 2007 alone.<br />

It is smaller fi rms in particular that are<br />

responsible for growth in this area.<br />

The technological development of<br />

microsystems technology is in no way<br />

complete: its potential for application<br />

has by no means been exhausted.<br />

In order to use this potential in Germany,<br />

the Federal Ministry of Education and<br />

Research is making project funding<br />

worth over 220 million Euros available<br />

between 2004 and 2009 under the “Microsystems”<br />

framework programme.<br />

Dr. Annette Schavan,<br />

Federal Minister of<br />

Education and Research<br />

Bundesministerin für<br />

Bildung und Forschung<br />

Close cooperation between industry and<br />

science is an important precondition for<br />

the successful use of the opportunities<br />

linked with microsystems technology.<br />

The Federal Research Ministry therefore<br />

organized the Microsystems Technology<br />

Congress in conjunction with the VDE<br />

(Association for Electrical, Electronic &<br />

Information Technologies) for the second<br />

time in October 2007. More than 1000<br />

experts at the Dresden conference set<br />

the course for Germany’s future as a<br />

location for microsystems technology.<br />

Our aim is clear: Germany is to once<br />

again become the country with the best<br />

innovations. In the fi eld of microsystems<br />

technology we are on the right track.<br />

Dr Annette Schavan, MdB<br />

Federal Minister of Education<br />

and Research


Mit der „Hightech-Strategie für Deutschland“<br />

hat die Bundesregierung vor etwas<br />

mehr als einem Jahr ein klares Signal<br />

gesetzt, die Innovationskraft unseres<br />

Landes nachhaltig zu stärken. Erstmals<br />

gibt es eine nationale Strategie über alle<br />

Politikfelder hinweg, um unser Land an<br />

die Weltspitze der wichtigsten Zukunftsmärkte<br />

zu führen.<br />

Ein Schwerpunkt der Hightech-Strategie,<br />

die vom Bundesministerium für Bildung<br />

und Forschung koordiniert wird, ist die<br />

Mikrosystemtechnik. In dieser Zukunftstechnologie<br />

steckt enormes Potenzial,<br />

denn mit Hilfe der Mikrosystemtechnik<br />

lassen sich in nahezu allen Industriebranchen<br />

neue Produkte entwickeln und<br />

bestehende verbessern.<br />

Gleichzeitig wird die Mikrosystemtechnik<br />

immer mehr zu einer Schlüsseltechnologie<br />

für die Lösung vielfältiger gesellschaftlicher<br />

Herausforderungen, die<br />

etwa durch die demografi sche Entwicklung<br />

oder den Klimawandel auf uns zukommen.<br />

Die Mikrosystemtechnik liefert<br />

dafür die technologischen Ansätze.<br />

Mit jährlich 16 Prozent Wachstum und<br />

einem Umsatzvolumen von mehr als<br />

277 Milliarden Euro gehört die Mikrosystemtechnik<br />

zu den Jobmaschinen<br />

unseres Landes. Heute sind rund<br />

680.000 Arbeitsplätze in Deutschland<br />

mit der Mikrosystemtechnik eng verbunden,<br />

davon knapp 50.000 direkt in<br />

der Produktion von Mikrosystemen. Die<br />

Tendenz ist steigend: Beispielsweise die<br />

Sensorik-Branche, ein wichtiges Feld<br />

der Mikrosystemtechnik, schafft so viele<br />

Arbeitsplätze wie nie zuvor. Allein im Jahr<br />

2007 entstanden hier über 13.000 neue<br />

Jobs. Dieses Wachstum wird vor allem<br />

durch die kleineren Firmen getragen.<br />

Die technologische Entwicklung der<br />

Mikrosystemtechnik ist bei weitem nicht<br />

abgeschlossen; ihre Anwendungspotenziale<br />

noch lange nicht ausgeschöpft.<br />

Um diese Potenziale in Deutschland zu<br />

nutzen, stellt das Bundesministerium für<br />

Bildung und Forschung darum mit dem<br />

Rahmenprogramm „Mikrosysteme“ von<br />

2004 bis 2009 über 220 Mio. Euro an<br />

Projektfördermitteln zur Verfügung.<br />

Grußwort<br />

Eine wichtige Voraussetzung für die<br />

erfolgreiche Nutzung der mit der Mikrosystemtechnik<br />

verbundenen Chancen<br />

ist eine enge Kooperation zwischen<br />

Industrie und Wissenschaft. Bereits zum<br />

zweiten Mal veranstaltete das Bundesforschungsministerium<br />

deshalb im<br />

Oktober 2007 gemeinsam mit dem VDE<br />

den Mikrosystemtechnik-Kongress. Über<br />

1000 Expertinnen und Experten stellten<br />

in Dresden die Weichen für die Zukunft<br />

des Mikrosystemtechnik-Standorts<br />

Deutschland.<br />

Unser Ziel ist klar: Deutschland soll<br />

wieder das Land mit den besten Innovationen<br />

werden. In der Mikrosystemtechnik<br />

sind wir auf dem besten Weg.<br />

Dr. Annette Schavan, MdB<br />

Bundesministerin für Bildung<br />

und Forschung<br />

7


Positioning in International Competition<br />

Kapitelüberschrift<br />

Positioning<br />

in International<br />

Competition<br />

8


Positioning in International Competition<br />

Positionierung<br />

im internationalen<br />

Wettbewerb<br />

9


Positioning in International Competition<br />

Microsystems Technology –<br />

Drives Innovation<br />

in Leading Markets<br />

VDE: Microsystems technology drives economic<br />

and technical progress in Germany and Europe<br />

With a worldwide market volume in<br />

the triple-digit billion-euro range and<br />

double-digit growth rates, microsystems<br />

technology (MST) is one of the biggest<br />

markets of the future. And the leveraging<br />

effect of MST applications – estimated<br />

at 25 times that volume – is even more<br />

important. All in all, MST ranks as one of<br />

the leading cross-disciplinary technologies<br />

of the 21st century. In the VDE’s<br />

2007 Innovation Monitor, VDE business<br />

and research experts consider micro-<br />

and nanotechnologies to be the primary<br />

stimulus for innovations.<br />

Microtechnical components are long<br />

since a mass market, and appear<br />

in products such as ink-jet pressure<br />

injectors, CD/DVD scanners, acceleration<br />

sensors for triggering airbags,<br />

10<br />

and laser measurement systems for<br />

automation systems, minimally invasive<br />

medical procedures and in optics. MST<br />

also makes possible new production<br />

processes in nanometer dimensions,<br />

and is transforming traditional industries<br />

such as high-precision engineering and<br />

tool manufacturing for state-of-the-art<br />

injection molding.<br />

Germany has long been the technology<br />

leader for integrated systems solutions<br />

and continues to hold an outstanding<br />

position in the fi eld of microsystems<br />

technology as the most important European<br />

home by far for microelectronics<br />

and microtechnology. The VDE Innovation<br />

Monitor indicates that Germany<br />

will be able to continue defending its<br />

excellent technology position even<br />

though Europe is in<br />

a neck-to-neck race<br />

with the U.S. in micro-<br />

and nanotechnology<br />

innovations, and<br />

East Asia is gaining<br />

ground. Microsystems<br />

technology will<br />

undoubtedly continue<br />

to be a major key to<br />

Germany’s success in<br />

leading markets of the<br />

future.<br />

In particular, microsystems<br />

technology<br />

drives industries in<br />

which Germany and<br />

Europe are traditionally<br />

strong, such as the<br />

automotive industry,<br />

medical engineering and the information<br />

and communications sector. In the future,<br />

the “Internet of things” will not only<br />

be used to transport data, but to directly<br />

operate a wide range of devices. Smart<br />

labels (RFIDs), for example, are the fi rst<br />

step toward networking IT systems and<br />

enabling independent interaction among<br />

intelligent devices (machine-to-machine<br />

communication), such as in the multimedia<br />

sector.<br />

To optimally exploit the potential of German<br />

science and build bridges between<br />

research and future markets, the German<br />

government’s high-tech strategy<br />

has designated microsystems technology<br />

as the forerunner for intelligent<br />

products. It is orienting its MST program<br />

toward meeting important needs in


Dr.-Ing. Dr. sc. techn.<br />

Klaus-Dieter Lang<br />

stellv. Vorstandsvorsitzender<br />

der VDE/VDI<br />

Gesellschaft GMM<br />

Fraunhofer Institut<br />

Zuverlässigkeit und<br />

Mikrointegration (IZM),<br />

Deputy Director<br />

the areas of environment, healthcare<br />

and resource effi ciency. The VDE and<br />

the Federal Ministry for Education and<br />

Research (BMBF) are already partners in<br />

many areas, such as the VDE/BMBF Microsystems<br />

Technology Congress and<br />

in precompetitive networking projects<br />

like micromedicine.<br />

The VDE/VDI Society of Microelectronics,<br />

Micro and Precision Engineering<br />

(GMM) comprises a broad network<br />

Die Mikrosystemtechnik ist mit einem<br />

weltweiten Marktvolumen im dreistelligen<br />

Milliardenbereich und zweistelligen<br />

Wachstumsraten einer der großen<br />

Zukunftsmärkte. Von noch größerer<br />

Bedeutung ist der bemerkenswerte<br />

Hebeleffekt für MST-Anwendungen, der<br />

auf das 25-fache geschätzt wird. Damit<br />

zählt die MST zu den wichtigsten Querschnittstechnologien<br />

des 21. Jahrhunderts.<br />

VDE-Experten aus Unternehmen<br />

und Forschungsinstitutionen sehen nach<br />

dem VDE Innovationsmonitor 2007<br />

die Mikro- und Nanotechnik sogar als<br />

Hauptimpulsgeber für Innovationen.<br />

Längst haben mikrotechnische Komponenten<br />

einen Massenmarkt geschaffen:<br />

z.B. als Tintenstrahl-Druckknöpfe, als<br />

CD/DVD-Abtastköpfe, als Beschleuni-<br />

of microsystems technology experts<br />

organized in a number of specialist<br />

divisions. The GMM serves as a crucial<br />

interface for the cross-disciplinary<br />

exchange of expertise, and supports the<br />

growth of microsystems technology in<br />

Germany with position papers, workshops,<br />

conferences and promotional<br />

initiatives.<br />

The optimal focus and fi ne-tuning of<br />

innovation policies is especially impor-<br />

gungssensoren zur Auslösung von<br />

Airbags, in Lasermesssystemen in der<br />

Automation, in der minimal invasiven<br />

Medizin oder in der Optik. Darüber<br />

hinaus entstehen durch Mikrosystemtechnik<br />

auch neue Fertigungs- und<br />

Produktionsverfahren, die bis in den<br />

Nanometerbereich reichen. Diese verändern<br />

derzeit traditionelle Branchen wie<br />

die Feinwerktechnik oder die Herstellung<br />

von Werkzeugen für den modernen<br />

Spritzguss.<br />

Deutschland ist seit vielen Jahren Technologieführer<br />

bei integrierten Systemlösungen<br />

und in der Mikrosystemtechnik<br />

nach wie vor hervorragend aufgestellt.<br />

Die Bundesrepublik ist mit Abstand der<br />

bedeutendste europäische Standort für<br />

Mikroelektronik und Mikrotechnik. Diese<br />

Zur Positionierung im internationalen Wettbewerb<br />

Dipl.-Ing. Dipl. Wirtsch.-<br />

Ing. Dirk Friebel<br />

Vorstandsvorsitzender<br />

der VDE/VDI Gesellschaft<br />

GMM<br />

NOKIA, Research Center<br />

Germany, Bochum,<br />

Laboratory Director,<br />

General Manager<br />

tant for microsystems technology, since<br />

the fi eld also has a major impact on<br />

Germany’s competitive position in other<br />

key technologies and markets. In order<br />

to fully utilize the impressive potential<br />

of microsystems technology, one must<br />

further develop and expand the knowledge<br />

network, give highest priority to<br />

research needs in innovation fi elds, and<br />

tackle hindrances to innovation such<br />

as bureaucracy and the shortage of<br />

engineers.<br />

Mikrosystemtechnik –<br />

Innovationstreiber für Leitmärkte<br />

gute Technologieposition kann Deutschland<br />

laut VDE Innovationsmonitor auch<br />

künftig verteidigen, wenngleich sich<br />

Europa bei Innovationen der Mikro- und<br />

Nanotechnik ein Kopf-an-Kopf-Rennen<br />

mit den USA liefert und Ostasien an<br />

Boden gewinnt. Ohne Zweifel bleibt die<br />

Mikrosystemtechnik für Deutschland ein<br />

wichtiger Schlüssel zum Erfolg in den<br />

Leitmärkten der Zukunft.<br />

Insbesondere treibt die Mikrosystemtechnik<br />

Branchen an, in denen Deutschland<br />

und Europa traditionell stark sind,<br />

so zum Beispiel den Automobilbau und<br />

die Medizintechnik. Weitere Leitmärkte<br />

sind in der IKT-Branche auszumachen.<br />

So werden im künftigen „Internet der<br />

Dinge“ nicht nur Daten, sondern auch<br />

viele Geräte direkt über das Internet<br />

11


Positioning in International Competition<br />

genutzt. Die „Funketiketten“<br />

(Smart Labels, RFID) sind<br />

erste Ansätze in Richtung<br />

einer Vernetzung von<br />

IKT-Systemen und zur<br />

eigenständigen Interaktion<br />

intelligenter Endgeräte<br />

(Machine-to-Machine<br />

Kommunikation), etwa im<br />

Multimediabereich.<br />

Um das Potenzial der<br />

deutschen Wissenschaft<br />

optimal zu nutzen und<br />

Brücken zwischen Forschung<br />

und Zukunftsmärkten<br />

zu schlagen, hat die<br />

Bundesregierung die Mikrosystemtechnik<br />

als Wegbereiter<br />

für intelligente Produkte<br />

in die Hightech-Strategie<br />

aufgenommen und das<br />

Technologieprogramm Mikrosystemtechnikkontinuierlich<br />

auf die wichtigen gesellschaftlichen<br />

Bedürfnisse<br />

in den Bereichen Umwelt, Gesundheit<br />

und Ressourceneffi zienz ausgerichtet.<br />

In vielen Bereichen arbeiten VDE und<br />

BMBF gerade in der Mikrosystemtechnik<br />

sehr erfolgreich zusammen, etwa im<br />

Rahmen des VDE/BMBF Mikrosystemtechnik<br />

Kongresses und vorwettbewerblich<br />

angesiedelten Netzwerk-Projekten<br />

z.B. in der Mikromedizin.<br />

12<br />

Sub-nanometer<br />

resolution<br />

Low settling<br />

time<br />

QuickLock<br />

adapter<br />

Die VDE/VDI-Gesellschaft Mikroelektronik,<br />

Mikro- und Feinwerktechnik<br />

(GMM) vereinigt ein weit verzweigtes<br />

Expertennetz auf dem breiten Gebiet<br />

der Mikrosystemtechnik, das sich in<br />

der GMM in einer Vielzahl von Fachgremien<br />

organisiert hat. Damit leistet<br />

die GMM einen wesentlichen Beitrag,<br />

um als Schnittstelle den fachübergrei-<br />

High-precision<br />

flexure<br />

guidance<br />

Highly<br />

compact<br />

Look Sharp!<br />

PIFOC ® —High Dynamics Piezo Nanofocusing Systems<br />

These extremely precise focusing systems are unique for their extra-long travel ranges<br />

and sub-nanometer resolution. With their minimal settling times and outstanding<br />

focus stability, they are winning over users in Life Sciences and Metrology.<br />

■ Travel Ranges up to 460 μm<br />

You, too, can look sharp. info@pi.ws<br />

■ Resolution < 1 nm ■ Linearity to 0.03 %<br />

Physik Instrumente (PI) GmbH & Co. KG · Tel. +49-721-4846-0<br />

fenden Austausch von Expertenwissen<br />

zu gewährleisten. Die GMM trägt mit<br />

Positionspapieren, Workshops, Tagungen<br />

und Initiativen zur Förderpolitik<br />

dazu bei, der Mikrosystemtechnik in<br />

Deutschland Zukunftsperspektiven zu<br />

geben.<br />

Die richtige Fokussierung und Justierung<br />

innovationspolitischer Maßnahmen<br />

ist gerade in der Mikrosystemtechnik<br />

von herausragender<br />

Bedeutung. Denn sie wirkt sich auch<br />

auf die Wettbewerbs position<br />

Deutschlands in weiteren Spitzentechnologien<br />

und Leitmärkten aus.<br />

Deshalb müssen die Wissensnetzwerke<br />

weiter aus gebaut, die Forschungsför<br />

derung auf Innovationsfeldern mit<br />

höchster Priorität versehen und Innovationshemmnisse<br />

wie Büro kratie und<br />

Ingenieurmangel abgebaut werden.<br />

Nur so können die beachtlichen Potenziale<br />

der Mikrosystemtechnik voll<br />

ausgeschöpft werden.<br />

VDE/VDI-Gesellschaft Mikroelektronik,<br />

Mikro- und Feinwerktechnik (GMM)<br />

Dr. Ronald Schnabel<br />

Stresemannallee 15<br />

D – 60596 Frankfurt<br />

Phone +49(0)69-6308-227 / 330<br />

Fax +49(0)69-6308-9828<br />

Mail gmm@vde.com<br />

Web www.vde.com/gmm


Beiträge<br />

zu aktuellen<br />

Innovationsfeldern<br />

Contributions<br />

to Topical Fields<br />

of Innovation


Contributions to Topical Fields of Innovation<br />

Microactuators<br />

Microactuators are not only characterized<br />

by their smaller size in comparison<br />

to classical actuators, but defi ne themselves<br />

much more prominently by their<br />

way of production, which is derived from<br />

microsystem technology and is based<br />

on batch-processing steps. By their very<br />

nature, microactuators allow only small<br />

displacements and forces. Thus they<br />

have the largest application potential<br />

where only small forces are needed and<br />

where miniaturization is an advantage<br />

per se, e.g. because an array setup is<br />

required. Examples are applications that<br />

are aimed at the switching of small electrical<br />

currents, at the manipulation of light<br />

or of small volumes of fl uids. The ink-jet<br />

printer head, which controls the ejection<br />

of tiny droplets of ink onto the print medium,<br />

is amongst the most successful<br />

high volume devices in all microsystem<br />

14<br />

technology. Similarly, analytical devices<br />

in life science applications, including<br />

control valves and micropumps, are rapidly<br />

gaining importance. Another highly<br />

successful microactuator is the digital<br />

mirror device from Texas Instruments.<br />

Switches and high frequency micromechanical<br />

oscillators for microwave applications<br />

in the GHz domain are rapidly<br />

gaining importance, even defi ning a new<br />

subclass of microsystem technology,<br />

called RF-MEMS.<br />

The principles used for generating<br />

forces in microactuators are the same<br />

as those encountered in classical<br />

actuators. However, due to the different<br />

scaling behaviour and the different<br />

compatibility with microsystem technologies,<br />

other forces dominate the scene.<br />

The most dominant driving mechanism<br />

Fig. 1<br />

A silicon microvalve with<br />

combined magnetic/electrostatic<br />

actuation used for<br />

fl ow control in ion thrusters<br />

for satellite propulsion.<br />

a) schematic cross section.<br />

b) upper silicon chip with<br />

movable membrane for<br />

closing the valve.<br />

Prof. Dr. Helmut Seidel<br />

Chair of Micromechanics,<br />

Microactuators/Microfl uidics,<br />

Department of Mechatronis –<br />

Saarland University<br />

in conventional actuators is the electromagnetic<br />

force, with electrostatic forces<br />

only playing a side roll. Although they<br />

can also be generated quite easily in<br />

a parallel capacitor plate confi guration,<br />

their strength decreases inversely proportional<br />

to the distance of the plates.<br />

When we now look at the laws of scaling<br />

of these forces down to smaller dimensions,<br />

the situation observed in conventional<br />

actuators gets to be reversed.<br />

The electrostatic force is a surface force<br />

and therefore scales with the square of<br />

the length scale l involved in a system.<br />

Since volumes and inertial masses are<br />

scaled down by l³, electrostatic forces<br />

are actually gaining in relative strength<br />

by reducing the size of a structure,<br />

whereas electromagnetic forces scale<br />

much more unfavourable because of the<br />

limitations of current density and heat<br />

transfer from a coil to the surrounding<br />

environment.<br />

For some applications the simultaneous<br />

incorporation of two actuation principles<br />

in a hybrid way can be of interest. An<br />

example for this is the combined use of<br />

electromagnetic and electrostatic forces<br />

in a microvalve, which was developed<br />

by the author’s group for controlling a<br />

xenon gas fl ow in ion thrusters used for<br />

satellite propulsion (Fig. 1). The electromagnetic<br />

force is applied for generating<br />

large displacements in opening or closing<br />

the valve, whereas the electrostatic<br />

force can keep the valve in its closed<br />

position with very little power consumption.<br />

The best known and most widespread<br />

microfl uidic system today is the ink-jet


Fig. 2<br />

Digital Mirror Device<br />

from Texas Instruments.<br />

printer. The printer head as the enabling<br />

component is an example of a true<br />

microactuator that made it to a readily<br />

available product with overwhelming<br />

commercial success, being produced in<br />

ever increasing numbers. The principle<br />

setup of this device can be described<br />

as follows: An ink reservoir feeds a pressure<br />

chamber which is in direct contact<br />

with a linear arrangement of microscopic<br />

nozzles, shooting out droplets of ink on<br />

demand towards the print medium. In<br />

the more traditional setup a piezoelectric<br />

element is employed as an actuation<br />

principle to contract a wall of the<br />

chamber, thus increasing the pressure<br />

which leads to the ejection of an ink<br />

droplet. As an alternative, the application<br />

of a phase-change thermopneumatic<br />

principle has become very popular. A<br />

short heating pulse (< 10 μs) induced by<br />

an electric resistor vaporizes the ink in<br />

the chamber, generating a gas bubble<br />

which leads to a substantial increase in<br />

pressure, causing a small droplet of ink<br />

to be ejected from the nozzle.<br />

Microactuators have a large potential<br />

in optical applications, since no large<br />

forces are required for the manipulation<br />

of light. The digital micromirror device<br />

(DMD) is one of the most successful<br />

microsystem devices ever produced<br />

from an economical point of view. Its<br />

idea goes back to an invention made<br />

by L.J. Hornbeck at Texas Instruments<br />

in 1987. At its heart stands a pixelated<br />

array of defl ectable micromirrors that can<br />

be addressed and actuated individually<br />

to display an image on a projector<br />

screen, when combined with the<br />

illumination and optics required for this<br />

purpose. The mirror structures are fabricated<br />

after the completion of the CMOS<br />

process fl ow that creates all the underlying<br />

circuit elements required for driving<br />

Contributions to Topical Fields of Innovation<br />

and ultimately displacing<br />

the mirrors<br />

by electrostatic<br />

forces. The micromirrors<br />

are squares<br />

with 10-20 microns<br />

length, made out<br />

of a highly refl ective<br />

aluminium alloy.<br />

A micrograph of a<br />

group of micromirrors<br />

can be seen<br />

in Fig. 2. One<br />

element has been<br />

removed to provide<br />

visual access to the<br />

underlying hingesupport<br />

structure.<br />

The addressing<br />

circuitry under each mirror pixel is a<br />

memory cell (a CMOS SRAM) that<br />

drives two electrodes under the mirror<br />

with complementary voltages.<br />

Ink-jet printer heads and digital mirror<br />

devices can presently be regarded<br />

as the most successful microsystems<br />

on the market. This demonstrates the<br />

extraordinary commercial potential of<br />

microactuators in an impressive way.<br />

Saarland University<br />

Department of Mechatronics<br />

Prof. Dr. rer. nat. Helmut Seidel<br />

D – 66123 Saarbrücken<br />

Phone +49(0)681-302-3979<br />

Fax +49(0)681-302-4699<br />

Mail seidel@lmm.uni-saarland.de<br />

Web www.lmm.uni-saarland.de<br />

15


Contributions to Topical Fields of Innovation<br />

Micro Energy Harvesting –<br />

Energy Supply for distributed<br />

embedded Microsystems<br />

Today we live in a highly<br />

networked information<br />

society. The internet<br />

spectacularly metamorphoses<br />

into a worldwide<br />

wireless information<br />

system. Just as rapidly,<br />

the number of distributed<br />

embedded systems<br />

grows, in production<br />

technology, building<br />

technology, medical<br />

technology, security<br />

technology, or transportation<br />

technology, without<br />

which modern society<br />

would be inconceivable.<br />

Radio communication<br />

is used more and more<br />

within these systems<br />

since it offers, just like<br />

in the world wide web,<br />

fl exible expansion and<br />

mobility. Power supply for<br />

the system nodes is still<br />

done via cable or battery,<br />

increasingly causing disadvantages.<br />

In factories,<br />

buildings, and vehicles,<br />

power and data cables<br />

for the distributed systems<br />

have become a signifi<br />

cant cost factor. These<br />

cable networks can be<br />

faulty, heavy and expensive;<br />

they must be laid,<br />

extended and serviced<br />

manually. Rarely are batteries<br />

a useful alternative.<br />

From a technical point of<br />

view, temperature, vibration<br />

or corrosion set tight<br />

16<br />

Prof. Dr. Ing. Peter Woias<br />

IMTEK<br />

Speaker of the DFG Research<br />

Training Group GR 1322<br />

“Micro Energy Harvesting“<br />

Bio fuel cell for a direct<br />

metabolism of glucose<br />

Organic PV cell on<br />

a glass substrate<br />

Piezoelectric vibration<br />

harvester fabricated<br />

in polymer-composite<br />

technology<br />

Piezoelectric vibration<br />

harvester with a stressoptimated<br />

beam shape<br />

limits, so do maintenance and disposal<br />

from an economical point of<br />

view. Therefore, there is an urgent<br />

need to solve the energy problem<br />

for distributed embedded systems<br />

given their increasing complexity<br />

and widespread use.<br />

“Micro Energy Harvesting”,<br />

“Energy Harvesting” or “Energy<br />

Scavenging” are buzz words for a<br />

completely new concept for reliable<br />

energy supply to distributed<br />

systems – preferably small, robust<br />

and low-power microsystems<br />

– without cables or batteries.<br />

Basically, Micro Energy Harvesting<br />

follows the principles of biological<br />

energy systems. The required<br />

electrical energy is “harvested”<br />

from the immediate environment<br />

of the system node. Mechanical<br />

energy from vibrations, sounds<br />

or fl ows can be used through<br />

piezoelectric, electromagnetic or<br />

capacitive generators, heat energy<br />

can be used via thermoelectric<br />

converters, energy from light with<br />

solar cells, and chemical binding<br />

energy with bio fuel cells. The<br />

harvested energy is collected in<br />

storage and is rationed with an<br />

intelligent energy management<br />

such that the system node can<br />

operate reliably.<br />

The resulting vision of an energy<br />

autonomous embedded system<br />

is enticing: the system nodes<br />

supply themselves with energy<br />

during their life span, i.e. cable


networks and battery changes become<br />

obsolete. They work at previously hard<br />

or impossible to reach locations, e.g.<br />

inside car tires, in medical prostheses<br />

and implants, at high voltage lines or<br />

building fronts. The extension of distributed<br />

systems happens through simple<br />

installation of new system nodes. Hybrid<br />

combinations of wired network hubs and<br />

energy-autonomous nodes allow high<br />

data rates as well as widely distributed<br />

systems.<br />

Tapping into environmental energy also<br />

enables new product concepts:<br />

One can imagine – and, partially, these<br />

are already reality – alarm triggers which<br />

obtain their energy from the disturbances<br />

which they monitor, medical<br />

monitoring systems operated through<br />

our body heat and motion, smart pills<br />

which get their energy from the chemical<br />

processes in the digestive tract, but<br />

just as well energy-autonomons MP3<br />

players.<br />

In general, biological energy systems<br />

use the principle “function follows energy”,<br />

in contrast to the technical priority<br />

“energy follows function”. Therefore, the<br />

long term consequences of Energy Harvesting<br />

are revolutionary new, biologically<br />

inspired, embedded systems. These<br />

systems will live a “technical life“ in their<br />

environment. Design and operational<br />

concept are, in analogy to biological<br />

principles, “life adapted”, ensuring function<br />

also under varying energy and data<br />

supplies. Like biological organisms, they<br />

adapt their activity to the energy supply,<br />

use different energy sources, are aware<br />

of their own resources, and utilize these<br />

effi ciently. This radical switch to energy<br />

and data adaptive design principles<br />

promises – over and above energy<br />

autonomy – a drastically increased operational<br />

reliability of embedded systems<br />

and opens up totally new perspectives.<br />

The visions outlined here set ambitious<br />

goals and require varied and multidisciplinary<br />

research efforts, for example to<br />

develop new materials for most effi cient<br />

energy transformers and energy storage,<br />

energy effi cient ultra low power microelectronics,<br />

or energy effi cient software<br />

algorithms and monitoring strategies.<br />

First steps have been made in Germany<br />

and Europa: Since October 2006, the<br />

DFG Research Training Group “Micro<br />

Energy Harvesting“ works in Freiburg on<br />

innovative technologies and concepts<br />

for energy transformation, storage and<br />

management. Just recently, the BMBF<br />

included development and application<br />

of Energy Harvesting in their calls for<br />

proposals “Energy autonomous Microsystems”<br />

and “Research for Civil Safety”.<br />

Contributions to Topical Fields of Innovation<br />

MEMS with energy<br />

harvesting<br />

Likewise, the current EU framework program<br />

calls Energy Harvesting one of the<br />

key technologies for research support.<br />

At the moment, Energy Harvesting is<br />

one of the notable future technologies<br />

of MST. Nobody denies the high<br />

relevance of this new energy technology<br />

for distributed embedded microsystems<br />

of tomorrow. An interesting question is<br />

if and when we will begin to utilize other<br />

successful principles of nature for more<br />

advanced and truly bioinspired embedded<br />

microsystems.<br />

Albert-Ludwigs-University Freiburg,<br />

Department of Microsystems Energeering<br />

(IMTEK)<br />

Laboratory for Design of Microsystems<br />

Prof. Dr. Ing. Peter Woias<br />

Georges-Köhler-Allee 102<br />

D – 79110 Freiburg<br />

Tel. +49(0)761-203-7490<br />

Fax +49(0)761-203-7492<br />

Mail woias@imtek.de<br />

Web www. imtek.de/konstruktion<br />

17


Contributions to Topical Fields of Innovation<br />

Micro-Optics<br />

Micro-optics is one of the technological<br />

foundations of photonics, which is<br />

considered a key technology for the<br />

21st century. Micro-optical technologies<br />

are important especially in information<br />

technology, life sciences, and sensor<br />

technology. Being the basis for technological<br />

developments and their applications,<br />

they have led the way in important<br />

innovations in all future-oriented industries.<br />

Examples are DVD players, cell<br />

phone cameras, backlit projectors, or<br />

handheld analyzers.<br />

Miniaturization and increased system<br />

integration drive innovations, by increasing<br />

functionality of optical systems and<br />

reducing costs.<br />

Micro-optics includes both wave guide<br />

as well as free space optical components<br />

and systems manufactured<br />

with micro-technological processes.<br />

Because of the associated variety of<br />

possibilities, one fi nds micro-optical<br />

components in many applications. This<br />

was in evidence on the Microsystems<br />

Technology Congress 2007 in Dresden.<br />

In communication technology, optical<br />

data transfer is the only way to satisfy<br />

the steadily growing need for transmission<br />

capacity. Furthermore, optical data<br />

transmission is brought ever closer<br />

to the subscriber, opening up new<br />

applications for micro-optics. To this<br />

end, micro-optics delivers a multitude<br />

of micro-optical components like, e.g.,<br />

simple switches, micro-optical lenses,<br />

prisms, fi lters or light wave guides in<br />

glass and in polymers, but also complex<br />

optical switches and switch matrices.<br />

18<br />

Especially in sensor technology, the<br />

potential of micro-optics as pacesetter<br />

is evident. Together with other microsystems<br />

technologies, compact, highly<br />

functional, low-noise, zero-contact and<br />

non-destructively measuring sensors<br />

can be implemented. Their application<br />

reaches from automotive technologies,<br />

security and automation technologies, to<br />

medical diagnosis and analysis technologies.<br />

Examples for micro-optical<br />

systems are optical gas sensors, light<br />

and image sensors in photo technology,<br />

fi ber-optical tension sensors in building<br />

and bridge construction, and optical<br />

pressure or distance sensors. Work at<br />

the research center Karlsruhe is concen-<br />

Dr. Jürgen Mohr,<br />

Research Center<br />

Karlsruhe, Institute<br />

for Microsystems<br />

Technology<br />

trated in the latter areas. Based on a<br />

modular concept, micro-spectrometers<br />

or distance sensors were developed.<br />

The modular assembly of micro-optical<br />

sensor systems is based on a separation<br />

of different functions (beam formation,<br />

light generation and detection,<br />

beam modulation) into different modules.<br />

Since these are implemented using<br />

specifi c technologies, a higher degree<br />

of optimization becomes possible. The<br />

worlds smallest micro-spectrometer,<br />

developed at the research center, is<br />

successfully being manufactured since<br />

a few years (Boehringer Ingelheim<br />

microParts), and is applied from the<br />

UV to the infrared. At the moment, a<br />

Confocal<br />

micro-optical<br />

distance<br />

sensor to<br />

measure<br />

inside tiny<br />

holes


Concept of a biophotonic<br />

plattform<br />

with integrated<br />

laser source,<br />

photodetector,<br />

fl uid channels and<br />

sensor structures<br />

miniaturized interferometer incorporating<br />

a micro-actor is being developed.<br />

Micro-optics has become a decisive<br />

factor for success, also in beam formation<br />

of laser light.<br />

Only after high-quality micro-optics<br />

became available, high power diode<br />

lasers came to the forefront. Both in<br />

laser structuring and in high resolution<br />

lithography, beam formation with microoptical<br />

components or precise imaging<br />

with micro-lenses have become an<br />

important aspect.<br />

In the promising technology area of bio<br />

photonics a huge potential for microoptics<br />

with excellent market chances<br />

has developed. Of special interest is the<br />

possibility to reduce costs in health care<br />

through micro-optics. The application<br />

spectrum ranges from medical diagnosis<br />

to control of innovative medicaments.<br />

Besides the development of new<br />

imaging processes for the micro and<br />

nano range, optical analysis procedures<br />

based on micro-optical components<br />

(with potential to work in parallel) for<br />

spectral analysis or detection of fl uorescent<br />

markers become necessary. Microoptics<br />

makes small and cost effective<br />

systems, directly combining fl uidics and<br />

optics, possible. The Karlsruhe Institute<br />

for Technology (KIT), a joint venture of<br />

the Research Center and the university<br />

within the German “excellence initiative”<br />

for universities, has created a new<br />

research group in this fi eld. Opto-fl uidic<br />

polymer chips are being developed<br />

there. Fluidic structures, wave guide<br />

structures, polymer lasers, and detectors<br />

are combined into a single chip. Insertion<br />

of suitable transducer structures<br />

into the opto-fl uidic interaction region is<br />

meant to allow simple ways to analyze<br />

bodily fl uids, cells or other organisms<br />

relevant in illnesses. Implementation of<br />

Contributions to Topical Fields of Innovation<br />

chips using lithographic or<br />

molding techniques allow<br />

manufacture of low cost<br />

disposable sensors. The<br />

European Union has realized<br />

the importance of this<br />

application area for optics<br />

and, since the middle of this<br />

year, funds the Euro pean<br />

excellence network Photonics4Life.<br />

The fact that micro-optics<br />

in Germany has reached a<br />

very high state of development<br />

was pointed out not<br />

just on the microsystems<br />

technology congress. German<br />

research institutions<br />

working in this fi eld are at the forefront<br />

worldwide. The industrial utilization of this<br />

research is pushed especially by small<br />

and medium enterprises. They gain<br />

ever larger importance as OEM manufacturers<br />

and sources of micro-optical<br />

components. This trend will continue in<br />

the coming years, leading to a signifi cant<br />

share for micro-optics in the predicted<br />

40% increase in the labor force in optics<br />

by the year 2010.<br />

Forschungszentrum Karlsruhe<br />

Institut für Mikrosystemtechnik<br />

Dr. Jürgen Mohr<br />

Hermann-von-Helmhotz-Platz 1<br />

D – 76344 Eggenstein-Leopoldshafen<br />

Phone +49(0)7247-82-4433<br />

Fax +49(0)7247-82-4331<br />

Mail Juergen.Mohr@imt.fzk.de<br />

Web www.imt.fzk.de<br />

19


Contributions to Topical Fields of Innovation<br />

High Brightness LEDs for Light Engines<br />

Fig 1: OSTAR LE x H3A for projection light engines<br />

Abstract<br />

The ability to increase the output<br />

performance of LED-powered projectors<br />

is imminent. A mixture of advanced<br />

LED chip and packaging technologies,<br />

optimised light extraction and improved<br />

optical aspects of LED-based projection<br />

light engines allows improved brightness<br />

by up to a factor of 10.<br />

Introduction<br />

When LED-powered projectors were<br />

commercialised, they delivered only 10<br />

to 15 real lumens; subsequent product<br />

development has therefore focused on<br />

increasing brightness.<br />

Chip performance increased with the<br />

introduction of the Thinfi lm technology.<br />

High refl ective internal mirrors combined<br />

with thin epi layers and textured surfaces<br />

are causing less internal photon<br />

reabsorption as light travels through the<br />

chip. In recognition of this outstanding<br />

20<br />

scientifi c and technical achievements in<br />

this Thinfi lm technology and related Ostar<br />

packaging and optics technologies<br />

OSRAM was awarded with the German<br />

Future Prize.<br />

This chip technology negates prior<br />

limitations of total internal refl ection by<br />

scattering refl ected light back into the<br />

chip. By increasing the current spreading<br />

capability of the epitactical layers,<br />

LED effi ciency at higher currents does<br />

not drop as dramatically as conventional<br />

structures; the thermally induced rollover<br />

of InGaAlP LEDs is enhanced from<br />

about 1.5 A/mm² to far beyond 3 A/m².<br />

This improved chip performance also<br />

requires package improvements. Fig. 1<br />

shows an Ostar for projection light<br />

engines. Six power LED chips are<br />

mounted to a highly thermally conductive<br />

ceramic heat sink, which is attached<br />

to a metal-core printed circuit board also<br />

containing a connector, surge protection<br />

devices and temperature sensor.<br />

Changing the interconnect material and<br />

replacing the aluminium core material<br />

with copper decreases thermal resistance;<br />

fi nite element simulation promised<br />

a drop from 2.8 K/W down to 1.7 K/W.<br />

These values could be also demonstrated<br />

in measurements where the old<br />

assembly version showed 2.75 K/W<br />

and new components only about 1.8<br />

K/W. More important: The new concept<br />

maintains that low value after 1,000 thermal<br />

cycles from – 40°C to + 100 °C.<br />

Other improvement comes from<br />

implementing enhanced light extraction,<br />

which raises total fl ux from a green<br />

or blue Ostar by about 25%. The new<br />

light extraction also creates additional<br />

directionality, with total emission within<br />

+/- 80°. This leads to an increasing<br />

probability that most current optics can<br />

pick up the light.<br />

On screen lumens are not only defi ned<br />

by the light source. There are also tradeoffs<br />

at the light engine level, dictated by<br />

the law of etendue conservation.<br />

The projector’s micro display etendue is<br />

determined by its area A and the angle<br />

+/- theta at which the lens system can<br />

project to the screen. The refractive<br />

index n is important, but in most cases<br />

the reference media is air.<br />

The formula can be used to determine<br />

usable LED source area. Some LEDs<br />

are lambertian emitters and emit at a<br />

level of +/- 90°. If we assume that the<br />

optical system collect the light over


Diag. 1: Captured fl ux from led source over collection angle, corresponding required chip area and gain vs. pure<br />

lampertian source with considering lens system transmission.<br />

the entire angle the etendue equation<br />

defi nes the max. usable LED area. But<br />

almost no optical system can collect all<br />

that light. Therefore it is better to cut off<br />

higher radiation angles and increase the<br />

chip area.<br />

The best approach to optimize the system<br />

is to fold our Ostar’s angular intensity<br />

distribution with the relative angular<br />

transmission of the optical system.<br />

Diag. 1 varies the collection angle from<br />

the LED source from 0° to 90°. Blue<br />

shows the percentage of collected fl ux<br />

of the LED source. Orange shows the<br />

corresponding usable chip area for a<br />

0.55” 3:4 imager at an F# of 2.4. Pink<br />

shows the relative system effi ciency.<br />

This shows that for a collection angle<br />

from 30° to 60°, the gain is stable at<br />

about 20%, but with varying chip area.<br />

For example the solution with 6.0 mm²<br />

chip area and 55° collection angle offers<br />

20% higher system brightness compared<br />

to the solution with 4.0 mm² chip<br />

area and 90° collection angle.<br />

We also compared three illumination<br />

projector confi gurations. First, we used a<br />

single-channel single Ostar module with<br />

three colours on one board – allowing<br />

1-to-1 replacement of a lamp with the<br />

LED module. A second approach of<br />

a two-channel illumination confi guration<br />

requires only one dichroic mirror to<br />

superimpose the green light from one<br />

Ostar with the mixed blue and red light<br />

from a second Ostar.<br />

In a third approach, two optimised<br />

dichroic mirrors combine the light of<br />

three monochrome Ostars. Fig. 2 shows<br />

estimated on screen fl ux based on previously<br />

discussed LED improvements,<br />

a DLP-based projector using a 0.55“<br />

Imager and a light engine effi ciency of<br />

22%. Without special driving schemes<br />

for the LEDs in a pure sequential opera-<br />

Contributions to Topical Fields of Innovation<br />

Fig 2: On Screen Lumens with different illumination<br />

regimes for the projector output.<br />

tion of the colours, the single channel<br />

delivers more than 50 lm, the twochannel<br />

gives more than 100 lm and<br />

the three-channel solution surpasses<br />

150 lm.<br />

The new Ostar Projection LE x G3W and<br />

LE x H3W open the door for next-generation<br />

LED projectors in the range of<br />

150 + Lumens on screen. With optimized<br />

systems, LED projectors of 200<br />

to 300 lumens are possible this year.<br />

OSRAM Opto Semiconductors GmbH<br />

Stefan Grötsch<br />

Leibniz Str. 4<br />

D – 93055 Regensburg<br />

Phone +49(0)941-850-1700<br />

Mail stefan.groetsch@osram-os.com<br />

Web www.osram-os.com<br />

21


Contributions to Topical Fields of Innovation<br />

Intelligent Implants<br />

Monitoring of signals from natural sensors and<br />

actuators can be used to control intelligent implants in<br />

therapy and rehabilitation.<br />

Technical aids are essential parts of<br />

modern medicine. Microsystems engineering<br />

is amongst the enabling technologies<br />

for complex intelligent implants<br />

with small size and high functionality that<br />

will improve quality of life and treatment<br />

effi cacy.<br />

Miniaturization and integration<br />

of sensors, actuators,<br />

and microcomputers will<br />

be combined to adapt<br />

intelligent implants to the<br />

changing physiological<br />

environment in real-time. Local<br />

monitoring of metabolic<br />

and electrical signals and<br />

their use as control variable<br />

will combine diagnosis with<br />

patient specifi c therapy.<br />

According to technical<br />

standards and approval pro-<br />

22<br />

cedures, “active implants” belong to the<br />

most complex class of medical devices.<br />

For Europe, legal requirements are summarized<br />

in the “Active Medical Device<br />

Directive” (AIMD). In clinical practice,<br />

however, many implants are classifi ed as<br />

non-active. Joint endoprostheses, drug<br />

delivery devices driven by gas pressure<br />

or osmosis, and implantable valves for<br />

hydrocephalus help a large number of<br />

patients but do not have an electrical<br />

power supply nor do they exchange<br />

electrical energy with the human body.<br />

In clinical practice, active implants<br />

are mainly established in cardiology<br />

and neurology. Heart pacemakers to<br />

treat rhythm or conduction disorders<br />

help millions of patients to live their life<br />

light-heartedly. Implantable defi brillators<br />

detect fi brillation and shoot the heart<br />

back into its regular rhythm. In neurology,<br />

more than 140,000 spinal cord<br />

stimulators have been implanted to treat<br />

chronic pain and urge incontinence.<br />

Electrical stimulation of the vagal nerve<br />

helps more than 17,000 patients with<br />

Prof. Dr.-Ing. Thomas Stieglitz<br />

IMTEK<br />

Laboratory for Biomedical<br />

Microtechnology<br />

medical refractory epilepsy and severe<br />

depression. Deep brain stimulation alleviates<br />

the symptoms of Parkinson’s disease<br />

like tremor and dyskinesis in more<br />

than 20,000 cases. Neuroprosthetic<br />

implants to restore motor and sensor<br />

functions are of high interest but many<br />

of them are still under development.<br />

The most successful application is the<br />

cochlea implants to restore hearing with<br />

more than 100,000 devices worldwide.<br />

The technological race for the fi rst vision<br />

prosthesis has entered the clinical trial<br />

phase with German companies at the<br />

cutting edge.<br />

Nowadays implants are successful due<br />

to their robustness: Titanium housings<br />

with a limited number of hermetic feedthroughs,<br />

robust precision mechanics<br />

cables and electrodes led to safe chronic<br />

implants. However, this construction<br />

paradigm limits the complexity and<br />

degree of miniaturization. More complex<br />

implants need different technological<br />

solutions.<br />

Intelligent<br />

Implants are<br />

established<br />

in therapy<br />

as well as in<br />

rehabilitation.


Novel applications of intelligent implants<br />

in orthopedics and in neurology, dealing<br />

with the treatment of large common<br />

diseases and specifi c diseases of an<br />

aging society are of high interest. The<br />

specifi cations of long-term stability and<br />

functionality over decades are still unsolved<br />

for implantable microsystems and<br />

require solutions for key components like<br />

energy supply and data transmission,<br />

biocompatible assembly and packaging<br />

technologies as well as novel hermetic<br />

encapsulation concepts for miniaturized<br />

implants.<br />

Let us have a more detailed view on<br />

some key aspects:<br />

The material-tissue interface is among<br />

the most challenging tasks within an<br />

active intelligent implant. So far, bioinert<br />

behavior resulting in a thin fi brous tissue<br />

layer on the electrode is the best result<br />

one can obtain. Highly complex microimplants,<br />

e.g. intracortical multishank<br />

electrodes, often fail solely due to the<br />

foreign body reactions following the<br />

implantation procedure that separate the<br />

nerve cells from the recording electrodes.<br />

The development of tailor-made<br />

surfaces and better mechanical adaptation<br />

of the technical system to the brain<br />

tissue might lead to better performance.<br />

The miniaturization of implants is driven<br />

by limited anatomical space. The selection<br />

of the adequate technology should<br />

only be determined by the degree of<br />

miniaturization necessary for the specifi<br />

ed system complexity. So far, clinical<br />

implants have a low complexity combined<br />

with excellent robustness. They<br />

use approved materials and hermetic<br />

housing components. Having medium<br />

complexity, laser structuring is a good<br />

method to obtain smaller structure size<br />

while still using the same materials.<br />

Only when smallest structure sizes and<br />

large numbers of sensors or actuators<br />

are needed, the use of microsystem<br />

technology is advantageous. In general,<br />

silicon and polymers are suitable for<br />

implantation but these materials do not<br />

have approval for the use in implantable<br />

medical devices. Evaluation in accredited<br />

test laboratories has to accompany<br />

the device development.<br />

Novel energy supply concepts will have<br />

strong impact of on intelligent implants.<br />

If implants have to record continuously<br />

data from the body to interact with the<br />

environment, batteries or inductive<br />

coupling might not be suffi cient to power<br />

the system at a high degree of miniaturization.<br />

New research lines focus on<br />

energy harvesting approaches (see con-<br />

Contributions to Topical Fields of Innovation<br />

The complexity of an<br />

application determines the<br />

degree of miniaturization and<br />

the adequate manufacturing<br />

technology<br />

tribution of P. Woias)<br />

to develop autonomous energy supply<br />

solutions for microsystems.<br />

The measurement of state variables from<br />

implants might help to monitor loosening<br />

of hip and knee prostheses and<br />

to quantify forces in dental brackets.<br />

Telemetric data from force and acceleration<br />

sensors integrated into the implants<br />

would help improve diagnosis and will<br />

prevent unnecessary surgical re-interventions.<br />

Microsystem technologies will signifi -<br />

cantly contribute to intelligent implants<br />

and patient specifi c therapies.<br />

A manifold of developments will converge<br />

to build long-term stable and<br />

functional intelligent implant of the future<br />

that will be less recognized as a foreign<br />

body than actual clinical implants.<br />

IMTEK – University of Freiburg<br />

Department of Microsystems Engineering<br />

Prof. Dr.-Ing. Thomas Stieglitz<br />

Georges-Koehler-Allee 102<br />

D – 79110 Freiburg<br />

Phone +49(0)761-203-7471<br />

Fax +49(0)761-203-7472<br />

Mail stieglitz@imtek.uni-freiburg.de<br />

Web www.imtek.de/bmt<br />

23


Contributions to Topical Fields of Innovation<br />

Latest Results<br />

and Solutions in Preventive<br />

Micromedicine<br />

Introduction<br />

On account of its potential for miniaturisation<br />

and its high degree of functional<br />

density, microsystems technology can<br />

play a major role in the development of<br />

new products and services for prevention<br />

and monitoring, and also in improving<br />

the integration of therapy monitoring.<br />

Microsystems such as those used<br />

in implantable or extracorporeal sensor<br />

systems can enable continuous<br />

progress monitoring for a whole range of<br />

indications such as high blood pressure,<br />

palpitations or blood sugar. In the<br />

case of chronic disease, continuous<br />

monitoring of parameters is crucial for<br />

a therapy‘s success, both in terms of<br />

managing the treatment and also detecting<br />

any deterioration in the condition.<br />

Current state-of-the-art<br />

A range of physiological parameters<br />

need to be monitored in order e.g. to<br />

assess the condition of the cardiovascular<br />

system. The current state-of-the-art is<br />

Hyper-IMS blood pressure sensor. Source: Fraunhofer-IMS<br />

24<br />

best shown from the example of the two<br />

key vital parameters: blood pressure and<br />

cardiac rhythm.<br />

Measuring blood pressure is the keystone<br />

for the diagnosis, management<br />

and treatment of arterial high blood<br />

pressure (hypertonia). Any decisions<br />

concerning aspects of arterial hypertonia<br />

are infl uenced positively or negatively by<br />

the precision of the measurements. Besides<br />

the indirect measurement of blood<br />

pressure by the doctor („occasional<br />

measurement“), measurements can<br />

also be taken while patients go about<br />

their daily business, i.e. during their daily<br />

activities and while sleeping, by means<br />

of 24 hour blood pressure measurement.<br />

The high measurement frequency<br />

throughout the day (every 15 minutes)<br />

and the night (every 30 minutes) means<br />

that the 24 hour measurement provides<br />

signifi cantly improved therapy monitoring<br />

in comparison to occasional measurements<br />

taken by a doctor. This applies in<br />

Dipl.-Ing. Johannes Dehm<br />

VDE Initiative MikroMedizin<br />

particular to diffi cult-to-gauge hypertonia<br />

patients. It helps optimise the dosages<br />

of a combination of different medicines,<br />

or prevent over or under treatment.<br />

Innovative methods are required to<br />

monitor the blood pressure of patients<br />

over a longer-term and on a stress-free<br />

basis without the use of a compression<br />

cuff. Extracorporeal methods include the<br />

recording of the cardiovascular parameters<br />

of blood fl ow and pulse-wave<br />

velocity. This allows the blood pressure<br />

to be measured pulse by pulse using<br />

intelligent signal processing.<br />

Work is progressing rapidly on the development<br />

of marketable telemetric sensors<br />

(intra or extracorporeal) for measuring<br />

blood pressure in the BMBF „Preventive<br />

MicroMedicine“ (PMM) project. An<br />

implantable and subsequently removable<br />

telemetric pressure measurement<br />

system is being developed for hospital<br />

use for the long-term blood pressure<br />

monitoring of hypertonia patients whose<br />

medication requirements are diffi cult to<br />

gauge. The advantage for patients lies<br />

in the fact that, in contract to external<br />

measurement techniques, the system,<br />

once implanted, is not perceptible and<br />

therefore does not diminish the patient‘s<br />

quality of life. Animal-based tests are<br />

currently being carried out on the biocompatibly<br />

coated prototype, consisting<br />

of pressure and temperature sensors,<br />

assessment electronics, a telemetry unit<br />

and an external reading station.<br />

Given the range of transmission technologies<br />

now available such as ISDN,<br />

DSL, GSM, UMTS and their IP pro-


tocols, it is possible to organise safe<br />

and secure communication between<br />

patients‘ homes and hospitals using e.g.<br />

Virtual Private Networks (VPNs). However,<br />

there are many different standards<br />

for local wireless connections – e.g.<br />

WLAN, Bluetooth or ZigBee – each offering<br />

widely differing bandwidths, power<br />

consumption levels, costs, complexity,<br />

data and tapping protection and specifi c<br />

advantages and disadvantages in their<br />

use.<br />

Products with electrodes are therefore<br />

now being developed which provide<br />

precise and reliable measurements but<br />

which can be carried on the human<br />

Contributions to Topical Fields of Innovation<br />

Source: Universität Karlsruhe (TH)<br />

body 24 hours a day without reducing<br />

the patient‘s quality of life (mobility).<br />

Innovation barriers<br />

The aforementioned measurement<br />

recording technologies are no longer in<br />

their infancy, rather they are now fully<br />

mature and ready to be used in marketable<br />

products.<br />

However, the journey from initial idea<br />

through to return on investment often<br />

takes ten years. Even well researched<br />

technologies need a period of cost<br />

and time-intensive industrial research<br />

and development in order to meet all<br />

the offi cial requirements. These include<br />

such aspects as biocompatibility, longterm<br />

stability, power supply, interfaces,<br />

measurement quality, integration and<br />

miniaturisation, usability,<br />

data storage, electrodes.<br />

It is often not possible for<br />

small and medium-size<br />

companies to carry the<br />

associated risks alone. National<br />

technology initiatives<br />

bring together medical<br />

engineering companies in<br />

joint industrial projects and<br />

help to overcome innovation<br />

barriers.<br />

There is, however, a second<br />

key innovation barrier<br />

of a non-technical nature.<br />

Its effects are seen mainly<br />

in the fi elds of approvals/<br />

market access and medical<br />

integration/support.<br />

There are considerable<br />

risks involved in obtaining<br />

approval for a medical<br />

product, in the reimbursement<br />

of the investor, and in the therapeutic<br />

acceptance. This barrier requires<br />

the development of standards which<br />

then, however, will also apply beyond<br />

the confi nes of such joint projects.<br />

VDE VERBAND DER ELEKTROTECHNIK<br />

ELEKTRONIK <strong>IN</strong>FORMATIONSTECHNIK e.V.<br />

VDE Initiative MikroMedizin<br />

Stresemannallee 15<br />

D – 60596 Frankfurt am Main<br />

Phone +49(0)69-6308-355<br />

Fax +49(0)69-9631-5219<br />

Mail dgbmt-imm@vde.com<br />

Web http://www.vde.com<br />

25


Contributions to Topical Fields of Innovation<br />

The Fraunhofer Alliance<br />

»Ambient Assisted Living«<br />

The Fraunhofer Gesellschaft (FhG) considers<br />

the concept of Ambient Assisted<br />

Living as one of the major visions of the<br />

future. Different institutes of Fraunhofer<br />

are combining their strengths towards<br />

the realization of technologies that are<br />

based on the concepts and ideas of<br />

the Ambient Intelligence research initiatives.<br />

Already at a very early stage of<br />

this processes the Fraunhofer institutes<br />

identifi ed the major impact but also<br />

the research challenges of this main<br />

future research topics. The Fraunhofer<br />

Institutes defi ne Ambient Intelligence as<br />

the provision of individualized information<br />

and support through<br />

miniature electronics,<br />

as well as crosslinked<br />

services. Such<br />

intelligent environments<br />

are able to<br />

adapt themselves<br />

independently, proactively<br />

and situationaware<br />

to the goals<br />

and needs of the<br />

user. The realization of<br />

these visions turns the<br />

focus of technology<br />

development away<br />

26<br />

Fig. 2<br />

Innovative<br />

User Interfaces<br />

for controlling<br />

household<br />

systems<br />

Fig 1<br />

The Fraunhofer<br />

Innovation Center<br />

for Intelligent Room<br />

and Building Systems<br />

inHaus<br />

from devices – or rather from device<br />

operation-dependent usage paradigms<br />

– to a goal-oriented, context-sensitive<br />

environment, in which all available<br />

devices come together to from an<br />

intelligent environment. In order to reach<br />

these goals, numerous Fraunhofer Institutes<br />

are concentrating their individual<br />

expertise in collaboration with external<br />

partners. Thereby, concrete application<br />

areas are in the focus, such as production,<br />

health care, servicing and maintenance,<br />

home and offi ce, emergency<br />

assistance, recreation, gaming/games,<br />

logistics, automobile and transportation.<br />

Dr. Reiner Wichert<br />

Coordinator Fraunhofer<br />

Alliance Ambient<br />

Assisted Living<br />

Six Fraunhofer Institutes have founded<br />

the Fraunhofer Alliance „Ambient Assisted<br />

Living“ (AAL) that concentrates on<br />

the development of assistive environments<br />

to support persons with special<br />

needs [1]. These technologies and<br />

solutions comprise convenience functions<br />

and user support in the areas of<br />

independent living and home care, but<br />

also inpatient care in a nursing home or<br />

the provision of mobile services. Another<br />

focus relies in the areas of rehabilitation<br />

and preventative for disabled persons.<br />

The main goals are the development<br />

of a system concept that integrates<br />

available AAL technologies both to gain<br />

added value and to allow an integrated<br />

market penetration. This comprises the<br />

implementation of AmI technologies,<br />

like communication technology, energy<br />

supply, sensory systems and actuators<br />

that fi nally form the foundation for future<br />

development of intelligent products. The<br />

aimed tool chain will additionally include<br />

technologies for capturing current situations<br />

of the environment and the users,<br />

as well as the aggregation and integra-


Fig. 3<br />

The different<br />

AAL spaces of<br />

PERSONA<br />

tion of contextual information. The usage<br />

of knowledge-based systems and interpreters<br />

in order to realize systems that<br />

are able to „understand“ the contextual<br />

information and to infer user’s goals and<br />

needs as well as to develop appropriate<br />

strategies for supporting the user.<br />

Finally this Fraunhofer alliance will make<br />

available development of methods and<br />

processes for data and device security<br />

in mobile and decentralized network<br />

structures.<br />

The institutes of the Fraunhofer Alliance<br />

Ambient Assisted Living are already<br />

engaged in national and international<br />

research projects that realize AAL technologies<br />

and scenarios. The EU IST Integrated<br />

Project PERSONA [2] is aiming<br />

for promoting the independence life of<br />

elderly, people with disabilities and their<br />

relatives (see fi gure3). PERSONA seeks<br />

to enable the different spaces of users<br />

(indoor, outdoor, social environments)<br />

with AAL technology in order to make<br />

available personalized AAL Services to<br />

each individual user. The BelAmI project<br />

(a bilateral German-Hungarian research<br />

collaboration on Ambient Intelligence<br />

Systems) [3] set up six research proj-<br />

ects and one<br />

demonstrator<br />

project on German<br />

side have<br />

been started.<br />

Additionally<br />

four research<br />

projects and<br />

four demonstrator<br />

projects<br />

on Hungarian<br />

side have been<br />

established. The projects are dealing<br />

with human-computer interaction, software<br />

engineering, mobile communications<br />

and microelectronics and sensors.<br />

All together BelAmI seeks to establish<br />

innovative assistive systems for health<br />

care prevention, assistance and the<br />

support of new interaction paradigms for<br />

household systems (see fi gure 2).<br />

The Fraunhofer Alliance Ambient Assisted<br />

Living is optimally positioned to cover<br />

the complete AAL technology chain<br />

from the development and evaluation of<br />

concepts and methods for assistive environments<br />

to the provision of concrete<br />

technology solutions and the buildup of<br />

integrated smart environments prototypes.<br />

The next steps of the alliance are<br />

the establishment of a business plan<br />

that defi nes the entire value chain using<br />

the Ambient Intelligence use cases and<br />

projects of the participating Fraunhofer<br />

institutes. The plans for the following<br />

three years provides the generation of a<br />

technology platform for AAL that will be<br />

offered as a complete AAL package and<br />

turn-key solution. Having this in mind,<br />

the Fraunhofer Alliance will furthermore<br />

represent the FhG in any Ambient As-<br />

Contributions to Topical Fields of Innovation<br />

sisted Living related research fi elds and<br />

will carry out supporting strategic market<br />

analyses and studies. Since the Alliance<br />

is covering various competencies, the<br />

estimated infl uence on R&D programs<br />

and the realization of joint research<br />

projects is enormous. The Alliance AAL<br />

opens up the possibility to integrate<br />

individual technologies into a complete<br />

solution package and to offer a fully integrated<br />

technology platform. Furthermore<br />

for testing and evaluation purposes of<br />

the AAL concepts and solutions the<br />

collaboration of the institutes’ individual<br />

laboratories (e.g. Fraunhofer IMS laboratory<br />

inHaus [4], see fi gure 1) leads to the<br />

establishment of complementary labs<br />

that are world-wide unique today.<br />

[1] Fraunhofer Alliance Ambient Assisted Living, http://www.<br />

fraunhofer.de/institute/allianzen/ambientassistedliving.jsp<br />

[2] EU IST Project PERSONA, http://www.aal-persona.org,<br />

2007 – 2010<br />

[3] BelAmI Project, http://www.belami-project.org/index.html,<br />

2004 – 2008<br />

[4] Fraunhofer inHaus, Innovationszentrum der Fraunhofer-<br />

Gesellschaft, http://www.inhaus-zentrum.de/<br />

Department Head Interactive Multimedia<br />

Appliances<br />

Fraunhofer Institute for Computer Graphics<br />

Dr. Reiner Wichert<br />

Fraunhoferstrasse 5<br />

D-64283 Darmstadt<br />

Phone +49(0)6151-155-574<br />

Fax +49(0)6151-155-480<br />

Mail reiner.wichert@igd.fraunhofer.de<br />

Web www.fraunhofer.de:80/EN/<br />

institutes/alliances/<br />

ambientassistedliving.jsp<br />

27


Contributions to Topical Fields of Innovation<br />

Smart Labels<br />

for Logistic Applications<br />

Germany is one of the most important<br />

global drivers for RFID technology. Both,<br />

technology development and the use of<br />

RFID attract more and more attention.<br />

Especially for logistic applications RFID is<br />

quite attractive. Experts are anticipating<br />

a wide range of use of RFID for pallets<br />

and containers by the year 2010. The<br />

effi ciency, the dynamics and the security<br />

of logistic processes shall be increased<br />

by the use of RFID. These goals are<br />

mainly achieved by a high-grade automation<br />

of the information fl ow as data<br />

exchange, data logging, monitoring and<br />

controlling. Altogether around 2.6 million<br />

Fig. 1<br />

Left Side:<br />

Bistable E-Ink<br />

display for<br />

passive RFID.<br />

Right Side: The<br />

antenna of the<br />

passive RFID<br />

transponder.<br />

Source:<br />

G. Stönner<br />

employees work in logistics and the<br />

annual turnover amounts to 180 billion<br />

Euros.<br />

RFID technology allows the unique and<br />

contactless identifi cation of objects. In<br />

the context of logistic processes these<br />

objects are goods. A RFID system<br />

consists of three main components as<br />

RFID tag, RFID reader and a connected<br />

EDV system. A tag – also called smart<br />

label – always contains a chip and an<br />

antenna where the latter is the basis for<br />

a contactless coupling of the reader and<br />

the tag. In order to read the tag data the<br />

reader induces a charge at the tag by<br />

28<br />

means of a corresponding antenna via<br />

an electromagnetic fi eld.<br />

Today, logistics is the main sector which<br />

really uses RFID because benefi ts can<br />

directly be utilized and relevant economic<br />

effects are expected. Another reason<br />

is caused by an enormous pressure of<br />

competition whereon the whole sector<br />

currently reacts with strong changes<br />

regarding process management and<br />

additional services. RFID technology is<br />

often compared to barcodes but this is<br />

incorrect for several aspects. By barcodes<br />

it is not possible to achieve the<br />

same degree of process automation as<br />

it would be possible by RFID. Therefore,<br />

RFID can also be characterized as a<br />

rationalization technology. The use of<br />

RFID positively infl uences several steps<br />

of a logistic process:<br />

✦ Mobile assets and goods can be<br />

tracked and localized.<br />

✦ The state of goods can be continuously<br />

monitored by sensors, potentially<br />

integrated into the smart labels.<br />

✦ Processes can be better analyzed<br />

because of logged data.<br />

✦ Real-time data can be used for the<br />

dynamic control of processes.<br />

✦<br />

✦<br />

✦<br />

Dr. Katrin Gaßner<br />

Logged data can be used to clarify<br />

liability issues.<br />

Wrong deliveries can be reduced.<br />

The information fl ow along the fl ow of<br />

goods can be automated.<br />

RFID is a complex system technology.<br />

For most applications specialized<br />

solutions are needed that require for<br />

substantial developments. Nonetheless,<br />

a wide range of RFID solutions already<br />

exists. The adoption of RFID technology<br />

by a company often causes primarily<br />

non-technical problems. For example<br />

the return of investment is diffi cult to<br />

document because full process analyses<br />

would be needed. Also the co-ordination<br />

with other companies of the value<br />

chain is complex and time-consuming.<br />

That needs to invest in a compatible<br />

infrastructure which is a requirement for<br />

company-spanning logistic processes.<br />

RFID is the main means of an Internet of<br />

things that supports the information fl ow<br />

across companies. Via RFID real world<br />

items are connected to further data and<br />

digital “brains”. Therefore Object Name<br />

Services (ONS) are to be developed to<br />

enable an internet access to the good<br />

data. This approach is currently advanced<br />

by EPCglobal. EPCglobal is one<br />

main driver of the development of the<br />

Internet of things and associates main<br />

representatives of consumer goods<br />

industry and retailing.<br />

Still a drawback for the intensive<br />

introduction of RFID is the cost of the<br />

single smart labels. This is especially<br />

true for the item tagging of low-priced<br />

products. As organic materials are much<br />

cheaper, research in polymer technolo-


gies is under way. Polymers are fl exible<br />

and therefore easier to adapt, to soft<br />

or curve surfaces, and they bear the<br />

potential to be printed by simple print<br />

processes. But polymers are still far from<br />

being industrial produced and used. The<br />

number of integrated transistors is still to<br />

low and they are still not reliable.<br />

Research regarding the RFID microsystems<br />

comprises tasks as assembly<br />

and manufacturing solutions, the energy<br />

storage, harvesting and management,<br />

miniaturization, tags with extended functions<br />

as sensors, actuators and dis-<br />

Fig. 2<br />

Prototype of a RFID-Tag<br />

with integrated Sensors for<br />

humidity and temperature.<br />

Source:<br />

Fraunhofer IPM<br />

plays, intelligent tags, networks of tags<br />

or sensors, polymers and materials.<br />

Within the funding programme „Mikrosystemtechnik<br />

für Smart-Label-Anwendungen<br />

in der Logistik (MST-Smart-Label)“<br />

the Bundesministerium für Bildung<br />

und Forschung (BMBF) grants 9 projects<br />

with 15 Mio. €. E.g. the project Parifl ex<br />

develops a bistable display for passive<br />

RFID technology (cf. Fig.1). This display<br />

is activated and controlled by a passive<br />

tag. It works with the E-Ink technology.<br />

Another project, the track project, develops<br />

and integrates multiple sensors to<br />

one tag (cf. Fig.2). The sensor detects<br />

Contributions to Topical Fields of Innovation<br />

temperature, humidity, light, acceleration<br />

and shocks. The project Prisma investigates<br />

into printing methods for polymeric<br />

labels.<br />

VDI/VDE<br />

Innovation + Technik GmbH Berlin<br />

Dr. Katrin Gaßner<br />

Steinplatz 1<br />

D – 10623 Berlin<br />

Phone +49(0)30-310078-177<br />

Mail gassner@vdivde-it.de<br />

Web www.vdivde-it.de<br />

29


Contributions to Topical Fields of Innovation<br />

Intelligent Technical Textiles<br />

Defi nition<br />

Smart or intelligent textiles are textile<br />

materials with integrated micro-systems<br />

(or Micro-Electro-Mechanical Systems,<br />

MEMS). So there is included a combination<br />

of electronic circuits, sensors<br />

and/or actuators, which allows to sense,<br />

transfer and process data and to react<br />

correspondingly.<br />

30<br />

Usually news is about smart clothes,<br />

but intelligent technical textiles have<br />

much broader possibilities.<br />

By including MEMS into technical<br />

textiles it is expected to realise a signifi -<br />

cant enhancement of possible functions<br />

and noticeable benefi t for the users.<br />

Technical textiles include special fi bres<br />

and yarns, fabrics, (3d-)interlaced yarns,<br />

Fig. 1<br />

Textile<br />

transponder.<br />

Source:<br />

TITV Greiz<br />

Fig. 2<br />

Textiles with<br />

integrated<br />

warning<br />

function.<br />

Source:<br />

TITV Greiz<br />

Dr. Hartmut Strese<br />

non-wovens and textiles with special<br />

coatings. Besides organic (vegetable or<br />

animal) also synthetic and inorganic (e.<br />

g. metallic) fi bres can be used. Fig. 1<br />

shows an example of a woven antenna<br />

for RFID-tags.<br />

Market<br />

Textile and clothing industry is among<br />

the 10 leading sectors in Germany.<br />

In 2004 the textile industry employed<br />

about 95.000 workers in more than<br />

900 companies and reached a turnover<br />

of 13,38 bn €; the clothing industry<br />

had about 44.700 employees in 429<br />

companies with 8,99 bn € turnover.<br />

Germany is specialised on high-quality<br />

products, the export rate is over 35 %.<br />

As a segment in the textile sector the<br />

technical textiles have an exceptional<br />

position. For years now the segment is<br />

growing, with several application niches<br />

and high-tech innovative solutions. Every<br />

third German textile company is active<br />

in this sector, the turnover was 4 bn €.<br />

Expected is a growth rate of more than<br />

6 % p.a.<br />

Application fi elds of technical textiles are<br />

heterogeneous and address different<br />

markets. So e. g. the following can be<br />

distinguished:<br />

✦ MedTex (medicine)<br />

✦ ProTex (protection)<br />

✦ BuildTex (building industry)<br />

✦ MobilTex (automotive, aircraft)<br />

✦ EcoTex (environment)<br />

✦ PackTex (packaging)<br />

E. g. in the car industry (seat cover,<br />

roofl iner or top) the potential for intelligent<br />

technical textiles is high. Already<br />

today 45 Mio. m² of textiles are used in


the car industry, growth rates of 5 to 10<br />

% are expected.<br />

Funding by the BMBF<br />

The combination of high-tech in the<br />

fi elds of micro-systems as well as<br />

textiles opens new perspectives for the<br />

mainly small and medium textile companies<br />

in Germany. Promising application<br />

fi elds for the near future are health<br />

system and safety and security.<br />

In the health system, textile solutions<br />

could help to lower costs as well as to<br />

improve the medical treatment, rehabilitation<br />

or prevention. Micro-system<br />

technology may help because of the<br />

miniaturisation potential and the high<br />

functional density of the systems. E.<br />

g. smart textile sensors are able to<br />

measure vital data from blood pressure,<br />

pulse, heart beat, breathing and ECG<br />

to nutrition status. So the monitoring<br />

would be easier and more comfortable<br />

for the patient. Another fi eld could be the<br />

therapy of chronic wounds. For these<br />

applications the biocompatibility of the<br />

smart textiles is important, furthermore<br />

usual textiles care has to be possible.<br />

The safety of persons as well as valuable<br />

assets is a central task of the<br />

society. Protective clothing of fi re fi ghters<br />

protects from heat, cold, water, chemi-<br />

cals, gas or radiation and might control<br />

the climatisation autonomously. Integrated<br />

localisation functions may help<br />

to guide or to fi nd the person in cases<br />

of emergency. In transportation textiles<br />

may take over active warn functions (see<br />

fi g. 2), a roadmans vest could warn and<br />

be warned by an approaching car. And<br />

the seat cover in the car measures the<br />

weight of the passenger and adapts<br />

correspondingly the seat belt or even<br />

the airbag, so improving the safety for<br />

the car occupants.<br />

Besides the realization of such applications<br />

for health, safety and security the<br />

ministry funds also the development of<br />

new textile based micro-system technologies,<br />

as e. g. new sensors, lighting<br />

textiles and new integration technologies.<br />

For the development of intelligent textiles<br />

the Bundesministerium für Bildung und<br />

Forschung (BMBF) announced in the<br />

funding programme „Microsystems“ to<br />

grant 15 Mio. €. Industry and research<br />

submitted 47 proposals for ambitious<br />

research projects in this fi eld to VDI/VDE<br />

Innovation + Technik GmbH (VDI/VDE-<br />

IT), the project managing agency of the<br />

ministry. After a scoring process a dozen<br />

of these projects were chosen to submit<br />

full proposals. It is expected that all of<br />

them can be funded. For seven projects<br />

Contributions to Topical Fields of Innovation<br />

the ministry already signed the funding<br />

agreement, the other applications are in<br />

progress.<br />

One of the funded projects is called Nutriwear.<br />

In this research project, a mobile<br />

system will be developed using smart<br />

textiles to monitor the nutrition and water<br />

conditions of human bodies.<br />

The monitoring system exploits the<br />

bio-impedance-spectroscopy integrated<br />

into body near clothes to determine the<br />

percentage of water, muscle and fat.<br />

The Nutriwear system is the fi rst to<br />

enable the continuous mobile measurement<br />

of nutrition parameters, 24 hours<br />

a day, 7 days a week for a large part<br />

of the body surface. The advantages<br />

offered by textiles facilitate its integration<br />

into working routines and day-to-day life<br />

(see fi g. 3).<br />

Fig. 3<br />

Scheme of the Nutriwear system.<br />

Source: Motorola<br />

VDI/VDE Innovation + Technik GmbH<br />

Dr. Hartmut Strese<br />

Steinplatz 1<br />

D – 10623 Berlin<br />

Phone +49(0)30-310078-204<br />

Mail strese@vdivde-it.de<br />

Web www.vdivde-it.de<br />

31


Contributions to Topical Fields of Innovation<br />

More than Moore, Hetero System Integration<br />

and Smart System Integration – Three Approaches – one Goal:<br />

Smarter Products and Processes<br />

Prof. Dr.-Ing. Dr.-Ing. E.h. Herbert Reichl 1,2 , Dr. Klaus-Dieter Lang 1 , Dipl.-Phys. Rolf Aschenbrenner 1 , Dipl.-Ing. Karl Friedrich Becker 1 ,<br />

Dipl.-Ing. Tanja Braun 1 , Dipl.-Ing. Alexander Neumann 1 , Dipl.-Ing. Andreas Ostmann 1 , Dipl.-Ing. Harald Pötter 1<br />

Abstract<br />

Experts predict that the progress in<br />

silicon technologies will follow to some<br />

extend the well known “Moore’s law” in<br />

the next decade, too. This trend can be<br />

characterized by “More Moore”. However,<br />

in many cases the cost effi cient<br />

micro-electronic standard technologies<br />

cannot be applied for future multifunctional<br />

systems. Non-electronic and many<br />

radiofrequency functions require alternative<br />

materials and special processes.<br />

These additional process steps often<br />

reduce the yield or require special<br />

process developments which result in<br />

a tremendous cost increase. Therefore<br />

the future will be a combination of “More<br />

Moore” – or “System on-Chip”-solutions<br />

and advanced system integration<br />

solutions such as “More than Moore”,<br />

“Heterogeneous Integration” or “Smart<br />

System Integration”. To illustrate these<br />

integration technologies, two examples<br />

for such advanced system integration<br />

technologies will be given.<br />

32<br />

1 Fraunhofer IZM<br />

The Fraunhofer Institute for Microintegration and Reliability<br />

(IZM) is one of the leading R&D centers in electronic packaging<br />

and electronic system integration worldwide. Together<br />

with its cooperation partner Technische Universität Berlin,<br />

Fraunhofer IZM focuses on application specifi c topics, such<br />

as Wafer Level System Integration, 3D Packaging, MEMS<br />

and Photonic Packaging, RF & Wireless, Micro Reliability as<br />

well as Lifetime Estimation and Thermal Management.<br />

2 Technische Universität Berlin (TU Berlin)<br />

In close cooperation with Fraunhofer IZM, TU Berlin is<br />

conducting internationally recognized basic research<br />

in electronic packaging and electronic system integration.<br />

Areas of excellence are Wafer Level System Integration,<br />

3D Packaging, Photonic Packaging, RF & Wireless as<br />

well as Lifetime Estimation.<br />

System Integration Technologies –<br />

Basis for Smarter Products<br />

System integration technologies bridge<br />

the gap between electronics and its<br />

derived applications. Two main forces<br />

drive progress in this area – emerging<br />

device technologies and new application<br />

requirements. New technologies and<br />

architectures are under development to<br />

integrate the progress made in nanoelectronics,<br />

microsystem technologies<br />

as well as in bio-electronic and photonic<br />

component technologies into smart<br />

electronic systems or MEMS. In terms<br />

of integration, different approaches are<br />

available:<br />

More than Moore<br />

“More than Moore” solutions are aiming<br />

at single component solutions. Unlike<br />

System on Chip solutions, additional<br />

functions are added on a processed<br />

wafer (back-end of line) with “non-base-<br />

Figure<br />

1.1-1:<br />

System in<br />

Package<br />

(SiP) in<br />

“via in via”<br />

technology<br />

line” CMOS processes. Typical examples<br />

of “More than Moore” solutions are<br />

the integration of RF (radio-frequency)<br />

components in wireless transceivers for<br />

mobile phones or high-voltage solidstate<br />

switches for use in transportation<br />

electronics.<br />

Heterogeneous Integration<br />

Heterogeneous Integration combines<br />

several components or functionalities<br />

with a very high degree of miniaturization<br />

and fl exibility at reasonable costs<br />

in one package (System in Package or<br />

SiP), that is specifi cally adapted to the<br />

application environment.<br />

Smart System Integration<br />

Smart System Integration uses “More<br />

than Moore” as well as Heterogeneous<br />

Integration solutions and integrates<br />

these solutions into application systems.<br />

Because smart system integration is<br />

not restricted to a certain scale these


Figure 1.1-2:<br />

Electronically<br />

enhanced<br />

Scrabble game<br />

Technologies for<br />

Heterogeneous<br />

System Integration<br />

components may be integrated in largearea<br />

substrates, generally using organic<br />

materials. With these so called largearea<br />

electronics, for example, electronics,<br />

displays with a sensor keyboard and<br />

solar cells for power management with<br />

conventional fl exible silicon circuits can<br />

be combined.<br />

In terms of applications, a strong link<br />

exists for all integration approaches between<br />

development of components and<br />

system-oriented integration technologies.<br />

Due to the fact that the operation<br />

environment is nowadays increasingly<br />

determined by the application (such as<br />

automotive under the hood) and due to<br />

the increasingly central role of electronics<br />

in ensuring system reliability and life<br />

time, system integration and packaging<br />

technologies have to ensure the reliability<br />

of electronic systems.<br />

In terms of technology, heterogeneous<br />

integration as well as smart system integration<br />

combine different components<br />

and technologies into one package or<br />

substrate and also provide an interface<br />

to the application environment. While<br />

“More Moore” and “More than Moore”<br />

technologies are based on CMOScompatible<br />

processes and are therefore<br />

limited to a certain set of materials,<br />

heterogeneous as well as smart system<br />

integration technologies have the advantage<br />

that components based on very<br />

different technologies and materials can<br />

be integrated, such as power devices,<br />

photonic or RF components, energy<br />

harvesting or storage components, or<br />

smart displays.<br />

Technologies for Heterogeneous<br />

System Integration<br />

Wafer Level System Integration<br />

Wafer Level System Integration performs<br />

all assembly and packaging steps at<br />

wafer level. Often the fi nal package size<br />

is identical with the footprint of the die.<br />

Wafer Level redistribution processes<br />

add additional routing layers to transform<br />

peripheral I/O pads on the die into an<br />

area array to create solder bump pads<br />

with a larger standardized pitch. The fi nal<br />

wafer bumping turns the component<br />

into a surface mount compatible device<br />

(SMD), which fi ts into a standard assembly<br />

process (pick & place and refl ow).<br />

On chip assembly and wafer level molding<br />

will lead to an even higher degree of<br />

integration. In addition, future systems<br />

will require functional layers or building<br />

blocks e.g. for radio-frequency and nonelectronic<br />

functions such as sensors,<br />

actuators, power supply components,<br />

passives and displays (MEMS integration),<br />

which often require the use of<br />

alternative materials and new processes.<br />

Contributions to Topical Fields of Innovation<br />

A number of wafer level integration<br />

technologies are being researched to<br />

achieve these goals (Figure 2.1-1).<br />

Module or Board Level System Integration<br />

Nowadays electronic systems are<br />

realized on module level using organic<br />

printed wiring boards, on which individual<br />

components are placed. Future<br />

board and substrate technologies have<br />

to ensure a cost-effi cient integration of<br />

highly complex systems, with a high<br />

degree of miniaturization and suffi cient<br />

fl exibility to allow them to be adapted for<br />

different applications. Their functionality<br />

will be considerably extended by the<br />

integration of non-electronic functions<br />

such as MEMS, antennas or optical<br />

components. New production methods<br />

will ensure a high throughput at very low<br />

cost. To ensure high data transmission<br />

and processing rates, new cost-effective<br />

cooling technologies and 3D-packaging<br />

concepts will ensure a stable operation<br />

mode.<br />

Technologies for embedded devices,<br />

such as MEMS, passive or active components,<br />

antennas and power management<br />

will be key to highly integrated<br />

modules. To make this possible, new<br />

materials for substrates, embedding and<br />

encapsulation have to be developed<br />

such as high-K and low-K dielectrics<br />

and high Tg polymers, and the coeffi<br />

cient of thermal expansion (CTE) of<br />

these materials must be adjusted to<br />

the dies and substrates in question.<br />

Additionally, substrates and interposers<br />

with fi ner lines and smaller vias must<br />

be made available at lower cost. These<br />

advances will be followed by fl exible<br />

33


Contributions to Topical Fields of Innovation<br />

Figure Fi 2.1-1: 2 1 1 Technology T h l roadmap: d wafer-level f l l system packaging k i [5]<br />

substrates for reel-to-reel manufacturing<br />

and integrated optical interconnects. In<br />

a long term, printable wiring and circuitry<br />

printable on organic substrates will<br />

increase productivity and lower environmental<br />

impact.<br />

Embedding of passive components<br />

The embedding of passive components<br />

into the printed wiring board is a<br />

promising approach for increasing the<br />

functional density of assembled electronic<br />

systems [1, 2]. Printing technology<br />

for polymer thick fi lm (PTF) components<br />

Figure 1.3-7:<br />

Functional packaging<br />

for a cost-optimized<br />

radar sensor for active<br />

driver assistance<br />

systems [7]<br />

34<br />

is mainly used for fabricating resistors<br />

(although capacitors can also be<br />

produced with this technology). With<br />

appropriate paste compositions and<br />

component layout, resistors in the range<br />

between 10 Ω and 10 MΩ can be realized<br />

with tolerances of ± 20 %. Resistors<br />

and capacitors can also be produced<br />

using sequential lamination and photo<br />

structuring. The variances are generally<br />

smaller than those of PTF components.<br />

However, the value range of embeddable<br />

resistors has tighter limits (10 Ω<br />

to 10 kΩ) and capacitance strongly<br />

depends on the used material (commercially<br />

available capacitors sheets are<br />

around 1 nF/cm 2 ).<br />

Chip embedding into rigid substrates<br />

A new concept for the integration of<br />

active components is the so-called chipin-polymer<br />

(CiP) technology [3], which is<br />

based on the embedding of thin chips<br />

into built-up layers of printed circuit<br />

boards (PCBs). This technique can be<br />

used to fabricate 3D-stacks of multiple<br />

dies, too. To achieve a contact pad<br />

surface on the wafer suitable for PCB<br />

metallization, Al<br />

contact pads have<br />

to be covered by<br />

copper bumps. To<br />

ensure that bare<br />

dies can be embedded<br />

into buildup<br />

layers, wafers<br />

are thinned down<br />

to 50 μm. Subsequently,<br />

the chips<br />

are die-bonded<br />

using an adhesive.


Figure 2.2-1: Technology roadmap for module level system integration [5]<br />

Precise thickness control of the bond<br />

line is essential for maintaining uniform<br />

thicknesses of the build-up dielectric<br />

on top of the chip. Here, new thin chip<br />

handling and assembly solutions using<br />

die attach fi lm or adhesive paste printing<br />

have been explored.<br />

RCC (resin coated copper) layers with<br />

thin Cu are used for the lamination.<br />

Process parameters had to be fi netuned<br />

to prevent damage to the chips<br />

during lamination. The chip contacts are<br />

produced with laser-drilled micro-vias<br />

followed by PCB-compatible Cu plating.<br />

All process steps in this technology<br />

have been optimized for large scale<br />

manufacturing, using panel sizes of 18”<br />

x 24” in combination with high-accuracy<br />

positioning methods using local fi ducials<br />

for die placement, laser drilling and laser<br />

direct imaging. Reliability evaluations of<br />

embedded chips have demonstrated<br />

excellent reliability. For the evaluation,<br />

chips of 2.5 x 2.5 mm 2 size were embedded<br />

in 10 x 10 cm 2 test vehicles with<br />

0.5 mm FR4 core. All chips passed the<br />

following tests without any defect:<br />

✦ Temperature storage at 125 °C for<br />

1000 hours<br />

✦ Thermal shock condition; air-to-air<br />

-55 / +125 °C; 2000 cycles<br />

✦ Humidity storage at 85 °C / 85 % rel.<br />

humidity for 2000 hours<br />

✦ Jedec moisture sensitivity, level 3<br />

Chip embedding into fl exible substrates<br />

By embedding chips into fl exible wiring<br />

boards, the functional density of<br />

electronic systems can be even more<br />

increased. However, to maintain the<br />

basic fl exible substrate characteristics,<br />

the build-up with an integrated chip has<br />

to be as fl at as possible. Chips with a<br />

thickness of less than 30 μm are used<br />

and the interconnection should not exceed<br />

5-10 μm. This technology relies on<br />

a fl ip chip type mounting of the thin chip<br />

onto the fl ex substrate and lamination of<br />

the structure on both sides. Contacts<br />

to outer layers are realized by through<br />

holes. Further layers can be added to<br />

the build-up. The electrical interconnections<br />

are extremely thin and the<br />

mechanical coherence of the chip to the<br />

Contributions to Topical Fields of Innovation<br />

substrate is ensured by nofl ow-underfi ller.<br />

Process technologies for embedding<br />

passive are also being developed and<br />

investigated in European Union funded<br />

project [4].<br />

Advanced Examples for Heterogeneous<br />

Integration Technologies<br />

Embedding Technologies for the next<br />

generation of radar sensors<br />

One example for the advantages of<br />

embedding technologies is a radar sensor<br />

for the safety cocoon of a car which<br />

is currently being developed by several<br />

partners as part of a project supported<br />

by the German Federal Government<br />

(Figure 1.3-7). To equip mid-size cars<br />

with this sensor technology, production<br />

cost is projected to be signifi cantly lower<br />

than that of the predecessor model,<br />

which is presently used in the luxury<br />

class only. This is to be made possible<br />

by a combination of two innovative embedding<br />

technologies. First, active and<br />

passive components are integrated into<br />

a plastic package by means of mold-<br />

35


Contributions to Topical Fields of Innovation<br />

Microwell Cross Cut Principle of dielectrophoretic multi-well sensor Implementation in PCB-Technology<br />

ing (‚Chip in Duromer‘ [8]). This method<br />

ensures highly precise and fast mounting<br />

of the components. The subsequent<br />

molding process evens out the various<br />

component heights and makes lasting,<br />

precise alignment between the components<br />

possible.<br />

The modules are then embedded into<br />

a PCB in the same way as described<br />

above in the “Chip-in-Polymer”-paragraph<br />

and are bonded by means of a<br />

technique that ensures HF suitability<br />

(Substrate Embedding or Chip in Polymer<br />

[3]). A second layer of HF-suited<br />

PCB materials are laminated on top of<br />

the fi rst layer and the respective antenna<br />

structures are realized by standard PCB<br />

processes. The two layers are electrically<br />

connected by means of μ-vias.<br />

Due to the low thermal mismatch, this<br />

embedding process promises high<br />

reliability with simultaneously improved<br />

HF characteristics as a result of shorter<br />

electrical contacts, which have been<br />

adjusted to impedance requirements [7].<br />

36<br />

Using PCB-Technologies for Lab on Substrate<br />

– Cochise<br />

Merging new fabrication techniques and<br />

handling concepts with microelectronics<br />

enables the realization of intelligent microwells<br />

suitable for future applications,<br />

e.g. improved cancer treatment [9]. For<br />

the implementation of a dielectrophoresis<br />

enhanced microwell device a technology<br />

based on standard PCB technology<br />

has been developed in a European<br />

project, funded by the EU (Figure 3.2-1).<br />

Because materials from PCB technology,<br />

such as copper or FR4, are not<br />

biocompatible, new materials have to be<br />

selected. Aluminium has been selected<br />

as base conducting metal layer and<br />

structured by laser micro machining in<br />

combination with etching and laminated<br />

successively to obtain minimum registration<br />

tolerances of the respective layers.<br />

The microwells are also laser machined<br />

into the laminate, allowing capturing,<br />

handling and sensing individual cells<br />

as well as cell to cell interactions within<br />

a dielectrophoretic cage realized by<br />

Literatur<br />

[1] AEPT Final Report, ed. by NCMS, Ann Arbor MI, 2003<br />

[2] Shift (Smart High-Integration Flex Technologies), http://www.vdivde-it.de/portale/shift/default.html<br />

[3] Rolf Aschenbrenner, Andreas Ostmann, Alexander Neumann, Herbert Reichl; Process Flow and Manufacturing Concept for Embedded<br />

Active Devices, Proceedings EPTC 2004, Singapore, December 8 – 10, 2004<br />

[4] Thomas Löher, Barbara Pahl, M. Huang, Andreas Ostmann, Rolf Aschenbrenner, Herbert Reichl; An Approach in Microbonding for Ultra<br />

Fine Pitch Applications, Proceedings Technology and Metallurgy, The 7th VLSI Packaging Workshop of Japan, Kyoto, 2004<br />

[5] Strategic Research Agenda 2007; White Paper by ENIAC – European Technology Platform on Nanoelectronics<br />

[6] Herbert Reichl, Rolf Aschenbrenner, Harald Pötter, Stefan Schmitz; More than Moore, Hetero System Integration and Smart System<br />

Integration – Three Approaches – One Goal: Smarter Products and Processes; Productronic 2007, Frankfurt 2007, VDMA-Verlag<br />

[7] http://www.mstonline.de/foerderung/projektliste/detail_html?vb_nr=V3FAS032 (Status 19.12.07)<br />

[8] K.-F. Becker, T. Braun, A. Neumann, A. Ostmann, M. Koch, V. Bader, E. Jung, R. Aschenbrenner, H. Reichl; Duromer MID Technology for<br />

System-in-Package Generation; IEEE Trans. on Electronics Packaging Manufacturing, 2005, Vol. 28, Iss. 4, pp. 291-296<br />

[9] Tanja Braun, Lars Böttcher, Jörg Bauer, D. Manessis, Erik Jung, Andreas Ostmann, Karl-Friedrich Becker, Rolf Aschenbrenner, Herbert<br />

Reichl, R. Guerrieri, R. Gambari; Microtechnology For Realization Of Dielectrophoresis Enhanced Microwells For Biomedical Applications<br />

the structured aluminium. Furthermore,<br />

surface treatments for hydrophobic and<br />

hydrophilic surface modifi cation with<br />

e.g. thiols and fl uorinated acrylates on<br />

different materials were evaluated and<br />

analyzed by surface tension and wetting<br />

analysis to allow designing the microfl uidic<br />

networks required for the microwell<br />

device.<br />

Conclusion<br />

Smart innovative systems used in an<br />

extremely broad range of applications<br />

are the future of electronics. They will<br />

contain electrical and non-electrical<br />

functions. The task of heterogeneous<br />

integration will be integrating such functions<br />

into one system.<br />

For the fabrication of heterogeneous<br />

systems, new architectures and system<br />

integration technologies are necessary,<br />

which have to ensure the realization of<br />

reliable systems at minimal sizes and at<br />

low production costs. Adequate interfaces<br />

for different application environments<br />

have to be created.<br />

Fraunhofer IZM<br />

Prof. Dr.-Ing. Dr. E.h. Herbert Reichl<br />

Gustav-Meyer-Allee 25<br />

D-13355 Berlin<br />

Phone +49(0)30-46403-100<br />

Fax +49(0)30-46403-111<br />

Mail info@izm.fraunhofer.de<br />

Web www.izm.fraunhofer.de


Carl Zeiss Industrial Metrology is the world’s leader in CNC<br />

coordinate measuring machines and complete solutions for<br />

multidimensional metrology in the metrology lab and production.<br />

The company is a recognized partner to the automotive<br />

industry and its suppliers. Approximately 1500 employees at<br />

three manufacturing locations and more than 100 sales and<br />

service centers supply customers around the world.<br />

The offering encompasses bridge-type, horizontal-arm and inline<br />

measuring machines, as well as form, contour and surface<br />

measuring machines. All relevant modules, such as controllers,<br />

software, measuring systems and sensors are developed<br />

and manufactured in-house. New developments include a<br />

system to measure extremely small parts and a computer<br />

tomograph for industrial quality assurance.<br />

The extensive CALYPSO software library enables users of<br />

ZEISS measuring technology to perform almost any measuring<br />

task. The effi cient Navigator technology is of particular<br />

importance for maximum accuracies and simultaneously high<br />

Die Carl Zeiss Industrielle Messtechnik GmbH ist Weltmarktführer<br />

bei CNC-Koordinatenmessmaschinen und Komplettlösungen<br />

der mehrdimensionellen Messtechnik in Messlabor<br />

und Fertigung. Das Unternehmen ist ein anerkannter Partner<br />

der Automobilindustrie und ihrer Zulieferer. Von drei Fertigungsstandorten<br />

und mehr als 100 Vertriebs- und Service-Zentren<br />

aus sind 1.500 Beschäftigte für die Kunden weltweit tätig.<br />

Das Angebot umfasst Portalmessgeräte, Horizontalarmmessgeräte,<br />

Fertigungsmessgeräte, Form- Kontur- und<br />

Oberfl ächen-Messgeräte. Alle systemrelevanten Module wie<br />

Steuerung, Software, Messsysteme und Sensoren werden<br />

selbst entwickelt und hergestellt. Jüngste Entwicklungen sind<br />

Carl Zeiss Industrial Metrology<br />

measuring speeds. The offering is rounded off with extensive<br />

customer services, contract measurements, part inspection<br />

using computer tomography and online services to ensure<br />

optimum machine uptimes.<br />

ein System für das Messen mikrosystemtechnisch gefertigter<br />

Kleinstteile und ein Computer-Tomograf für die industrielle<br />

Qualitätssicherung.<br />

Die umfangreiche Software-Bibliothek CALYPSO gestattet den<br />

Anwendern von ZEISS Messtechnologie, praktisch jede Messaufgabe<br />

zu lösen. Von besonderer Bedeutung ist die effi ziente<br />

Navigator-Technologie für höchste Genauigkeiten bei gleichzeitig<br />

hohen Messgeschwindigkeiten. Umfassende Dienstleistungen,<br />

Lohn- und Auftragsmessungen, Teileprüfung mit Hilfe der<br />

Computer-Tomografi e und Online-Services zur Sicherung der<br />

Maschinenverfügbarkeit, vervollständigen das Angebot.<br />

Production sites<br />

Germany<br />

USA<br />

People’s Republic of China<br />

Carl Zeiss<br />

Industrielle Messtechnik GmbH<br />

Carl Zeiss Group<br />

D – 73446 Oberkochen<br />

Sales +49(0)736420-6336<br />

Service +49(0)736420-6337<br />

Fax +49(0)736420-3870<br />

Mail imt@zeiss.de<br />

Web www.zeiss.com/imt


38<br />

Organization:


The 2 nd German Congress<br />

on Microsystems Technology<br />

2007


The 2 nd German Congress on Microsystem Technologies 2007<br />

Review of the 2 nd German Congress<br />

on Microsystem Technologies<br />

Prof. Dr. Thomas Gessner<br />

Chairman of the congress 2007<br />

Microsystem technology belongs to the<br />

most innovative fi elds worldwide. According<br />

to international trend analysis an<br />

annual growth rate of 11 % is expected<br />

for micro systems technology till 2011.<br />

The design and development of new<br />

microsystems, the integration of recent<br />

developments in nanoscience in new<br />

functionable nanosystems as well as the<br />

integration of the systems themselves in<br />

a so-called macro system, for instance<br />

in a handy, a machine tool, a car or a<br />

medical instrument are main tasks of<br />

micro system technology. New functionalities,<br />

new materials, new principles<br />

require not only interdisciplinary work of<br />

experts but also the development and<br />

integration of different technologies, new<br />

approaches concerning system and<br />

component design as well as reliability<br />

and test. Germany belongs to the leading<br />

countries in micro system technologies<br />

and is especially well-known for the<br />

development of high quality and secure<br />

systems and system solutions.<br />

40<br />

Annette Schavan, the Federal Minister of Research<br />

and Education (left) , VDE-President Prof. Josef<br />

Nossek (right), and Prof. Peter Gruenberg, the new<br />

German Nobel Laureate in physics (in the middle ).<br />

The GMR effect of Prof Gruenberg is used in magnetic<br />

Microsystems.<br />

During a press conference<br />

at the congress the trends<br />

of microsystem technologies<br />

have been presented<br />

by the German Federal<br />

Ministry of Education and<br />

Research (BMBF) and the<br />

Association for Electrical,<br />

Electronic and Information<br />

Technologies (VDE).<br />

Prof. Thomas Gessner,<br />

chairman of the congress<br />

(left), MinDir. Dr. Wolf-<br />

Dieter Lukas, Head of<br />

the Department Key<br />

Technologies – Research<br />

for Innovation of the<br />

BMBF (in the middle),<br />

VDE-President Prof. Josef<br />

Nossek (right)<br />

Currently, nearly 680000 jobs are related<br />

to micro system technology in Germany.<br />

There exist 20 regional clusters for<br />

microsystem technologies in Germany,<br />

two of them (Dresden and Chemnitz)<br />

are located in Saxony, where the 2 nd<br />

congress on microsystem technologies<br />

took place.<br />

To keep this position in the coming<br />

years, the German Federal Ministry<br />

of Education and Research (BMBF)<br />

together with one of the biggest German<br />

technical associations, the Association<br />

for Electrical, Electronic and Information<br />

Technologies (VDE) for second time<br />

hosted this central showcase on MST in<br />

Germany.<br />

The second German congress on<br />

microsystem technologies “Mikrosystemtechnik-Kongress<br />

2007” was<br />

held from October 15 th to October 17 th<br />

2007 in Dresden. The 3 day congress,<br />

consisting of plenary sessions, lectures<br />

and poster sessions, an exhibition and<br />

a young scientist´s forum, was a forum<br />

for research and industry, producers<br />

and users, trainers and trainees, policy<br />

makers and networks. The opening<br />

address was given by Annette Schavan,<br />

the Federal Minister of Research and<br />

Education, VDE-President Prof. Josef<br />

Nossek, the Prime Minister of Saxony<br />

Prof. Georg Milbradt, VW research<br />

director Prof. Juergen Leohold and Prof.<br />

Peter Gruenberg, the German Nobel<br />

Laureate in physics 2007. The importance<br />

of the microsystem technology for<br />

Saxony had been pointed out by Christian<br />

Esser Director Technology Development<br />

of Infi neon Technologies GmbH &


Co KG Dresden and the chairman of the<br />

congress Prof. Thomas Gessner, Director<br />

of the Center for Microtechnologies<br />

of the Chemnitz University of Technology<br />

and Head of the Chemnitz Branch<br />

of Fraunhofer Institute for Reliability and<br />

Microintegration.<br />

The congress and the accompanying<br />

exhibition provided a good insight in the<br />

latest results in research and development.<br />

More than 1000 participants took<br />

part. Within the scientifi c section of the<br />

congress experts from leading enterprises,<br />

from SMEs and research institutions<br />

presented the current status in various<br />

fi elds of microsystem technologies from<br />

the point of systems, applications and<br />

methods. In 29 sessions with more than<br />

120 lectures the variety of application<br />

fi elds of microsystems technology was<br />

clearly illustrated. Especially health and<br />

independent living, but also RFID and<br />

energy technologies, were topics of high<br />

interest for the participants. But also<br />

micro and nano integration, microoptics,<br />

microfl uidics, magnetic microsystems,<br />

new materials, advanced packaging,<br />

test and reliability as well as microsystems<br />

for biotechnology were addressed<br />

during the congress.<br />

Beside of large enterprises like Bosch<br />

and Siemens the development and the<br />

application of microsystems are mainly<br />

pushed by small and medium size enterprises.<br />

The perspectives of formation<br />

of such small high tech companies, the<br />

aspects of national and international networks<br />

and new concepts to ensure the<br />

training of skilled people were discussed<br />

in separate sessions.<br />

The 2 nd German Congress on Microsystem Technologies 2007<br />

The winner of “Invent a Chip” got their<br />

prizes during the opening session of the<br />

Congress. More than 1500 pupils took<br />

part at this competition. The best teams got<br />

the possibility to design their chip during a<br />

workshop at the University Hannover.<br />

Parts of the congress were especially<br />

dedicated to young people. To attract<br />

as many young people as possible the<br />

congress gave students and children<br />

the opportunity to establish fi rst contacts<br />

with industry and research. The<br />

so-called VDE YoungNet Convention<br />

informed about central questions concerning<br />

training and job opportunities<br />

for students and young professionals.<br />

Moreover overviews to special topics of<br />

microsystem technology and occupational<br />

image of an engineer were given.<br />

Within the public part of the congress 20<br />

institutes and companies showed technical<br />

principles and fascinating products<br />

of microsystems technology. They were<br />

First prize got Johannes<br />

Burghard (Siegen, in<br />

the middle), Dr. Annette<br />

Schavan (left), Prof.<br />

Milbradt (right)<br />

Third prize for the<br />

twins Christiane ands<br />

Sabine Kurra (left), Prof.<br />

Milbradt( in the middle),<br />

Prof. Nossek (right)<br />

supported by the BMBF nano truck and<br />

the exhibition “micro worlds”.<br />

The programme, photos and other<br />

information concerning the congress are<br />

available at:<br />

www.mikrosystemtechnik-kongress.de<br />

Chemnitz Branch of Fraunhofer IZM and<br />

Chemnitz University of Technology<br />

Center for Microtechnologies<br />

Prof. Dr. Thomas Gessner<br />

D – 09107 Chemnitz<br />

Phone + 49(0)371-531-33130<br />

Mail Thomas. Gessner@<br />

zfm.tu-chemnitz.de<br />

Web www.izm.fraunhofer.de<br />

41


The 2 nd German Congress on Microsystem Technologies 2007<br />

Microfluidic Platforms for Miniaturization, Integration<br />

and Automation of Biochemical Assays<br />

Dipl. Ing. Stefan Häberle1 , Dr. Jens Ducrée1 , Dr. Felix von Stetten2 1, 2<br />

, Prof. Dr. Roland Zengerle<br />

1 Institut für Mikro- und Informationstechnik der Hahn-Schickard-Gesellschaft (HSG-IMIT), Wilhelm-Schickard-Straße 10, 78052 Villingen-Schwenningen<br />

2 Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Lehrstuhl für Anwendungsentwicklung, Georges-Koehler-Allee 106, 79110 Freiburg<br />

Introduction<br />

The impact of microfl uidic technologies<br />

within microelectromechanical systems<br />

(MEMS) has dramatically increased<br />

during the last years. This is quite amazing<br />

since microfl uidics is no product a<br />

consumer wants to buy itself. Microfl uidics<br />

should be merely considered as a<br />

toolbox, which is needed to develop innovative<br />

new products in such different<br />

application areas as the biotechnology,<br />

diagnostics, medical or pharmaceutical<br />

industry.<br />

The component oriented approach<br />

The history of microfl uidics dates back<br />

to the early 1950s when the basis for<br />

today’s ink-jet technology has been developed.<br />

Following these pioneer workings,<br />

thousands of researchers spent a<br />

lot of time to develop new microfl uidic<br />

components for fl uid transport, fl uid metering,<br />

fl uid mixing, valving, or concentra-<br />

42<br />

Example of a<br />

disposable disk for<br />

centrifugal microfl<br />

uidics (Source:<br />

IMTEK, Freiburg)<br />

tion and separation of molecules within<br />

miniaturized quantities of fl uids within the<br />

last two decades. Meanwhile hundreds<br />

of different types of micropumps,<br />

mixers, microvalves etc. have been<br />

published, but almost no standards are<br />

defi ned in terms of interconnections etc.<br />

It seems to be the right time to raise the<br />

question if we really need more of those<br />

components? Due to our opinion for<br />

exploring the huge potential of different<br />

applications in the lab-on-a-chip fi eld, a<br />

component based microfl uidic approach<br />

is much too slow and the R&D effort<br />

as well as the products are much too<br />

expensive. Therefore we want to promote<br />

the use of an “integrated system<br />

approach” or in other words, the use of<br />

integrated microfl uidic platforms.<br />

The microfl uidic platform approach<br />

Very similar to the ASIC industry in microelectronics<br />

which provides validated<br />

The Cardiac® Reader<br />

(Source: Roche, Basel, CH)<br />

and three different test strips<br />

(with permission).<br />

elements and processes to make electronic<br />

circuitries, a dedicated microfl uidic<br />

platform comprises a reduced set of<br />

validated microfl uidic elements. These


Vision of<br />

the BioDisk<br />

player based<br />

on centrifugal<br />

microfl uidics<br />

(Source:<br />

HSG-IMIT,<br />

IMTEK Freiburg)<br />

elements have to be able to perform<br />

the basic fl uidic unit operations required<br />

within a given application area. Such<br />

basic fl uidic unit operations are, for<br />

example, fl uid transport, fl uid metering,<br />

fl uid mixing, valving, and separation or<br />

concentration of molecules or particles.<br />

Those elements have to be amenable to<br />

a well established fabrication technology<br />

and have to be connectible, ideally in a<br />

monolithically integrated way.<br />

Examples<br />

The most prominent examples of microfl<br />

uidic platforms which are established or<br />

under development are:<br />

✦ “capillary test stripes”, based on<br />

capillary forces in paper like materials,<br />

known from diabetes and<br />

pregnancy testing,<br />

✦ “centrifugal microfl uidics” based on<br />

rotating substrates using centrifugal<br />

and capillary forces<br />

✦ “Microfl uidic large scale integration”<br />

based on the use of PDMS technology<br />

and soft lithography<br />

✦ “Droplet based microfl uidics” in a<br />

channel based (multiphase fl uidics)<br />

or surface based confi guration<br />

(electrowetting on dielectrics)<br />

The microfl uidic platforms mentioned<br />

above enable to combine validated<br />

fl uidic unit operations by simple proved<br />

technologies. They allow to design and<br />

fabricate application specifi c systems<br />

easily and will lead to a paradigm shift<br />

from a component based research to a<br />

system oriented approach.<br />

Prof. Dr.-Ing. Roland Zengerle<br />

Laboratory for MEMS Applications<br />

Department of Microsystems Engineering<br />

(IMTEK)<br />

University of Freiburg<br />

Georges-Koehler-Allee 106<br />

D – 79110 Freiburg<br />

Phone +49(0)761-203-7477<br />

Fax +49(0)761-203-7539<br />

Mail zengerle@imtek.de<br />

Web www.imtek.de/anwendungen/<br />

Maximum<br />

performance in the<br />

smallest space<br />

The outer diameter of the smallest<br />

brushless DC micro motor with<br />

micro planetary of FAULHABER<br />

gear measures just 1.9 mm.<br />

In addition to this micro drive<br />

system, the FAULHABER Group<br />

offers the most extensive selection<br />

of miniaturized drive solutions<br />

for the realization of innovative<br />

applications in the area of microtechnology.<br />

Micro-Systems<br />

Starter Kit<br />

See the efficiency<br />

of these highly<br />

developed microdrive<br />

technologies for yourself<br />

with the micro-systems starter kit.<br />

It contains a full drive system,<br />

consisting of optionally either<br />

a FAULHABER, a penny, or a<br />

smoovy ®-motor, as well as the<br />

associated micro-systems control.<br />

DR. FRITZ FAULHABER<br />

GMBH & CO. KG<br />

Tel. +49 7031 638-0<br />

www.faulhaber-group.com/microsystems<br />

43


The 2 nd German Congress on Microsystem Technologies 2007<br />

A Mechanical Microsystem for Restoration of<br />

Spinal Cord Continuity after Paraplegia<br />

Dipl.-Ing. Christian Voss, Prof. Dr. Jörg Müller<br />

Institute for Microsystems Technology, Technical University Hamburg-Harburg<br />

Introduction<br />

In this project, a joining device is produced<br />

consisting of microstructures with<br />

a very large number of parallel pipes with<br />

a diameter of 50-500 μm and a length<br />

of 1-2 mm. With such a device it should<br />

become possible to adapt a cut spinal<br />

cord such that a dedicated growth along<br />

those pipes will allow actual healing.<br />

This component is augmented by a<br />

system of micro channels through which<br />

the healing can be medicinally controlled<br />

and, thereby, scarring and the inhibition<br />

of sprouting can be prevented. These<br />

channels also allow the homogeneous<br />

implantation of the neuro-structures<br />

through application of a small under<br />

pressure.<br />

Medical Basis<br />

Spinal Cord Lesions<br />

Injuries of the central nervous system<br />

generally lead to irreversible damage<br />

and bodily constraints. The reason is<br />

44<br />

The polymer fi lled<br />

silicon die after the<br />

polishing prozess<br />

REM-Image of the<br />

silicon die<br />

that scar tissue forms quickly in the<br />

lesion, which inhibits sprouting of the<br />

severed nerves and, therefore, prevents<br />

a regeneration of their functionality.<br />

Contrary to the peripheral nerve system,<br />

the central nerve system is not stimulated<br />

to restore the synaptic contact<br />

following a Waller degeneration. Nerve<br />

cells of the central nerve system die as<br />

soon as their functionality is ended when<br />

the tissue is cut. Because of degeneration<br />

the axon ends remain some<br />

distance apart.<br />

Medicinal Treatment<br />

Work at the neurological clinic of the<br />

University Hospital Düsseldorf has<br />

shown that a slowing of the scar growth<br />

and, thereby, a functional regeneration<br />

can be achieved using substances suppressing<br />

the collagen synthesis.<br />

One can observe growth of the axons<br />

as well as a large improvement in the<br />

affected motor capabilities.<br />

Design of the Microsystem<br />

Function of the Microsystem<br />

The microsystem intended for treatment<br />

must fulfi ll two functions:<br />

✦ Guiding and bonding the severed<br />

tissue<br />

✦ Delivery and removal of the medicinal<br />

substances<br />

A large number of parallel pipes with a<br />

diameter between 50 and 500 μm allows<br />

a deliberate guidance of the tissue<br />

structures. In order to insert the tissue<br />

into the structures a hollow space is<br />

created in their middle in which a low<br />

pressure can be generated. With pipe<br />

lengths of initially about 250 μm and a<br />

circular diameter of the entire pipe system<br />

of 2 mm a surface of up to 5mm2<br />

is available to bond the sucked in tissue.<br />

Using appropriate surface structures the<br />

bonding can be improved further. In order<br />

to treat the injured tissue, the chamber<br />

must allow supply and removal of


medicinal substances. Those structures<br />

are also used to create the low pressure<br />

in the chamber.<br />

Molding<br />

The decisive step for this project is the<br />

construction of the system chamber<br />

from a bio-compatible polymer. In the<br />

future, the system chamber is intended<br />

to be constructed from a biodegradable<br />

material.<br />

Conventional Molding Method<br />

Hot molding and injection molding are<br />

standard procedures. Forms for these<br />

techniques can be fabricated directly<br />

in silicon or, for instance, with a Bosch<br />

LIGA process in metal. Special requirements<br />

arise because of the high aspect<br />

ratios of the honeycomb structure. In<br />

order to cleanly separate form and mold<br />

all surfaces must have low adhesion<br />

and are, ideally, formed slightly conically.<br />

Otherwise the form would be destroyed<br />

The 2 nd German Congress on Microsystem Technologies 2007<br />

Microscope<br />

picture of the<br />

system made of<br />

PMMA<br />

Microscope<br />

picture of the<br />

honeycomb<br />

structure with<br />

a thickness of<br />

25 micrometers<br />

an a aspect<br />

ratio of 12.<br />

during separation. Adhesive surfaces<br />

of the tall honeycomb structures are,<br />

however, desired for pinning the spinal<br />

cord inside the system. Therefore, easy<br />

molding and the desired functionality are<br />

mutually exclusive.<br />

Destructive Molding<br />

Destructive molding means that the<br />

mold is preserved while the form<br />

is destroyed. With such a process<br />

structures with a structure angle even<br />

or greater than 90° can be cast even<br />

when the material has an unfavorable<br />

thermal expansion coeffi cient, since<br />

the mechanical separation of form and<br />

mold does not apply. This enables an<br />

increase of the surface area through<br />

deliberate structuring. The forms for the<br />

destructive molding are etched in silicon<br />

using a Bosch process. The individual<br />

etching steps are optimized using long<br />

cycles and high power in order to<br />

achieve maximally structured surfaces.<br />

Finally, a selective etching is used which<br />

decomposes the silicon but does not<br />

affect the polymer used. Polymers suitable<br />

considering bio compatibility and<br />

molding are PMMA and polycarbonate.<br />

The form can be dissolved using a 40%<br />

KOH solution at 70°C.<br />

This project is funded under project no.<br />

01EZ0604 by the BMBF.<br />

Technische Universität Hamburg-Harburg<br />

Mikrosystemtechnik (E7)<br />

Prof. Dr. Jörg Müller<br />

Eißendorfer Straße 42<br />

D – 21073 Hamburg<br />

Phone +49(0)40-42878-3229<br />

Fax +49(0)40-42878-2396<br />

Mail j.mueller@tuhh.de<br />

Web www.tu-harburg.de/mst<br />

45


The 2 nd German Congress on Microsystem Technologies 2007<br />

Novel Surface Micromachining Technology for Fabrication<br />

of Capacitive Pressure Sensors Based on Porous Silicon<br />

K. Knese, S. Armbruster, H. Benzel<br />

Robert Bosch GmbH, Engineering-Sensor Technology Center, Reutlingen, Germany<br />

H. Seidel<br />

Lehrstuhl für Mikromechanik, Mikrofl uidik/Mikroaktorik, Universität des Saarlandes, Germany<br />

Introduction<br />

Monocrystalline silicon membranes<br />

for MEMS- (Micro Electro Mechanical<br />

System) applications are commonly fabricated<br />

by anisotropic etching with KOH<br />

[1]. This technology, however, requires<br />

expensive back side and wafer bonding<br />

processes. On the other hand, the fabrication<br />

of silicon membranes by epitaxial<br />

growth on sintered porous silicon offers<br />

some crucial benefi ts, such as compatibility<br />

with CMOS fabrication and self<br />

sealing of the vacuum cavity. This APSM<br />

(Advanced Porous Silicon Membrane)<br />

technology is applicable to piezoresistive<br />

as well as to capacitive and thermal<br />

sensors.<br />

46<br />

APSM-Process<br />

The core of the process is the so-called<br />

anodization, during which the silicon<br />

substrate is locally porosifi ed by electrochemical<br />

etching in concentrated<br />

hydro-fl uoric acid (HF). The process fl ow<br />

is shown in Fig. 1.<br />

First, the p-Si-substrate is locally doped<br />

with a deep n+-ring enclosing a n-doped<br />

micro grid. These defi ne the membrane<br />

region (Fig. 1a)). During the subsequent<br />

anodization the p-Si is etched porous<br />

through the grid holes of the n-doped<br />

regions. Thus, a mono-crystalline nmicro<br />

grid is generated, supported by a<br />

matrix of porous silicon (Fig. 1b). Next,<br />

the substrate is exposed to a hydrogen<br />

Fig 1<br />

Schematic process fl ow:<br />

Si-substrate<br />

a) before anodization,<br />

b) after anodization,<br />

c) after hydrogen prebake,<br />

d) after epitaxy<br />

atmosphere in an epitaxial reactor. At a<br />

temperature between 900° and 1100°C<br />

the porous silicon starts to rearrange,<br />

leaving an empty cavity (Fig. 1c). Subsequently,<br />

a monocrystalline Si-layer is<br />

deposited epitaxially, using the n-micro<br />

grid as a seed layer. In the course of the<br />

deposition the grid holes are sealed by<br />

lateral overgrowth (Fig. 1d). The thickness<br />

of the epitaxial layer defi nes the membrane<br />

thickness.<br />

Figure 2a) shows a cross-sectional SEM<br />

micrograph of the cavity region after the<br />

anodization. The p-Si was etched porous<br />

through the grid holes. Due to the local<br />

distribution of the electrical fi eld, the<br />

micro grid is fully underetched, resulting<br />

in a monocrystalline layer. Figure 2b)<br />

shows the membrane and cavity after the<br />

epitaxial growth. The porous silicon was<br />

completely thermally rearranged, creating<br />

a vacuum cavity. Furthermore, the<br />

Si-epitaxy grew perfectly monocrystalline<br />

onto the n-doped micro grid and the grid<br />

holes are completely overgrown.<br />

Recently, the APSM technology was<br />

successfully embedded into a standard<br />

mixed-signal process to fabricate an<br />

integrated piezoresistive pressure sensor<br />

for automotive applications [2].<br />

Capacitive pressure sensor<br />

By separating and, hence, electrically<br />

insulating the membrane from the substrate<br />

the APSM technology is enhanced<br />

by enabling capacitive sensors. The<br />

schematic process fl ow is shown in<br />

fi gure 3.<br />

At fi rst, a dielectric stack is deposited on<br />

top of the monocrystalline membrane,<br />

which subsequently serves as a suspension<br />

for a silicon boss (Fig. 3a). To avoid


uckling the stress and thickness of the<br />

single layers is set in such a way, that the<br />

complete stack is slightly under tensile<br />

stress. At the edge of the membrane<br />

access holes are anisotropically etched<br />

into the dielectric stack by plasma etching<br />

(Fig. 3b). Next, the Si-membrane<br />

is isotropically etched by ClF3 or SF6<br />

Fig 2<br />

Cross-sectional SEMmicrograph<br />

of a cavity<br />

a) after anodization,<br />

b) after epitaxy<br />

The 2 nd German Congress on Microsystem Technologies 2007<br />

through the holes in the dielectric<br />

stack and therefore insulated<br />

against the substrate (Fig. 3c).<br />

Afterwards, electrical contact is<br />

generated to the membrane and<br />

the substrate by depositing a<br />

metallization layer. Also, the etch<br />

holes are sealed by a dielectric<br />

passivation layer (Fig. 3d)). Finally,<br />

the capacitance between the<br />

pressure-sensitive, monocrystalline<br />

membrane block and the substrate<br />

can be measured. Figure 4 shows<br />

a cross-sectional SEM micrograph<br />

of a monocrystalline membrane<br />

after isotropic etching. The<br />

membrane boss has been<br />

fully electrically insulated<br />

against the substrate and<br />

suspended from a dielectric<br />

layer stack.<br />

Summary<br />

By thermal rearrangement of porous<br />

silicon and epitaxial growth<br />

on a micro grid, self-sealing<br />

monocrystalline Si-membranes<br />

covering a vacuum cavity can<br />

be created. This technique was<br />

integrated in a standard mixed-<br />

Fig 3<br />

Schematic process fl ow:<br />

a) deposition of dielectric stack,<br />

b) etching of access holes,<br />

c) isotropic etch of silicon membrane,<br />

d) metallization and passivation<br />

Fig 4<br />

a) Cross-sectional SEM–micrograph<br />

of monocrystalline<br />

membrane after isotropic<br />

etching,<br />

b) close-up of isotropically<br />

etched trench<br />

signal process to fabricate a monolithic<br />

piezoresistive pressure-sensor. Furthermore,<br />

the APSM-technology is enhanced<br />

to enable electrically insulated monocrystalline<br />

membranes for capacitive sensors.<br />

References<br />

[1] H.-J. Kreß, F. Bantien, J. Marek, M. Willmann, Sensors and<br />

Actuators A 25 (1991) 21<br />

[2] S. Armbruster, “Micromachinig of Monocrystalline Silicon<br />

Membranes for Sensor Applications Using Porous Silicon”,<br />

Dissertation, Der Andere Verlag 2005<br />

Robert Bosch GmbH<br />

Engineering – Sensor Technology Center<br />

Automotive Electronics<br />

Kathrin Knese<br />

Tübinger Str. 123<br />

D – 72762 Reutlingen<br />

Phone +49(0)7121-35-6275<br />

Fax +49(0)7121-35-30239<br />

Mail Kathrin.Knese@de.bosch.com<br />

Web www.bosch.de<br />

47


The 2 nd German Congress on Microsystem Technologies 2007<br />

Forensic Investigation Using MEMS-Spectrometers<br />

Dr.-Ing. habil. Thomas Otto, Fraunhofer IZM, Chemnitz<br />

Dipl.-Ing. (FH) Ray Saupe, Fraunhofer IZM, Chemnitz<br />

Dipl.-Wirt.-Ing. Alexander Weiß, TU Chemnitz, Chemnitz<br />

Dipl.-Phys. Volker Stock, COLOUR CONTROL Farbmesstechnik, Chemnitz<br />

Prof. Dr. Dr. h. c. mult. Thomas Geßner, Fraunhofer IZM, Chemnitz<br />

Introduction<br />

Driven by a rising number of industrial<br />

applications as well as by the demand<br />

of shorter analysing times near infrared<br />

(NIR) – spectroscopy has developed<br />

to a helpful and indispensable analysis<br />

method during the last years. Nevertheless<br />

due to the dominating large and<br />

costly FT- and diode array spectrometers<br />

the NIR-market is not tapping its full<br />

potential.<br />

To close this gap miniaturized and economic<br />

spectrometers based on micro<br />

electrical mechanical systems (MEMS)<br />

are suited well. Various fi elds of application<br />

can be seen in food industry, environmental<br />

control, medical diagnostics<br />

and forensic investigations. Especially<br />

forensic determination of drugs, e.g.<br />

heroine and amphetamine is crucial for<br />

crime combat. Forensic activities require<br />

fast, convenient analytical devices for<br />

distinguishing between active and non<br />

active components or to quantify active<br />

compositions.<br />

Functional principle<br />

The spectrome ter is realized in a simple<br />

optical set-up according to conventional<br />

scan ning spectrometers (fi gures 1<br />

Fig 1<br />

48<br />

Fig 2<br />

and 2). The MEMS spectrometer<br />

employs an electrostatically driven micro<br />

mirror that moves in constant resonant<br />

oscillation. It periodically defl ects polychromatic<br />

radiation to a diffraction grating<br />

and monochromatic light to single<br />

element detectors. There is radiation<br />

coupling either directly or by using fi ber<br />

optics, which allows an easy attachment<br />

of substance samples. Detectors can<br />

be thermoelectrically cooled depending<br />

on the application. Lowest noise preamplifi<br />

ers enable high-precise measurements<br />

over a wide dynamic range. Data<br />

NIR-MEMS-spectrometer<br />

wavelength range 660 – 1730 nm / 910 – 2100 nm<br />

spectral resolution 9 – 13 nm<br />

measuring time (@ single measurement) 4 ms<br />

SNR (@ single measurement) 7000:1 / 1000:1<br />

wavelength accuracy


ecorded. Furthermore the amplitude<br />

deviation (ΔT) is better than 0,1%.<br />

Permanent observation of the mirror<br />

angle by a position sensor increases the<br />

reproducibility thereby.<br />

Data Treatment/Chemometrie<br />

Data treatment was accomplished both<br />

by principal component analysis (PCA)<br />

for qualitative analysis and partial least<br />

square calibration (PLS) for quantitative<br />

determination. Principle Component<br />

Analysis (PCA) is a linear dimensionality<br />

Fig 3<br />

Fig 4<br />

Fig 5<br />

The 2 nd German Congress on Microsystem Technologies 2007<br />

reduction technique, which identifi es orthogonal<br />

directions of maximum variance<br />

in the original data, and projects the<br />

data into a lower-dimensionality space,<br />

formed of a sub-set of the highestvariance<br />

components. Similar spectra<br />

create a cluster, different spectra will be<br />

defi ned by the PCA. Using PLS relations<br />

between component quantities are<br />

described. The PLS calibration is based<br />

on main components of the argument X<br />

and the dependant variables Y.<br />

For matrix X and Y the principle components<br />

are separately computed and the<br />

regression model between the scores of<br />

the principle components is provided.<br />

Measurements and results<br />

Forensic determinations of intoxicants<br />

are important regarding a quick identifi<br />

cation of the appropriate substances.<br />

In collaboration with the Saxony state<br />

offi ce of Criminal Investigation 123 single<br />

substances (heroine, 60; methampethamine,<br />

63) have been provided for a<br />

spectroscopic investigation (fi gures 3<br />

and 4). Sample presentation has been<br />

done in diffuse refl ection. Active components<br />

were clustered against 9 household<br />

articles for checking conformity via<br />

PCA. Calculations were performed by<br />

OPUS/Quant2 (Bruker Optik GmbH,<br />

Ettlingen). As can be seen in fi gure 5<br />

online distinctions of active components<br />

are in connection with quantitative<br />

analysis (fi gures 6-8) undemanding. PLS<br />

calibrations for diacetylmorphine, monoacetylmorphine<br />

with composition of narcotine,<br />

paracetamole, paverine, caffeine<br />

and acetylcodeine were performed.<br />

RMSECV for DAM amounts 1.18%, for<br />

MAM 2.22% respectively.<br />

Fig 6<br />

Fig 7<br />

Fig 8<br />

Summary / Perspectives<br />

Functional principal of a novel MEMS<br />

spectrometer and characteristic parameter<br />

were presented. Flexible set-up,<br />

portability, cost effi ciency and short scan<br />

time are features which offer advantages<br />

in comparison with conventional<br />

spectrometers. The overall measurement<br />

results (e.g. in forensic) show the<br />

applicability of the MOEMS spectrometer.<br />

Thus the small sized and competitive<br />

NIR device could assist economic<br />

effi ciency in many application fi elds.<br />

Fraunhofer IZM, Institutsteil Chemnitz<br />

Dr.-Ing. habil. Thomas Otto<br />

Reichenhainer Str. 88<br />

D – 09126 Chemnitz<br />

Phone +49(0)371-5397-1928<br />

Fax +49(0)371-5397-1310<br />

Mail thomas.otto@<br />

che.izm.fraunhofer.de<br />

Web http://www.izm.fraunhofer.de<br />

49


The 2 nd German Congress on Microsystem Technologies 2007<br />

Use of the Tunnelmagnetoresistive Effect<br />

for Sensor Applications<br />

Anna Gerken and Johannes Paul, Sensitec GmbH<br />

Abstract<br />

Magnetoresistive (MR) sensors are well<br />

suited for measuring a magnetic fi eld<br />

as their electrical resistance depends<br />

upon the strength and the direction of<br />

an external magnetic fi eld. The sensor<br />

dimension as well as the absolute<br />

value of the MR-signal differ signifi cantly<br />

between the different MR-sensor types.<br />

Tunnelling magnetoresistive (TMR) sensors,<br />

with their huge MR-signal, can<br />

lead to innovative products, e.g. arrays<br />

of pixelsensors for magnetic imaging<br />

techniques.<br />

TMR-Effect<br />

Electrons may pass through an insulating<br />

layer if this fi lm is very thin (< 5 nm);<br />

this is called quantum tunnelling. If<br />

such an insulating layer is sandwiched<br />

between two ferromagnetic layers, the<br />

tunnelling magnetoresistive effect can be<br />

observed: The resistance depends upon<br />

the relative orientation of the magnetization<br />

direction of the electrodes.<br />

In general the resistance is low for parallel<br />

orientation and high in the antiparallel<br />

state.<br />

A magnetic tunnelling junction (MTJ)<br />

consists of an insulating barrier, typically<br />

made of Al 2O 3 or MgO, which is<br />

sandwiched between two ferromagnetic<br />

electrodes i.e. made of CoFe or CoFeB.<br />

For sensor applications it is desirable to<br />

pin the magnetization of one electrode at<br />

a fi xed direction (reference layer).<br />

The magnetization of the second electrode<br />

is able to follow the external fi eld<br />

freely. Therefore the second electrode<br />

is called detecting layer. Such a design<br />

results in resistance changes when an<br />

external fi eld is applied because the<br />

50<br />

relative orientation between the magnetizations<br />

of the two electrodes changes<br />

with the magnetic fi eld. Magnetic pinning<br />

is obtained by an antiferromagnetic fi lm<br />

like IrMn or PtMn; the TMR stack is completed<br />

by seed and cap layers. Figure 1<br />

displays a typical layer stack for an MTJ.<br />

The decisive advantage of TMR com-<br />

Fig 1<br />

Schematic view of a typical MTJ. The current passes<br />

through the stack perpendicular to the layer plaanes.<br />

Here F stands for ferromagnetic, AF for antiferromagnetic<br />

layer. The arrows indicate the direction of the<br />

magnetization. The reference layer is stable whereas<br />

the magnetization of the detecting layer changes with<br />

an external fi eld.<br />

pared to standard MR sensors like AMR<br />

and GMR is the huge resistance change<br />

(ΔR/R) which can reach several hundred<br />

percent at room temperature. Furthermore,<br />

the size of the elements and<br />

characteristics like temperature stability<br />

are favourable (see table 1).<br />

Production challenges<br />

Although the TMR effect has been known<br />

since the 1970s, it was not possible<br />

to reproducibly prepare good samples<br />

until the early 1990s. Since then TMR<br />

has been an active fi eld of research<br />

and during the last couple of years a lot<br />

of progress has been made [Ref]. The<br />

greatest challenge during the production<br />

process of an MTJ is the fabrication of<br />

the tunnelling barrier. Every tiny defect in<br />

this nanometer-thin layer creates a pinhole,<br />

a local short-circuit in the barrier.<br />

In addition the deposition and oxidation<br />

process for the barrier holds the risk of<br />

oxidizing the underlying electrode. This<br />

would signifi cantly reduce the TMR effect.<br />

The best results so far are achieved<br />

with single-crystalline MgO-barriers in<br />

(100) orientation. To obtain such an<br />

ordered MgO-barrier, the neighbouring<br />

electrodes, the seed layer and the annealing<br />

process are of great importance.<br />

Results<br />

Our examined MTJs had the following<br />

layer sequence: Seed / PtMn (20) /<br />

CoFe (4) / MgO (2.5) / CoFe (2) / NiFe<br />

(5) / Ta (10) (all thicknesses in nm).<br />

The fi lms were deposited by magnetron<br />

sputtering, only the seed layer was<br />

deposited by ion beam deposition. The<br />

MgO barrier was sputtered in a twostep-process:<br />

At fi rst a metallic Mg-fi lm<br />

was deposited, secondly an MgO layer<br />

was sputtered reactively in an argon<br />

oxygen atmosphere. During the reactive<br />

sputtering process the metallic Mg-fi lm<br />

protects the underlying CoFe electrode<br />

from being oxidized.<br />

With this TMR layer stack circular magnetic<br />

tunnelling junctions with diameters<br />

between 16 and 150 μm were fabricated<br />

in a manufacturing line suited for the<br />

production of AMR and GMR sensors at<br />

Sensitec in Mainz/Germany.<br />

The measurement of the characteristic<br />

curve allows the study of the electric


properties of a tunnelling junction.<br />

If electron tunnelling is the dominant<br />

contribution to the current of the device<br />

the IU curve is non linear (see fi gure 2).<br />

A numerical model (Brinkman fi t) allows<br />

to derive the barrier thickness from the<br />

characteristic curve. In our systems we<br />

calculated a barrier thickness of 3 nm<br />

which is 0,5 nm more compared to<br />

Table 1<br />

Comparison of<br />

properties between<br />

giant magnetoresistance<br />

(GMR),<br />

anisotropic magnetoresistance<br />

(AMR)<br />

and tunnelling<br />

magnetoresistance<br />

(TMR)<br />

The 2 nd German Congress on Microsystem Technologies 2007<br />

Fig 2<br />

Characteristic<br />

curve for a<br />

tunnelling<br />

junction<br />

Fig 3<br />

Resistance as<br />

function of the<br />

applied magnetic<br />

fi eld. At around<br />

zero fi eld the<br />

magnetization<br />

of the softmagnetic<br />

detecting<br />

layer switches,<br />

which in turn leads<br />

to the jump in the<br />

resistance of the<br />

MTJ.<br />

the deposited thickness of MgO. This<br />

indicates slight overoxidation.<br />

The magnitude of the TMR effect is<br />

deduced from the measurement of the<br />

resistance as a function of the applied<br />

magnetic fi eld. A typical MR curve is<br />

shown in fi gure 3. Around zero magnetic<br />

fi eld the function shows a large jump of<br />

12.4 % in the resistance. Here the mag-<br />

GMR Spinvalve AMR TMR<br />

MR effect (RT) Up to 14 % 3 % Up to 800 %<br />

resistance low low high<br />

Annealing<br />

temperature<br />

265 °C 265 °C 300 – 380 °C<br />

geometry meander meander dot<br />

Volume<br />

production<br />

yes yes To be implemented<br />

netization of the detecting layer switches<br />

its orientation by following the orientation<br />

of the external fi eld. This leads to<br />

the switch from parallel to antiparallel<br />

orientation of the magnetizations of<br />

the electrodes. The antiparallel state is<br />

stable up to -500 Oe.<br />

Yield<br />

Pinholes in the barrier will result in an<br />

ohmic conductance and the IU curve<br />

will be linear. Therefore the nonlinearity of<br />

the characteristic curve can be regarded<br />

as a criterion for a “good” element. For<br />

circular MTJs with a diameter of 60 μm<br />

or less highly promising yields of 90 %<br />

or more are obtained. This is a strong<br />

argument, that TMR based sensors will<br />

be developed for future sensor products<br />

and produced in industrial scale.<br />

Outlook<br />

TMR elements offer new properties<br />

which pave the way for new applications,<br />

especially when high MR effects<br />

are required. Additionally TMR sensors<br />

are expected to be more temperature<br />

stable than other MR sensors.<br />

Ref: Jian-Gang Zhu, Chando Parker, materials today, vol. 9 no. 11 p.<br />

36-45 (2006)<br />

Sensitec GmbH<br />

Dr. Johannes Paul<br />

Technology Development<br />

Hechtsheimerstraße 2<br />

D – 55131 Mainz<br />

Mail johannes.paul@naomi-mainz.de<br />

Web www.sensitec.com<br />

51


The 2 nd German Congress on Microsystem Technologies 2007<br />

Nutriwear – Nutrition Management Using Smart Textiles<br />

Katrin Müller, Motorola GmbH<br />

Introduction and Motivation<br />

Nutrition and hydration have a major<br />

infl uence on the physical and mental<br />

health of a person. The natural aging<br />

process, sport activities and/or ill health,<br />

often lead to a changing body composition<br />

or dehydration with partly severe<br />

consequences. Especially elderly people<br />

risk of suffering from dehydration and<br />

protein-energy-defi cits. But also tumor<br />

patients, especially after chemotherapy,<br />

or people with eating disorder are affected.<br />

This reduces their quality of life,<br />

lengthens hospital stays and drastically<br />

increases the mortality rate. To avoid<br />

such serious effects and to improve the<br />

quality of life for everyone concerned,<br />

it is important to control the nutritional<br />

status and water balance of the body<br />

continuously.<br />

Over the last 10 years bio-impedance<br />

spectroscopy (BIS) has become a widely<br />

accepted method for the determination<br />

of body composition due to its simplicity,<br />

speed and non-invasive nature.<br />

This method is used in several fi elds of<br />

application such as dietary and nutrition<br />

therapies, sport medicine, training diagnostic<br />

and control as well as anti-aging<br />

medicine and consultancy. However, the<br />

accuracy of results is sensitive to certain<br />

measurement conditions and reference<br />

data are only available for healthy<br />

persons. There is only limited experience<br />

with elderly as well as with effects from<br />

different factors such as medication,<br />

illness or even implants. Today, bio-impedance<br />

spectroscopy devices are too<br />

large and heavy to be used as portable<br />

system for long term monitoring. Currently<br />

no system is known, capable<br />

of interpreting BIS signals as well as<br />

52<br />

communicating and providing feedback<br />

and personalised recommendations<br />

independent of location and consultancy<br />

of a medical professional. The Nutriwear<br />

project will develop a mobile monitoring<br />

system using smart textiles to manage<br />

the nutrition and water conditions of the<br />

human body. The monitoring system<br />

exploits the bio-impedance-spectroscopy<br />

integrated into body near clothes<br />

to determine the percentage of water,<br />

muscle and fat. The advantages offered<br />

by textiles facilitate its integration into<br />

working-routines and day-to-day life.<br />

Requirements and functions<br />

of Nutriwear system<br />

The analysis of user groups and application<br />

fi elds based on questionnaires,<br />

interviews and use case descriptions<br />

has been used as a starting point for the<br />

system development. The user groups<br />

have been divided into (a) prevention<br />

focusing on athletes and elderly and (b)<br />

therapy focusing on patients suffering<br />

from cachexia. Both user groups re-<br />

quire an easy-to-use handling and<br />

usability, a clear and useful interpretation<br />

of the existing body composition<br />

distinguishing fat, muscle and water<br />

portion, and a trend analysis. Especially<br />

for the textile based system the bio<br />

compatibility and pleasant skin contact<br />

of the electrodes shall be ensured for<br />

long time application. Besides continuous<br />

monitoring a one-spot-measurement<br />

on demand is desired. However,<br />

there are differences between the users.<br />

The elderly prefer clothes which are not<br />

skin tight. They do not control their body<br />

composition or even their body weight.<br />

However, care givers and relatives<br />

highlighted the importance of an easy<br />

control of hydration. Fixed daily routines<br />

provide good measurement conditions.<br />

Athletes are quite open to use and<br />

integrate monitoring systems into their<br />

clothes or sports equipment. Portable<br />

devices are already used to monitor the<br />

training performance. To know more<br />

about the related change and infl uence<br />

of body composition is desired. The use<br />

Fig 1<br />

Nutriwear<br />

System


of synthetic fi bres in sport clothes results<br />

in additional challenges regarding static<br />

electricity charge and interferences.<br />

The key elements of a mobile system for<br />

continuous monitoring of body composition<br />

for prevention and therapy assessment<br />

are (Figure 1):<br />

1. Textile electrodes for bio-impedance<br />

spectroscopy and<br />

2. Electrical conductors in highly elastic<br />

textiles with high wearing comfort<br />

3. Reversible interface between textile<br />

and microelectronic and massproduced<br />

clothing with integrated<br />

electrical conductors<br />

4. Measurement electronic for signal<br />

capturing, processing and wireless<br />

transmission<br />

5. Control of measurement, data analysis,<br />

communication and feedback<br />

on mobile device and/or by service<br />

provider<br />

The system will conduct a tetra polar<br />

bio-impedance spectroscopy (BIS) using<br />

a sinusoidal alternating current in a<br />

frequency range from 10 kHz to 1MHz.<br />

Limits will be maintained according EN<br />

60601-1 and a measurement accuracy<br />

of 1%. Acceleration sensors will help to<br />

The 2 nd German Congress on Microsystem Technologies 2007<br />

Fig 2<br />

Knitting Process of<br />

Conductive Yarns<br />

detect and fi lter the motion artefacts.<br />

The data transmission will be based on<br />

serial Bluetooth profi le.<br />

Textile electrodes<br />

The two major material parameters of<br />

textile yarns for electrodes are (a) the<br />

conductivity and (b) the process capability<br />

in the textile mass production. Textile<br />

electrodes with different material composition<br />

have been produced and tested.<br />

Conductivity has been compared to<br />

commercial BIS electrodes under different<br />

conditions determining the infl uence<br />

of temperature, humidity and pressure.<br />

Humidity plays the most important role<br />

for increasing the conductivity and<br />

lowering the skin/electrode resistance.<br />

However, higher temperature and pressure<br />

result in higher skin moisture and<br />

therefore contribute indirectly.<br />

A higher contact pressure to the skin<br />

and a limitation of humidity transportation<br />

in the clothing is rather contradictory<br />

to the comfort requirement. Therefore a<br />

knitting process is preferred to produce<br />

a highly bidirectional elastic fabric.<br />

Experiences from processing have been<br />

summarized in Figure 2.<br />

Outlook<br />

The next steps focus on the structuring<br />

of the fabric to solve the contradictory<br />

challenges and the integration into the<br />

textile mass production. Besides the<br />

manufacturing of textile electrodes and<br />

conductors, the reversible interface<br />

between textile and microelectronic as<br />

well as effective data analysis algorithm<br />

and suitable reference data will be<br />

developed.<br />

The project Nutriwear is conducted in<br />

close collaboration between Motorola<br />

GmbH, RWTH Aachen, Philips Technologie<br />

GmbH, Elastic GmbH and suprima<br />

GmbH. The work is supported by German<br />

Federal Ministry of Education and<br />

Research under contract #16SV3478.<br />

Project partners:<br />

✦ Motorola GmbH, Taunusstein<br />

✦ Philips GmbH, Aachen<br />

✦ RWTH Aachen, Aachen<br />

✦ Elastic GmbH, Neukirchen<br />

✦ suprima GmbH, Bad Berneck im<br />

Fichtelgebirge<br />

Motorola GmbH<br />

Physical and Digital Realization<br />

Research Center – Europe<br />

Dr. Katrin Müller<br />

Heinrich-Hertz-Str. 1<br />

D – 65232 Taunusstein<br />

Phone +49(0)6128-70-2284<br />

Fax +49(0)6128-70-4407<br />

Mail katrin.mueller@motorola.com<br />

Web www.motorola.de<br />

53


The 2 nd German Congress on Microsystem Technologies 2007<br />

Technology Development for 1 Megapixel-Micromirror Arrays<br />

with High Optical Fill Factor and Stable Analogue Deflection<br />

Jan-Uwe Schmidt, Martin Friedrichs, Thor Bakke, Benjamin Voelker, Dirk Rudloff, Hubert Lakner<br />

Fraunhofer Institute for Photonic Microsystems, Dresden<br />

Introduction<br />

The fabrication of lithographic masks for<br />

semiconductor technology is costly and<br />

time consuming. Recently through the<br />

Swedish company Micronic Laser Systems,<br />

a laser-mask writer using a micromechanical<br />

system for pattern generation<br />

has become commercially available<br />

as a more fl exible, more productive<br />

alternative to conventional mask writers.<br />

The tool employs a spatial light modulator<br />

(SLM), i.e. a programmable array of<br />

micromechanical tilt-mirrors. These arrays<br />

are being developed and fabricated<br />

at Fraunhofer IPMS Dresden according<br />

to ISO9001:2000 standards. Three<br />

essential features of the SLM are the<br />

addressing scheme permitting an analogue<br />

defl ection of the 2048 x 512 pixels<br />

with a dimension of 16 μm x16 μm, the<br />

integration of the array on top of a high<br />

54<br />

voltage CMOS ASIC, which enables to<br />

rewrite the complete chip at a frame rate<br />

of 2 kHz, and the capability to operate in<br />

the DUV (248 nm). Figure 1 shows the<br />

working principle of the SLM-based pattern<br />

generator for mask writing.<br />

Apart from the requirement of pixel planarity,<br />

a stable defl ection-voltage relation<br />

is essential to ensure a reliable function<br />

of the SLM. This is why mechanical<br />

creep in the torsional-hinges is one of<br />

the key issues for SLM with analogue<br />

defl ection. Pure aluminium is a rather<br />

soft and creep-prone MEMS material.<br />

Even moderate temperature and strain<br />

levels trigger a movement of dislocations<br />

resulting in a strain reduction. As<br />

a consequence the defl ection-voltage<br />

characteristics of pure Al-actuators are<br />

likely to be instable. Therefore for the<br />

current SLM generation an Al-alloy with<br />

a refi ned grain structure, an improved<br />

creep resistance is used as actuator<br />

material, accepting a slightly lower<br />

refl ectivity than for pure Al. In case of the<br />

mask writing application, the use of this<br />

Al-alloy, the low strain levels resulting<br />

from small mirror defl ection amplitudes<br />

(< 70 nm), and the intermittent operation<br />

at low duty cycle jointly ensure a stable<br />

operation of the array.<br />

However, other potential applications,<br />

e.g. adaptive optics require both higher<br />

actuator defl ection amplitudes, and a<br />

continuously defl ected actuator, which<br />

leads to a risk of defl ection instabilities<br />

due to material creep even for Al-alloy<br />

actuators. Therefore, currently new<br />

actuator technologies are being investigated.<br />

Fig 1<br />

Optical setup of the SLM-based mask writer.<br />

A pulsed 248 nm laser is illuminates the SLM<br />

chip via a beam splitter. The surface of the SLM<br />

is imaged with a 200x reduction onto the mask<br />

blank with a NA of 0.87. The specularly refl ected<br />

light is fi ltered and exposes the photoresist on the<br />

mask blank. The micro-mirrors act as a diffraction<br />

grating with adjustable blaze angle.<br />

Each pixel can be inclined in 64 levels. Thereby<br />

intensity is redistributed to higher diffraction<br />

orders, blocked by the aperture in the Fourier<br />

plane. This way the exposure dose can be<br />

gradually controlled, which enables gray-scale<br />

edge control of exposed features.<br />

The stage with the mask blank moves continuously<br />

and the interferometer commands the laser<br />

to fl ash when it reaches the position for the next<br />

fi eld.<br />

Because of the short fl ash time, around 20 ns,<br />

the movement of the stage is frozen and a sharp<br />

image of the SLM is produced in the resist.<br />

The complete pattern is stitched together from<br />

the sequentially exposed fi elds. Insets show<br />

images of the current SLM chip and a Chrome<br />

mask patterned with 150 nm lines/spaces.


The 2 nd German Congress on Microsystem Technologies 2007<br />

Fig 2<br />

The fabrication of 1-level SLM, i.e. a device made using only a<br />

single structural layer for mirrors and hinges is illustrated in Fig. 2:<br />

On top of a planarized passivation layer on the CMOS substrate,<br />

electrodes are deposited, patterned, passivated and planarized by<br />

CMP (1). Then the actuator is fabricated: A polyimide sacrifi cial<br />

layer (SL) is spun on, and via holes for the later mirror supports<br />

are patterned (2). The structural layer for mirror and springs is<br />

deposited on top of the SL and into the vias and patterned by<br />

reactive ion etching (3). After deposition of a protective resist, the<br />

chips are diced and separated (4). The protective resist and the<br />

dicing debris are removed by a jet of liquid solvent. Finally the SL<br />

is removed in a CF4/O2-plasma (5).<br />

Experimental<br />

The current technology of 1-level actuators,<br />

fabricated from a single Al-alloy structural layer,<br />

is illustrated in Figure 2. One alternative approach<br />

is, to use two separate structural layers for spring<br />

elements and mirror plates. This allows, to shape<br />

spring elements out of a creep resistant but not<br />

necessarily refl ective thin fi lm material. To hide<br />

the springs under the mirror plate simultaneously<br />

improves the optical fi ll factor. For details on the<br />

fabrication of the 2-level actuator see [1]. For<br />

2-level actuators, the mirror plates can be much<br />

thicker than the springs, which increases bending<br />

stiffness and improves pixel planarity. As a spring<br />

material, TiAl thin fi lms have been used. The<br />

material has been selected due to a favourable<br />

combination of structural, mechanical and chemical<br />

properties, for details see [2].<br />

Figure 3 shows a SEM image of released pixels<br />

with 750 nm Al-alloy mirror plates and 200 nm TiAl<br />

hinges. To enable inspection of otherwise hidden<br />

structures (springs, driving electrodes and oxide<br />

stoppers) the mirrors were locally removed.<br />

Fig 3<br />

SEM image of SLM chip with two-level-actuators fabricated in<br />

thin fi lm technology using two different structural layers for hinges<br />

and mirror plates respectively. Locally the mirror plates (M) have<br />

been removed for inspection of hinges (H), address electrodes<br />

(AE) used to individually defl ect the mirror pixels and counterelectrodes<br />

(CE) used to adjust the zero-position of the defl ection<br />

voltage relation.<br />

55


The 2 nd German Congress on Microsystem Technologies 2007<br />

Another approach is to prepare 1-level<br />

actuators using mono-crystalline silicon<br />

as structural material. Hereby a thin<br />

silicon membrane is transferred to a<br />

CMOS substrate by low-temperature<br />

wafer bonding. Figure 4 shows a SLM<br />

chip with 290nm thick mono-crystalline<br />

Si actuators fabricated via low-temperature<br />

wafer bonding. A detailed description<br />

of the used technology can be<br />

found in [2,3].<br />

Results<br />

The characterization of pixel planarity<br />

and stability of the defl ection-voltage<br />

relation, an optical interferometer was<br />

used.<br />

2-level mirrors with TiAl hinge and Al-alloy<br />

mirror plate: Due to residual topology<br />

after CMP of the second sacrifi cial layer,<br />

a faint (2 nm high) print-through of the<br />

underlying torsion spring has been found<br />

in the mirror plate. Still the RMS pixelplanarity<br />

of the array is 2 nm. To evaluate<br />

the drift stability of the torsion springs,<br />

the mirrors were defl ected to about<br />

80 nm at fi xed voltage for 30 min. The<br />

56<br />

Fig 4<br />

SEM image of SLM chip with<br />

one-level-actuators fabricated<br />

using a mono-crystalline<br />

silicon structural layer. The Si<br />

structural layer was transferred<br />

to the CMOS wafer by lowtemperature<br />

wafer bonding.<br />

defl ection was monitored over time by<br />

sequential interferometric measurements<br />

taken at a time interval of about 3 s. The<br />

drift rate is very low (


Associations<br />

and Networks<br />

Verbände<br />

und Netzwerke


Associations and Networks<br />

German Electrical and Electronic<br />

Manufacturers´ Association (ZVEI)<br />

Micro electric mechanical systems<br />

(MEMS) are intelligent miniature products<br />

combining materials, components and<br />

functions. They are used for processing<br />

data and are also connected to their<br />

natural environments through sensors<br />

and actuators.<br />

Germany holds a leading position on<br />

the MEMS world market. Control and<br />

automation requirements of industrial<br />

and automotive customers are steadily<br />

increasing and the intensifi ed use of<br />

MEMS in medical technology will further<br />

foster this development. MEMS are<br />

prime movers for the competitiveness of<br />

the German industry and stand for the<br />

Source/Quelle: Binder Elektronik GmbH<br />

58<br />

Source/Quelle:<br />

microFAB<br />

Bremen GmbH<br />

creation and safety of future-oriented<br />

work in Germany.<br />

This positive outlook is confi rmed by<br />

the MEMS producers organised in<br />

the German Electrical and Electronic<br />

Manufacturers‘ Association ZVEI. These<br />

range from leading automotive suppliers<br />

and semiconductor manufacturers<br />

to industrial MEMS makers and nichemarket<br />

SMEs (small and medium-sized<br />

companies).<br />

The group activities of the ZVEI membership<br />

focuses on the joint development<br />

of basic technologies and tools, acting<br />

as key drivers for innovation. Their efforts<br />

are dedicated at adding to the strengths<br />

of German MEMS and promoting a<br />

sustainable growth of the yet young<br />

technology in a pre-competitive environment<br />

through cooperation.<br />

The ZVEI Electronic Components and<br />

Systems Association hosts an own<br />

industry group for MEMS technology<br />

as an ideal platform for the representatives<br />

of the branch to share experience<br />

and be kept up to date with the latest<br />

developments. Furthermore, the group<br />

prepares political position papers that<br />

are communicated to the relevant decision-makers<br />

in a most targeted way. The<br />

effi ciency of the ZVEI in this respect is<br />

indeed a valuable asset. The partner organisations<br />

AMA Association for Sensor<br />

Technology and IVAM Microtechnology<br />

Network further strengthens the cooperation<br />

of all companies related to MEMS.<br />

Furthermore, this makes it possible to<br />

transport nationally generated content in<br />

a larger, international context through the<br />

pro-active input of our membership on<br />

the European level.<br />

The many victories of committed association<br />

activities that have been won<br />

for and together the member companies<br />

show how attractive the input of the association<br />

is for the industry.<br />

Source/Quelle: Sensitec GmbH


Source/Quelle: microFAB Bremen GmbH<br />

Die Mikrosystemtechnik verknüpft Materialien,<br />

Komponenten und Funktionen<br />

zu intelligenten miniaturisierten Gesamtsystemen.<br />

Diese dienen der Informationsverarbeitung<br />

und sind zudem über<br />

Sensoren und Aktoren mit der natürlichen<br />

Umgebung verbunden.<br />

Deutschland hat im Bereich der Mikrosysteme<br />

eine führende Position auf dem<br />

Weltmarkt. Der zunehmende Regelungs-<br />

und Automatisierungsbedarf der Industrie-<br />

und der Automobiltechnik sowie der<br />

vermehrte Einsatz von Mikrosystemen in<br />

Source/Quelle: Robert Bosch GmbH<br />

Associations and Networks<br />

ZVEI – Zentralverband Elektrotechnikund<br />

Elektronikindustrie e.V.<br />

der Medizintechnik wird diese Stellung<br />

weiter fördern. Die Mikrosystemtechnik<br />

leistet somit einen wichtigen Beitrag zur<br />

Wettbewerbsfähigkeit der deutschen<br />

Industrie und ermöglicht die Schaffung<br />

und Sicherung zukunftsorientierter Arbeitsplätze<br />

in Deutschland.<br />

Dieses positive Bild bestätigen die im<br />

Zentralverband der Elektrotechnik- und<br />

Elektronikindustrie e.V. (ZVEI) organisierten<br />

Mikrosystemtechnikunternehmen.<br />

Hierzu gehören neben großen Kfz-Zulieferern<br />

und Halbleiterunternehmen<br />

auch industrielle Mikrosystemtechnik-<br />

Anbieter bis hin zu hoch spezialisierten<br />

Klein- und Mittelstandsunternehmen<br />

(KMU).<br />

Im Vordergrund des Verbandsengagements<br />

unserer Mitgliedsfi rmen steht<br />

das Ziel, die Basistechnologien und<br />

Werkzeuge gemeinsam weiterzuentwickeln<br />

sowie Innovation und Entwicklung<br />

zu unterstützen. Ziel ist es, eine weitere<br />

Stärkung der Mikrosystemtechnik<br />

in Deutschland und das langfristige<br />

Wachstum dieser noch jungen Technik<br />

im vorwettbewerblichen Umfeld partnerschaftlich<br />

weiter zu fördern.<br />

Der ZVEI bietet hierzu mit der Fachgruppe<br />

Mikrosystemtechnik im Fachverband<br />

Electronic Components and Systems<br />

eine geeignete Plattform, die den<br />

Vertretern der Branche einen intensiven<br />

Erfahrungsaustausch sowohl auf<br />

fachlicher Ebene als auch zu aktuellen<br />

Themen ermöglicht. Darüber hinaus<br />

werden Positionspapiere erarbeitet, die<br />

gezielt und wirkungsvoll bei politischen<br />

Entscheidungsträgern platziert werden.<br />

Hierbei konnte sich die Effi zienz des<br />

ZVEI als Vertreter der Branche bewäh-<br />

ren. Durch die Partner „AMA Fachverband<br />

für Sensorik e.V.“ und „IVAM e.V.<br />

Fachverband für Mikrotechnik“ wird die<br />

Zusammenarbeit aller in Deutschland an<br />

der Mikrosystemtechnik interessierten<br />

Unternehmen weiter gestärkt.<br />

Darüber hinaus können national erarbeitete<br />

Verbandsthemen auch im internationalen<br />

Kontext durch die Aktivität der<br />

Mitgliedsfi rmen auf europäischer Ebene<br />

dargestellt werden.<br />

Die vielen Erfolge engagierter Verbandsarbeit,<br />

welche zusammen mit und für die<br />

Mitgliedsunternehmen erzielt wurden,<br />

zeigen die Attraktivität der Verbandsaktivität<br />

für die Industrie.<br />

ZVEI – Zentralverband Elektrotechnik-<br />

und Elektronikindustrie e.V.<br />

Fachverband Electronic Components and<br />

Systems<br />

Christoph Stoppok, Geschäftsführer<br />

Lyoner Straße 9<br />

D – 60528 Frankfurt am Main<br />

Phone +49(0)69-6302-276<br />

Fax +49(0)69-6302-407<br />

Mail zvei-be@zvei.org<br />

Web www.zvei.org<br />

59


Associations and Networks<br />

Sensorics – Technology Driver<br />

for Applied Microsystem Technology<br />

Industrial automation reinforced the<br />

demand for electronic measuring<br />

systems because automation depends<br />

on reliable measuring values. The want<br />

list of measuring parameters quickly<br />

increased: to improve industrial processes,<br />

for safety reasons, or just for the<br />

sake of convenience – and technological<br />

development took care of the rest.<br />

Sensor technology turned out to be a<br />

key industry with a steep economic and<br />

technological advance.<br />

In Central Europe, practically<br />

every application<br />

is suited for automation<br />

thanks to the available<br />

potential. That is why<br />

the systems developed<br />

here, are characterized<br />

by an exceptionally wide<br />

physical, technological,<br />

and application-specifi c<br />

diversity.<br />

Electromechanical<br />

measuring systems<br />

were almost completely<br />

superseded by electronic<br />

systems based on a variety<br />

of physical principles,<br />

60<br />

True Color<br />

Sensor „MTC-<br />

SiCS“ from the<br />

JENCOLOR<br />

product family<br />

Source/Quelle:<br />

MAZeT<br />

True Color<br />

Sensor „MTC-<br />

SiCS“ der<br />

JENCOLOR-<br />

Produktfamilie<br />

depending on the application. Thus, on<br />

today’s market you can fi nd electronic<br />

pressure measurement systems, for<br />

instance, based on piezoelectric, capacitive,<br />

resistive, inductive, optical, and<br />

other methods. What all these methods<br />

have in common, however, is their utilization<br />

of microtechnology.<br />

Any modern measuring system is<br />

a result of applied microsystem<br />

technology. This is why sensorics<br />

with its diversity and dynamics has<br />

become such an important technology<br />

driver – and its market position<br />

makes it one of the major applications<br />

for microsystem technology.<br />

The steep development in sensor and<br />

microsystem technology was tied in with<br />

a boom in business start-ups. Many<br />

sensor enterprises were founded within<br />

the last 30 years and companies with<br />

mechanical measuring systems successfully<br />

diversifi ed into electronics.<br />

Today, Central European suppliers of<br />

sensor elements, “binary” sensor technology,<br />

and “measuring sensorics”, have<br />

evolved into guarantors of a over 30%<br />

world market share and have attested<br />

the importance of Central European<br />

microsystem technology.<br />

The AMA Association for Sensor Technology,<br />

founded in 1980 and boasting<br />

440 members, refl ects the value chain<br />

in this industry. The AMA trade fair,<br />

SENSOR+TEST, is by far the biggest<br />

meeting point for sensor technology<br />

solutions. The structure of the measuring<br />

industry is still comprised of SMEs<br />

with their specialized knowledge of<br />

measuring principles, microtechnology,<br />

and application diversity – all prerequisites<br />

for an outstanding position on the<br />

global market. The AMA Association,<br />

the industry’s representative, and the<br />

SENSOR+TEST (www.sensor-test.com)<br />

are perhaps the most signifi cant markers<br />

for applied microsystem technology.<br />

Power supply<br />

of energy self-suffi<br />

cient microsystems<br />

using thermoelectric<br />

devices<br />

Stromversorgung von<br />

energie-autarken Mikrosystemen<br />

mit Hilfe<br />

thermoelektrischer<br />

Bauteile<br />

Souce/Quelle:<br />

Fraunhofer IPM


Die industrielle Automatisierung bestärkte<br />

die Forderung nach elektronischen<br />

Messsystemen, denn ohne zuverlässige<br />

Messwerte kann man nicht automatisieren.<br />

Immer mehr Messparameter kamen<br />

auf die Wunschliste der Automatisierer:<br />

zur Verbesserung des industriellen Prozesses<br />

selbst, aus Sicherheitsgründen<br />

oder zur Komfortverbesserung – und die<br />

Technologieentwicklung tat ein Übriges.<br />

Mit der Sensorik entstand eine Schlüsselbranche,<br />

die eine anhaltend rasante<br />

wirtschaftliche und technologische<br />

Entwicklung nahm. Da in Mitteleuropa<br />

nahezu jede Anwendung für die<br />

Automatisierung, d.h. ausreichendes<br />

Potenzial, vorhanden ist, zeichnen sich<br />

mitteleuropäische Messsysteme durch<br />

besonders hohe physikalische, technologische<br />

und anwendungsspezifi sche<br />

Vielfalt aus.<br />

Die anfangs elektromechanischen Messsysteme<br />

wurden nahezu vollständig<br />

durch elektronische Systeme abgelöst,<br />

bei denen – je nach Anwendung – un-<br />

Prototype of a paramagnetic<br />

gas sensor chip<br />

– winner of the SENSOR<br />

Innovation Award 2007<br />

of AMA Fachverband für<br />

Sensorik e.V., Source:<br />

ABB AG<br />

„Paramagnetischer<br />

Gassensor – ausgezeichnet<br />

mit den SENSOR<br />

Innovationspreis 2007<br />

des AMA Fachverbandes<br />

für Sensorik e.V.“, Quelle:<br />

„ABB AG Forschungszentrum<br />

Deutschland“<br />

Associations and Networks<br />

Sensorik – Technologietreiber<br />

für angewandte Mikrosystemtechnik<br />

terschiedliche physikalische Wirkprinzipien<br />

eingesetzt werden. So gibt es<br />

heute z.B. für die elektronische Druckmessung<br />

piezoelektrische, kapazitive,<br />

induktive, strahlen- und faseroptische,<br />

mehrere resistive Methoden am Markt.<br />

All diesen Systemen ist gemeinsam,<br />

dass sie Mikrotechnologien nutzen.<br />

Heute steht jedes moderne Messsystem<br />

für angewandte Mikrosystemtechnik,<br />

so dass die Sensorik<br />

mit ihrer Vielfalt und ihrer hohen<br />

Dynamik als ganz wesentlicher<br />

Technologietreiber und wegen<br />

ihrer Marktbedeutung als eine der<br />

wichtigsten Anwendungen für die<br />

Mikrosystemtechnik gilt.<br />

Mit der steilen Entwicklung der Sensortechnologien,<br />

auch der Mikrosystemtechnik,<br />

ging eine Gründungswelle<br />

einher. Viele Sensorik-Firmen wurden in<br />

den letzten 30 Jahren gegründet, und<br />

Firmen mit mechanischen Messsyste-<br />

men diversifi zierten erfolgreich in Elektronik.<br />

Heute haben sich die mitteleuropäischen<br />

Hersteller von Sensorelementen,<br />

von „binärer Sensorik“ sowie die vor<br />

allem mittelständisch geprägten Firmen<br />

der „messenden Sensorik“ als Garanten<br />

für einen Weltmarktanteil von deutlich<br />

über 30 % und für die große Bedeutung<br />

der mitteleuropäischen Mikrosystemtechnik<br />

entwickelt.<br />

Der 1980 gegründete AMA Fachverband<br />

für Sensorik e.V. ist mit seinen<br />

über 440 Mitgliedern ein Abbild der<br />

Wertschöpfungskette der Sensorik<br />

und ihrer Technologien, und die AMA<br />

Messe SENSOR+TEST ist der mit<br />

Abstand größte Treff der Sensorik und<br />

ihrer vielfältigen Lösungen. Die Struktur<br />

der Messsystem-Branche ist unverändert<br />

mittelständisch mit spezifi schem<br />

Know-how für physikalische Messprinzipien,<br />

Mikrosystemtechnik und Anwendungsvielfalt<br />

– Grundvoraussetzung<br />

für eine herausragende Position am<br />

Weltmarkt auch in Zukunft. Der Branchenvertreter<br />

AMA Fachverband und die<br />

SENSOR+TEST (www.sensor-test.com)<br />

sind bedeutende, wenn nicht gar die<br />

wichtigsten Marker für die angewandte<br />

Mikrosystemtechnik.<br />

AMA Fachverband für Sensorik e.V.<br />

Dr. Dirk Rein<br />

Friedländer Weg 20<br />

D – 37085 Göttingen<br />

Phone +49(0)551-21-695<br />

Fax +49(0)551-25-155<br />

Mail info@ama-sensorik.de<br />

Web www.ama-sensorik.de<br />

61


Associations and Networks<br />

Bridge between High-Tech Suppliers and Users:<br />

IVAM Microtechnology Network<br />

Microsystems technology offers a<br />

tremendous bandwidth of application<br />

opportunities in fi elds such as medical<br />

technology, automotive industry, and<br />

consumer goods. Companies and institutes<br />

meet the challenge to bring such<br />

complex high-tech innovations to market<br />

day by day. They are supported by organizations<br />

like the IVAM Microtechnology<br />

Network.<br />

IVAM consolidates about 300 members<br />

from the fi elds of microtechnology,<br />

nanotechnology and advanced materials.<br />

As a communicative “bridge” IVAM<br />

accelerates the transfer from innovative<br />

ideas into profi table products. Besides<br />

technology marketing, IVAM’s activities<br />

include lobbying and opening up international<br />

markets.<br />

Micromirror<br />

Mikrospiegel.<br />

Souce/Quelle:<br />

Fraunhofer IZM/TU<br />

Chemnitz (Uwe Meinhold).<br />

62<br />

Publications and economic data<br />

As editor of the high-tech magazine<br />

»inno« and the E-mail newsletters Mikro-<br />

Media and NeMa-News, IVAM presents<br />

the latest products from microtechnology,<br />

nanotechnology and the materials’<br />

sector. The IVAM directory contains<br />

profi les and contact details from all the<br />

members, and is used as a data base<br />

by potential customers and partners.<br />

Also in the IVAM directory online at www.<br />

ivam.de interested persons can select<br />

by industries and technologies. Anybody<br />

looking for the latest economic data and<br />

trends will fi nd it under www.ivam-research.com.<br />

Here, the market research<br />

division of IVAM provides studies on<br />

micro and nanotechnology.<br />

Trade shows and events<br />

IVAM organizes the Product Market “Micro,<br />

Nano & Materials” at the MicroTechnology/HANNOVER<br />

MESSE, the largest<br />

market place for microsystems technology.<br />

A highlight is the new area “Laser<br />

for micro-material processing”. Suppliers’<br />

products for the medical technology<br />

industry can be found at the IVAM joint<br />

pavilion “High-tech for Medical Devices”<br />

during COMPAMED/MEDICA. Organizing<br />

business workshops in context of<br />

NANO KOREA and Exhibition Micro<br />

Machine/MEMS, IVAM also initiates contacts<br />

to Asia. With the Microtechnology<br />

Summer School (www.mikrotechniksummerschool.de),<br />

IVAM brings together<br />

students with potential employers.


Die Mikrosystemtechnik bietet eine<br />

ungeheure Bandbreite an Anwendungsmöglichkeiten<br />

– von der Medizintechnik<br />

über den Automobilbereich bis hin zu<br />

Konsumgütern. Tagtäglich stellen sich Unternehmen<br />

und Institute der Herausforderung,<br />

ihre komplexen Hightech-Produkte<br />

zu vermarkten. Unterstützung erhalten<br />

sie dabei durch Netzwerke wie den IVAM<br />

Fachverband für Mikrotechnik.<br />

Unter dem Dach von IVAM sind derzeit<br />

rund 300 Mitglieder aus den Bereichen<br />

Mikrotechnik, Nanotechnik und Neue<br />

Materialien organisiert. Als kommunikative<br />

„Brücke“ zwischen Technologieanbietern<br />

und -anwendern beschleunigt IVAM die<br />

Umsetzung innovativer Ideen in marktfähige<br />

Produkte. Neben dem Technologiemarketing<br />

gehören Lobbyarbeit und die<br />

Erschließung internationaler Märkte zu den<br />

wichtigsten Aktivitäten des Verbandes.<br />

Associations and Networks<br />

Brücke zwischen Hightech-Anbietern und -Anwendern:<br />

IVAM Fachverband für Mikrotechnik<br />

Conversation<br />

with a customer<br />

at the COMPA-<br />

MED 2007<br />

Kundengespräch<br />

auf der<br />

COMPAMED<br />

2007.<br />

Source /Quelle:<br />

IVAM.<br />

Publikationen und Wirtschaftsdaten<br />

Als Herausgeber des Hightech-Magazins<br />

»inno« und der E-Mail-Newsletter<br />

MikroMedia und NeMa-News stellt<br />

IVAM neue Produkte aus der Mikro-,<br />

Nano- und Werkstofftechnikbranche vor.<br />

Das IVAM directory enthält Profi le und<br />

Kontaktdaten aller Mitglieder und wird<br />

von potenziellen Kunden und Partnern<br />

als Datenbank genutzt.<br />

Auch im IVAM directory online unter<br />

www.ivam.de können Interessenten<br />

gezielt nach Branchen und Technologien<br />

selektieren. Wer hingegen nach<br />

aktuellen Wirtschaftsdaten und Trends<br />

sucht, wird unter www.ivam-research.<br />

de fündig.<br />

Hier bietet der Marktforschungsbereich<br />

von IVAM Studien zum Thema Mikro-<br />

und Nanotechnik an.<br />

Messen und Events<br />

Im Rahmen der MicroTechnology, des<br />

größten Marktplatzes für Mikrotechnik,<br />

organisiert IVAM während der HANNO-<br />

VER MESSE den Produktmarkt „Mikro,<br />

Nano, Materialien“.<br />

Ein Highlight ist dabei der neue Bereich<br />

„Laser für Mikromaterialbearbeitung“.<br />

Zulieferprodukte für die Medizintechnikbranche<br />

fi nden Fachbesucher auf dem<br />

IVAM-Gemeinschaftsstand „Hightech<br />

for Medical Devices“ im Rahmen der<br />

COMPAMED/MEDICA.<br />

Um die Anbahnung von Kontakten<br />

nach Asien zu erleichtern, organisiert<br />

IVAM außerdem Business-Workshops<br />

im Rahmen der NANO KOREA und<br />

der Exhibition Micromachine/MEMS.<br />

Mit der Summer School Mikrotechnik<br />

(www.mikrotechnik-summerschool.de)<br />

bringt IVAM Studierende mit potenziellen<br />

Arbeitgebern zusammen.<br />

IVAM Fachverband für Mikrotechnik<br />

Emil-Figge-Str. 76<br />

D – 44227 Dortmund<br />

Phone +49(0)231-9472-168<br />

Mail info@ivam.de<br />

Web www.ivam.de<br />

www.neuematerialien.de<br />

www.ivam-research.de<br />

63


Associations and Networks<br />

MTT e.V. –<br />

An Example of Regional Networking in Germany<br />

Microsystems technology in Thuringia<br />

has seen many economic and structural<br />

changes in the last few years. Hand in<br />

hand with those changes went an increased<br />

networking of science, technology,<br />

and industry. A result thereof is the<br />

cluster initiative “Mikrotechnik Thüringen<br />

e.V.” (MTT).<br />

This network of scientifi c institutions and<br />

industrial companies aims to generate<br />

increased momentum for innovations,<br />

in order to enhance the Thuringian<br />

infrastructure, and to focus the competencies<br />

in the market segment of<br />

microsystems technology. Innovative<br />

ideas, creative action and interaction<br />

as well as competence in the area of<br />

microsystems technology are typical for<br />

the 21 cluster members, as is transfer of<br />

scientifi c results and new technologies<br />

into the market.<br />

Many Thuringian institutes have their<br />

roots in micro-electronics. By now, different<br />

materials, components, technologies<br />

and functions are being combined<br />

into a single microsystem<br />

by several members of the<br />

Thuringian network. Because<br />

of their small<br />

size, with their<br />

components<br />

sometimes<br />

as small<br />

as a<br />

few<br />

64<br />

micro meters, microsystems can be<br />

used saving space and weight. Thus<br />

they are ready for fl exible and mobile<br />

use. Several complex value-adding networks<br />

developed, using different basis<br />

technologies.<br />

Microsystems technology, with its broad<br />

spectrum of functionality and applications,<br />

is one of the future-oriented<br />

industries in Thuringia, and is steadily<br />

developed further. As a result, it is a core<br />

technology for many new applications.<br />

The technological basis must be secured<br />

and continually developed further<br />

in order to be able to realize the potential.<br />

At the core, the MTT e.V. wants<br />

to establish a broad representation of<br />

microsystems technology in Thuringia.<br />

In the future, the cluster will focus<br />

increasingly on a national<br />

and international presentation<br />

of<br />

Force sensor element with electronics<br />

Thuringian technology companies. Application-oriented<br />

and customer-oriented<br />

workshops at regular intervals will help<br />

to recruit further partners from industry.<br />

Additionally, recommendations for<br />

the economic and technological<br />

policies of Thuringia are being<br />

developed.<br />

Mikrotechnik Thüringen e.V.<br />

D – 07629 Hermsdorf<br />

Heinrich-Hertz-Straße 8<br />

Fon: +49(0)36601-592-100<br />

Fax: +49(0)36601-592-110


Die Thüringer Mikrosystemtechnikszene<br />

erlebte in den zurückliegenden Jahren<br />

vielfältige wirtschaftliche und strukturelle<br />

Veränderungen sowie Neuerungen. Im<br />

Zuge dessen vollzog sich auch eine kontinuierliche<br />

Vernetzung von Forschung,<br />

Technologie und Wirtschaft.<br />

Ein Ergebnis hiervon ist die Cluster-Initiative<br />

„Mikrotechnik Thüringen e.V.“ (MTT).<br />

Dieser Verbund aus Technologiefi rmen<br />

und wissenschaftlichen Instituten macht<br />

es sich zum Anliegen, weitere Impulse<br />

für Innovationen zu setzen, um die<br />

technologische Infrastruktur Thüringens<br />

auszubauen und eine Bündelung von<br />

Kompetenzen im Marktsegment<br />

der Mikrosystemtechnik voranzutreiben.<br />

Associations and Networks<br />

MTT e.V. –<br />

ein Beispiel der regionalen Vernetzung in Deutschland<br />

Geschäftsstelle Ilmenau<br />

Gustav-Kirchhoff-Straße 5<br />

D – 98693 Ilmenau<br />

Fon: +49(0)3677-2010-241<br />

Fax: +49(0)3677-2010-240<br />

www.mikrotechnik-thueringen.de<br />

Innovative Ideen, kreat ives Agieren und<br />

Interagieren sowie kompetentes Handeln<br />

auf dem Gebiet der Mikrosystemtechnik<br />

sind für die 21 Mitglieder des Clusters<br />

ebenso charakteristisch, wie ein Transfer<br />

von wissenschaftlichen Erkenntnissen<br />

und neuen Technologien.<br />

Entwickelt haben sich viele Thüringer<br />

Institute und Unternehmen aus der<br />

Mikroelektronik. Mittlerweile werden<br />

durch zentrale Akteure des Thüringer<br />

Netzwerkes verschiedene Materialien,<br />

Komponenten, Technologien<br />

und Funktionen in einem Mikrosystem<br />

miteinander verbunden. Aufgrund sehr<br />

kleiner Formate, innerhalb derer einzelne<br />

Komponenten zum Teil nur wenige<br />

Mikrometer klein sind, können Mikrosysteme<br />

Raum- und Gewicht sparend<br />

genutzt werden und sind damit fl exibel<br />

sowie mobil einsetzbar. Auf<br />

diese Weise entstanden<br />

komplexe<br />

Wert-<br />

schöpfungsnetzwerke, die verschiedene<br />

Basistechnologien nutzen.<br />

Aufgrund des vielfältigen Spektrums an<br />

Funktionalitäten und Anwendungen ist<br />

die Mikrosystemtechnik eine Zukunftsbranche<br />

Thüringens, mit Ausstrahlung<br />

auf fast alle Bereiche der Wirtschaft.<br />

Dies hat auch zur Folge, dass sie als<br />

eine Kerntechnologie in zahlreiche neue<br />

Anwendungen gelangen kann und wird.<br />

Um die hiermit verbundenen Chancen<br />

nutzen zu können, ist es notwendig,<br />

technologische Grundlagen zu sichern<br />

und stetig weiter zu entwickeln. Im<br />

inhaltlichen Kern besteht ein Hauptanliegen<br />

des MTT e.V. deshalb darin, eine<br />

breite Interessenvertretung für die Mikrosystemtechnik<br />

in Thüringen zu etablieren.<br />

Zukünftig wird der Verein seine<br />

Aktivitäten ausweiten, indem er sich zum<br />

Beispiel stärker auf die nationale und<br />

internationale Präsentation von Thüringer<br />

Technologie-Unternehmen fokussiert.<br />

Regelmäßig durchzuführende applikative<br />

und kundenbezogene Workshops sollen<br />

dazu beitragen, weitere Partner aus dem<br />

industriellen Umfeld zu gewinnen.<br />

Darüber hinaus werden Empfehlungen<br />

für die Thüringer<br />

Wirtschafts- und<br />

Technologiepolitik<br />

erarbeitet.<br />

65


Associations and Networks<br />

Micro-Hybrid Electronic GmbH<br />

Magnetic fi eld sensors are becoming<br />

ever more important in numerous<br />

technological areas. The CMR effect<br />

(colossal magneto resistance) is a large<br />

change in electric resistance in a magnetic<br />

fi eld, occurring in certain ceramic<br />

materials with a Perowskit structure. In<br />

the new Ilmenau branch of Micro-Hybrid<br />

Electronic GmbH, one such development<br />

projects is ongoing. The local<br />

scientifi c environment offers excellent<br />

conditions for the development of new<br />

Magnetfeldsensoren erlangen in zahlreichen<br />

technischen Bereichen eine<br />

wachsende Bedeutung. Beim CMR-Effekt<br />

(engl. collossal magneto resistance<br />

effect) handelt es sich um eine starke<br />

Änderung des elektrischen Widerstandes<br />

im Magnetfeld, die bei bestimmten<br />

keramischen Materialien mit Perowskit-<br />

Struktur auftritt.<br />

In der neu eröffneten Niederlassung der<br />

Micro-Hybrid Electronic GmbH in Ilmenau<br />

wird zu diesem Thema ein aktuelles<br />

Entwicklungsprojekt bearbeitet. Aufgrund<br />

Modellentwurf<br />

eines kontaktlosen<br />

Drehwinkelgebers mit<br />

magnetoresistiver,<br />

keramischer Schicht<br />

66<br />

sensor elements with a short time to<br />

market. Renowned partners, like, e.g.,<br />

the HITK (Hermsdorfer Institut for Technical<br />

Ceramics e.V.), participate in this<br />

project. Materials based on nano-technology<br />

are being developed and already<br />

available for applications with operating<br />

temperatures of up to 150 °C.<br />

The advantage of the CMR-active<br />

materials used is the ability to manufacture<br />

them as a paste: Via a screen<br />

des wissenschaftlichen Umfeldes sind<br />

sehr gute Bedingungen vorhanden, um<br />

innerhalb kurzer Zeit vermarktungsfähige<br />

Sensorelemente zu entwickeln. Namhafte<br />

Partner, wie das HITK (Hermsdorfer<br />

Institut für Technische Keramik e.V.) sind<br />

am Projekt beteiligt. Für Applikationen<br />

mit Dauerbetriebstemperaturen bis<br />

150°C wurden Materialien auf nanotechnologischer<br />

Basis entwickelt und sind<br />

verfügbar.<br />

Der Vorteil bei den zum Einsatz kommenden<br />

CMR-aktiven Materialien<br />

printing process they can be put on<br />

ceramic substrates. This way, any layout<br />

optimized for any specifi c measurement<br />

task can be printed and low-cost sensor<br />

elements can be manufactured.<br />

The possible application areas for CMR<br />

sensors are in measurement of position,<br />

distance, angle and revolutions per minutes.<br />

Application markets are measurement<br />

and automation technology as well<br />

as building monitoring.<br />

Micro-Hybrid Electronic GmbH<br />

besteht in ihrer Herstellbarkeit als<br />

Pasten: Es ist möglich, sie mithilfe des<br />

Siebdruckverfahrens als Dickschicht auf<br />

Keramiksubstrate aufzubringen. Damit<br />

können beliebige, der jeweiligen Messaufgabe<br />

angepasste Layouts gedruckt<br />

und darüber hinaus sehr preiswerte<br />

Sensorelemente gefertigt werden.<br />

Die potentiellen Anwendungsfelder von<br />

CMR-Sensoren liegen in der Erfassung<br />

von Position, Weg, Winkel und Drehzahl.<br />

Zielmärkte sind zum Beispiel die Mess-<br />

und Automatisierungstechnik sowie die<br />

Gebäudeüberwachung.<br />

Micro-Hybrid Electronic GmbH<br />

Heinrich-Hertz-Straße 8<br />

D – 07629 Hermsdorf<br />

Phone +49(0)36601-592-100<br />

Fax +49(0)36601-592-110<br />

Mail contact@micro-hybrid.de<br />

Web www.micro-hybrid.de


Ceramic LTCC Foils<br />

Because of their reliability under extreme<br />

environmental conditions, ceramic multilayer<br />

components (Low Temperature<br />

Co-fi red Ceramics, or LTCC) are of interest<br />

for innovative packaging concepts<br />

in microsystems technology and hybrid<br />

microelectronics. Among those are,<br />

e.g., intelligent sensors, micro reactors,<br />

miniaturized fl uidic systems as well as<br />

ceramic wiring boards.<br />

For these applications, functional LTCC<br />

foils with special application specifi c<br />

Keramische Multilayer-Bauelemente<br />

(Low Temperature Cofi red Ceramics<br />

oder LTCC) sind auf Grund ihrer Zuverlässigkeit<br />

unter extremen Umgebungsbedingungen<br />

für innovative Packaging-<br />

Konzepte in der Mikrosystemtechnik und<br />

der Hybridmikroelektronik von Interesse.<br />

Beispielgebend seien intelligente Sensoren,<br />

Mikroreaktoren, miniaturisierte<br />

fl uidische Systeme sowie keramische<br />

Schaltungsträger genannt. Für diese<br />

properties are being developed at the<br />

Hermsdorfer Institute for Technical Ceramics<br />

e. V.<br />

Among those are ferritic and dielectric<br />

LTCC foils for integration of passive<br />

components in power electronics<br />

modules, as well as bondable LTCC<br />

foils, adapted in their thermal expansion<br />

coeffi cient to silicon and usable as a<br />

crossover between the LTCC multilayer<br />

technology and the CMOS technology.<br />

Associations and Networks<br />

Funktionskeramische LTCC-Folien<br />

Applikationen werden im Hermsdorfer<br />

Institut für Technische Keramik e. V.<br />

funktionale LTCC-Folien mit besonderen<br />

anwendungsspezifi schen Eigenschaften<br />

entwickelt. Dazu zählen ferritische<br />

und dielektrische LTCC-Folien für die<br />

Integration von passiven Bauelementen<br />

in leistungselektronische Module, sowie<br />

eine bondbare LTCC-Folie, die in ihrem<br />

thermischen Ausdehnungskoeffi zienten<br />

an Silizium angepasst ist und als Bin-<br />

LTCC glas ceramics,<br />

bonded on a Si wafer<br />

LTCC-Glaskeramik, gebondet<br />

auf einen Si-Wafer<br />

Miniaturized coil on a ferritic LTCC foil<br />

Miniaturisierte Ringkernspule<br />

auf einer ferritischen LTCC-Folie<br />

The low sintered NiCuZn-Ferrit- or HDK<br />

foils developed as LTCC components at<br />

the HITK for the integration of inductors<br />

and capacitors are known for their high<br />

permeability and dielectric parameters<br />

with matched X7R temperature characteristics.<br />

deglied zwischen der LTCC-Multilayer-<br />

Technologie und der CMOS-Technologie<br />

fungieren kann.<br />

Die im HITK für die Integration von Induktivitäten<br />

und Kapazitäten in LTCC-Bauelemente<br />

entwickelten niedrig sinternden<br />

NiCuZn-Ferrit- bzw. HDK-Folien zeichnen<br />

sich durch hohe Permeabilitäten<br />

und angepasste dielektrische Parameter<br />

mit X7R-Temperaturcharakteristik aus.<br />

Hermsdorfer Institut für Technische<br />

Keramik e. V.<br />

Michael-Faraday-Straße 1<br />

D – 07629 Hermsdorf<br />

Phone +49(0)36601-63902<br />

Fax +49(0)36601-63921<br />

Web www.hitk.de<br />

67


Associations and Networks<br />

Your Partner from the Idea up to the Product<br />

The Center for Microsystems Technology<br />

Berlin (ZEMI) is an association of<br />

research institutes which focuses on<br />

the regional research and development<br />

potential in microsystems technology. As<br />

a one-stop agency, ZEMI is the central<br />

contact for industry co-operation and<br />

particularly supports small and mediumsized<br />

companies via technology transfer.<br />

In order to minimize the high costs of<br />

developing microsystems technology<br />

products, ZEMI supports companies<br />

Source/Quelle: BAM V.4, FBH, BESSY, Fraunhofer, FBH/schurian.com<br />

Das Zentrum für Mikrosystemtechnik<br />

Berlin (ZEMI) ist ein Verbund Berliner Forschungseinrichtungen,<br />

der das regionale<br />

Forschungs- und Entwicklungspotenzial<br />

in der Mikrosystemtechnik (MST) vernetzt.<br />

Die Partner agieren dabei verstärkt<br />

in den Anwendungsfeldern Mess- und<br />

Gerätetechnik, Medizintechnik, Lebensmitteltechnologie<br />

und Biomikrosystemtechnik.<br />

Als Querschnittskompetenzen stehen<br />

umfassendes Material-Knowhow<br />

und fortschrittliche Systemintegrationstechnologien<br />

zur Verfügung.<br />

Im Bereich der Halbleiter mit großer<br />

Bandlücke baut das ZEMI derzeit seine<br />

Kompetenzen für Anwendungen in der<br />

Medizin- und Kommunikationstechnik<br />

aus. Als zentraler Ansprechpartner steht<br />

ZEMI für Industriekooperationen zur<br />

68<br />

from the initial idea right up to the market<br />

mature product.<br />

To achieve this, ZEMI concentrates on<br />

the best practice utilization of stateof-the-art<br />

production technologies for<br />

miniaturized components and systems.<br />

Functionality, production costs and marketability<br />

of the products are the main<br />

focus of attention.<br />

The competencies of ZEMI cover the<br />

entire scope of the value-added chain<br />

Verfügung und unterstützt insbesondere<br />

kleine und mittelständische Unternehmen<br />

durch Technologietransfer.<br />

– from the design and development of<br />

production processes, the production<br />

of prototypes and the realization of small<br />

series up to testing of microsystems.<br />

In addition to competent and extensive<br />

project management, ZEMI also<br />

provides requirement-oriented educational<br />

programs and training, advice<br />

for industry partners and support for<br />

companies in regard to continuing and<br />

further training.<br />

Trainees of the Ferdinand-Braun-Institut für Höchstfrequenztechnik at the clean room.<br />

Auszubildende des Ferdinand-Braun-Instituts für Höchstfrequenztechnik im Reinraum. Source/Quelle: Wiedl<br />

Um den hohen Aufwand bei der<br />

Entwicklung mikrosystemtechnischer<br />

Produkte zu minimieren, begleitet ZEMI


Partner im ZEMI und deren Mikrosystemtechnik-Kompetenzen:<br />

Bundesanstalt für Materialforschung und<br />

-prüfung (BAM)<br />

Fachgruppe Hochleistungskeramik<br />

Fachgruppe Oberfl ächentechnologien<br />

Berliner Elektronenspeicherring-Gesellschaft für<br />

Synchrotronstrahlung m.b.H. (BESSY)<br />

Ferdinand-Braun-Institut für Höchstfrequenztechnik<br />

(FBH)<br />

Fraunhofer-Institut für Produktionsanlagen und<br />

Konstruktionstechnik (IPK) in Kooperation mit<br />

der TU Berlin – Institut für Werkzeugmaschinen<br />

und Fabrikbetrieb (IWF)<br />

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration<br />

(IZM) und Forschungsschwerpunkt<br />

Technologien der Mikroperipherik der TU Berlin<br />

(FSP-TMP)<br />

TU Berlin – Institut für Konstruktion, Mikro- und<br />

Medizintechnik (IKMM)<br />

Unternehmen von der Idee bis zum<br />

marktreifen Produkt. Dabei zielt das<br />

Kompetenznetz auf die praxisgerechte<br />

Nutzung modernster Techniken zur Herstellung<br />

miniaturisierter Bauteile und Systeme.<br />

Funktionalität, Fertigungskosten<br />

und Marktfähigkeit der Produkte stehen<br />

im Vordergrund. „Die Entwicklungskompetenz<br />

der Forschungseinrichtungen<br />

verbunden mit dem Know-how innovativer<br />

Unternehmen schafft marktfähige<br />

Systemlösungen.“, erklärt Dr. Klaus-Dieter<br />

Lang, Sprecher des ZEMI-Direktoriums<br />

und Stellvertreter des Institutsleiters<br />

am Fraunhofer IZM.<br />

Die Kompetenzen des ZEMI decken<br />

die gesamte Wertschöpfungskette ab<br />

– vom Entwurf über die Entwicklung von<br />

Herstellungsprozessen, die Fertigung<br />

von Prototypen und Kleinserien bis zum<br />

Test der fertigen Mikrosysteme.<br />

Neben einem kompetenten und umfassenden<br />

Projektmanagement stellt ZEMI<br />

auch bedarfsgerechte Bildungsangebote<br />

bereit, schult und berät Industriepartner<br />

und unterstützt Unternehmen in der Aus-<br />

und Weiterbildung.<br />

Unter Federführung von ZEMI arbeitet<br />

das Netzwerk MANO (Mikrosystemtechnik-Ausbildung<br />

in Nord-Ostdeutschland)<br />

auf allen Bildungsebenen – von der<br />

vorberufl ichen Bildung, gewerblichen<br />

Erstausbildung, Hochschulausbildung<br />

bis zur Fort- und Weiterbildung in der<br />

MST um einen effi zienten Beitrag für die<br />

Fachkräfte- und Nachwuchssicherung<br />

in der Mikrosystemtechnik zu leisten.<br />

Bei Fragen zu Ausbildungsmöglichkeiten<br />

im sich rasant entwickelnden<br />

Hochtechnologie-Bereich bietet das von<br />

ZEMI koordinierte Ausbildungsnetzwerk<br />

Associations and Networks<br />

MST-Forschungskompetenz –<br />

anwendungsorientiert gebündelt<br />

➫ Hochleistungskeramik und Multilayertechnik für Mikrosysteme<br />

➫ Prozess- und Prüftechnik für Hochleistungskeramik<br />

➫ komplexe Prüfung von Sensoren<br />

➫ Oberfl ächen- und Schichttechnik<br />

➫ mechanische Mikrokomponenten mit dem Direkt-LIGA-Verfahren<br />

➫ Röntgenmasken, Resistentwicklung und Optimierung<br />

➫ Herstellung von Biochips<br />

➫ mikrooptische Komponenten und hochpräzise Formwerkzeuge<br />

➫ Hochfrequenz-Bauelemente und Schaltungen auf Basis von III/V-Verbindungshalbleitern<br />

➫ hochbrillante Diodenlaser mit hoher Leistung und Zuverlässigkeit<br />

➫ Untersuchungen an neuen Materialsystemen<br />

➫ Mikrosysteme aus hybriden Diodenlasern und mikrooptischen Bauelementen<br />

➫ innovative Prozesse für die Herstellung von Mikrokomponenten und -strukturen<br />

➫ Schwerpunktthemen: Fertigungstechnologien, Werkzeugentwicklung, Maschinenoptimierung,<br />

Messtechnik / Prozesskontrolle sowie Produktionsorganisation<br />

➫ Methoden, Prozesse und Technologien aus dem Bereich der Systemintegration und der Aufbau-<br />

und Verbindungstechnik von mikroelektronischen und mikrosystemtechnischen Bauteilen<br />

und Gesamtsystemen<br />

➫ Schwerpunktthemen: Waferlevel-, Chip- und Board-Prozesse, die 3D-Integration und Verkapselungstechniken<br />

sowie Zuverlässigkeit- und Lebensdaueruntersuchungen<br />

➫ komplette Präzisionssysteme für die industrielle Applikation mit umfassendem Know-how in der<br />

Mikrotechnik, Elektromechanik, Mikroelektronik und der optischen Systemtechnik<br />

Hochtechnologie Berlin (ANH Berlin)<br />

seine Unterstützung an. Um dem schon<br />

jetzt spürbaren Mangel an Fachkräften in<br />

der Mikrosystemtechnik, den Optischen<br />

Technologien und der Nanotechnologie<br />

entgegenzuwirken, wird ein breites und<br />

praxisorientiertes Spektrum an Dienstleistungen<br />

für die betriebliche Ausbildung<br />

geboten.<br />

Zentrum für Mikrosystemtechnik Berlin<br />

(ZEMI)<br />

Doreen Friedrich<br />

Max-Planck-Straße 5<br />

D – 12489 Berlin<br />

Phone +49(0)30-6392-3391<br />

Fax +49(0)30-6392-3392<br />

Mail zemi@zemi-berlin.de<br />

Web www.zemi-berlin.de<br />

69


We‘re growing in micro.<br />

With great success. Around 40 enterprises with 2,100 specialists in micro-and nanotechnology<br />

have already joined us – a rising trend. Thanks to the second construction<br />

phase of our MST.factory dortmund Centre of Excellence, we have ample space to<br />

accommodate additional pioneers within this field. What is more, our MST-Cluster<br />

- a highly effective network linking commerce and science - offers companies the<br />

best possible business environment.<br />

big in micro. The new Dortmund.<br />

www.hightechguide-dortmund.com<br />

www.microtech-dortmund.com


Current Results<br />

and Portfolios<br />

of Research Institutions<br />

Aktuelle<br />

Ergebnisse und Leistungen<br />

aus Forschungseinrichtungen


Current Results and Portfolios of Research Institutions<br />

Micro Engineering at Fraunhofer IFAM, Bremen<br />

Increased functionality of metal micro parts by micro injection molding<br />

Fig. 1: Replication of the smallest bone in the human body made by highgrade<br />

steel and titanium (cooperation with Krämer Engineering)<br />

Fraunhofer IFAM is manufacturing<br />

since many years micro components<br />

and parts with microstructured surfaces<br />

out of fi ne metal powders. The<br />

used technology is called Micro Metal<br />

Injection Molding (Micro MIM). Nearly<br />

all kind of metals and alloys can be<br />

processed with Micro MIM. Single<br />

injected parts with dimensions of 300<br />

μm and microstructured surfaces with<br />

details in the range of 20 μm could be<br />

achieved so far. Important application<br />

areas are medical technology, automobile<br />

and consumer goods. Applications<br />

are where you need small parts with<br />

more than structural properties in high<br />

quantities, e.g. where magnetic, bioactive,<br />

conducting or resistance properties<br />

play a role. Regarding the trend to<br />

smaller components and devices Micro<br />

Engineering offers a cost-effective series<br />

production for the necessary parts.<br />

Functionality of parts can be increased<br />

on the one hand by structural properties<br />

such as micro channels for fl uidic<br />

applications and bio diagnostics. Micro<br />

72<br />

reactors and micro mixers with channel<br />

sizes of 20 μm to 250 μm have been<br />

manufactured. Due to the microstructures<br />

and the addition of suitable particles<br />

a specifi c and adjusted bonding of<br />

biomolecules becomes possible. On the<br />

other hand special material properties<br />

contribute to further functionalisation.<br />

The replication of the smallest human<br />

bone (see Fig. 1) shows how a medical<br />

implant out of Titanium can be manufactured<br />

cost-effective in series. Micro parts<br />

out of shape memory alloy can act as<br />

sensors or actuators. Targeted material<br />

selection and process control allow<br />

also the production of parts consisting<br />

out of different metallic materials without<br />

additional joining techniques. Here, the<br />

combination of a magnetic with a non<br />

magnetic stainless steel is mentioned<br />

as an example (see Fig. 2). Based on<br />

this development sensors to control<br />

position or to detect rotation can be<br />

produced within one shaping step and<br />

need no further bonding technology.<br />

New material developments include<br />

Fig. 2: Micro tensile sample consisting of a magnetic and non-magnetic portion<br />

manufactured by two-component μ-MIM<br />

pseudo alloys like tungsten-copper and<br />

molybdenum-copper for heat management<br />

applications. With the help of nano<br />

powders tailored optical properties or<br />

enhanced resistance as well as tightness<br />

is adjusted.<br />

Based on fi ne metal powders down to<br />

nano particles tiny metallic components<br />

can be produced in series and additional<br />

functionality can be implemented<br />

into small parts. Fraunhofer IFAM offers<br />

client oriented R&D in the area of Micro<br />

Engineering.<br />

Fraunhofer Institut für Fertigungstechnik<br />

und Angewandte Materialforschung IFAM<br />

Dr. Natalie Salk<br />

Wiener Straße 12<br />

D – 28359 Bremen<br />

Phone +49(0)421-2246-175<br />

Mail salk@ifam.fraunhofer.de<br />

Web www.ifam.fraunhofer.de


Current Results and Portfolios of Research Institutions<br />

Printing of Inks and Adhesives in Microsystems Technology<br />

Fig. 1: Printed antenna of conductive adhesive fi lled with 70 weight%<br />

silver showing the capability of the system print head – adhesive.<br />

In Microsystems Technology ideally passive<br />

and active, electronic and sensor<br />

elements interact in an “intelligent” way.<br />

Today “intelligent” parts are required in<br />

all key industries, but their fabrication is<br />

restricted by demanding, infl exible, and<br />

expensive processes<br />

like lithography or conventional<br />

packaging.<br />

A novel concept for<br />

new functionalities and<br />

simplifying packaging<br />

is Functional Printing,<br />

i.e. the employment<br />

of digital, maskless,<br />

non-contact printing<br />

Fig. 2:<br />

With ink-jet or aerosol printing,<br />

patterns down to 10 μm<br />

or fi lms thinner than 1 μm<br />

are possible onto rigid or<br />

fl exible substrates. Printing<br />

of conducts – replacing wire<br />

bonding – across embedded<br />

components is feasible,<br />

as well as antennae or strain<br />

gauges directly onto parts.<br />

techniques for structuring<br />

of functional materials to<br />

create conductive tracks,<br />

sensing layers and devices<br />

or adhesive bonds.<br />

Functionality is typically<br />

accomplished by treating<br />

the deposited structure by<br />

laser, UV radiation or in a<br />

furnace. Essential advantages<br />

of these printing technologies<br />

are high fl exibility<br />

and integration potential into<br />

existing process chains,<br />

short changeover times and<br />

low cost.<br />

For Functional Printing Fraunhofer IFAM<br />

uses commercial materials and formulates<br />

new printable functional liquids.<br />

Extremely different materials like acidic<br />

inks, viscous adhesives, particle-fi lled<br />

dispersions or biological fl uids can be<br />

tailored for printing. The functional materials,<br />

the substrates, the printing and – if<br />

applicable – the curing processes have<br />

to be adjusted to each other for full functionality<br />

and regarding to the industrial<br />

production environment. We are offering<br />

materials research and development for<br />

new applications by Functional Printing<br />

as well as market related analyses and<br />

feasibility studies.<br />

In many instances, adhesive bonding<br />

is the only feasible technology for fi xing<br />

or mounting micro-objects due to the<br />

great variety of highly specialised materials.<br />

With dispensing technologies the<br />

precise application of minute volumes<br />

of viscous, particle fi lled, dielectric or<br />

conductive adhesive can be achieved<br />

in compatibility with the micro-assembly<br />

process using novel robotic systems.<br />

Fraunhofer IFAM – as the largest independent<br />

group in Europe working on<br />

adhesive bonding technology – offers,<br />

besides the selection and development<br />

of adhesives, the adaptation of special<br />

curing (e.g. rapid cure, two-stage cure)<br />

and quality assurance, i.e. micro-testing<br />

of the joint.<br />

Fraunhofer Institut für Fertigungstechnik<br />

und Angewandte Materialforschung IFAM<br />

Dr. Volker Zöllmer<br />

Wiener Straße 12<br />

D – 28359 Bremen<br />

Phone +49(0)421-2246-114<br />

Mail zoellmer@ifam.fraunhofer.de<br />

Web www.ifam.fraunhofer.de<br />

73


Current Results and Portfolios of Research Institutions<br />

New Generation of Capacitive Inertial Sensors<br />

with High Temperature Stability<br />

Introduction<br />

Inertial sensors are ubiquitous devices<br />

of our life. We fi nd them inside mobile<br />

phones, notebooks, cars and others.<br />

They are used for “freefall” detection,<br />

vibration control, tilt sensing for antitheft,<br />

shock monitoring, airbag release and<br />

dead reckoning. An ever-increasing<br />

range of new applications calls for sensor<br />

systems offering best performance<br />

at low prices. Essential issues for these<br />

devices are: fabrication effort including<br />

yield, signal to area ratio, calibration<br />

effort, signal to noise ratio and temperature<br />

drift. The ZfM of the Chemnitz University<br />

of Technology and the Chemnitz<br />

branch of FHG-IZM have developed a<br />

new generation of inertial sensors fabricated<br />

by the patented AIM-Technology<br />

(Airgap Insulation of Microstructures).<br />

The sensor function in this case is<br />

based on detecting the displacement of<br />

a proof mass by capacitance change.<br />

Fig. 2: SEM picture of the AIM7E low g sensor having a structure height of<br />

50 μm (fi xed electrodes are removed).<br />

74<br />

Fig. Fi 11: Process P fl ow of f AIM ttechnology, h l showing h i th<br />

the<br />

anchor area<br />

Technology Aspects<br />

Most of the requirements mentioned<br />

above can be met by using silicon<br />

technologies with high aspect ratio of<br />

structures (HARM = High Aspect Ratio<br />

Micromachining). Thus using the third<br />

dimension strictly, a large signal to area<br />

ratio can be obtained. Additionally, these<br />

structures offer overdamping as desired<br />

for applications with reduced bandwidth.<br />

Among other HARM technologies, like<br />

certain SOI procedures, the use of thick<br />

epitaxial fi lms or SCREAM (Single Crystal<br />

Reactive Etching and Metallization), the<br />

AIM technology has additional benefi ts:<br />

its relative simple process fl ow and<br />

the minimisation of mechanical stress<br />

caused by thin fi lms or bonded wafers.<br />

Additionally, any particle induced residues<br />

after deep silicon etching (spikes<br />

with diameter not larger than 1.2 μm)<br />

are removed by a special lateral etching<br />

step which is integrated in the AIM pro-<br />

Fig. 3: SEM picture of the cross section of released beams with nearly 100 μm<br />

height


cess fl ow. This means that a yield better<br />

than 90% can be achieved even in a<br />

cleanroom of class 3 or 4 (according to<br />

VDI 2083).<br />

The basic process fl ow is shown in<br />

Fig. 1. After the last patterning process<br />

(step 3), the anchor is electrically<br />

isolated and holds the fl exure as well as<br />

the seismic mass including its electrode<br />

plates. The real sensor structure itself<br />

(fi xed electrodes removed) of the tilt sensor<br />

AIM7E is shown in Fig. 2. The four<br />

anchor structures (at the edges) as well<br />

as the fl exures and the perforated mass<br />

area can be seen. The whole structure<br />

consists of silicon completely. About<br />

95% of the processes can be carried<br />

out within a standard CMOS process.<br />

The only exception is the silicon etching<br />

module at the end of the processing.<br />

Nevertheless it has been demonstrated<br />

that the DRIE etching system can be<br />

used for the polymer spacer based release<br />

etch process as well as the lateral<br />

etching.<br />

Thus any wet etching step or even<br />

HF vapour etching is not required and<br />

technology caused sticking can be<br />

excluded. Depending on the application<br />

and the device specifi cation, the height<br />

of the released structures can be even<br />

more than 50 μm. As shown in Fig. 3<br />

the released silicon beams as fabricated<br />

for test purposes are almost 100 μm<br />

high.<br />

Functional Test and Characterisation<br />

After complete fabrication including capping<br />

by wafer bonding the sensors are<br />

tested at wafer level. Beside an isolation<br />

test, every sensor is excited by a certain<br />

ac voltage at electrode 1. In case the<br />

seismic mass is vibrating the oscillation<br />

can be detected at the electrode 2 using<br />

the second harmonic of the excitation<br />

voltage. This procedure has been<br />

proven to be suffi cient for ensuring the<br />

functionality of every single sensor.<br />

In the following, selected properties of<br />

the AIM low g sensors will be presented.<br />

Fig. 4 shows the frequency response of<br />

the inclination sensor AIM5i. There is a<br />

good correlation obtained between the<br />

calculation (red line) and measurements<br />

for a given damping constant D (green<br />

fi tted line).<br />

As discussed at the beginning, the<br />

thermal behaviour of the AIM sensors<br />

was expected to be excellent due to the<br />

use of crystalline silicon only. Several<br />

sensor types have been characterised<br />

with respect to their sensitivity change<br />

and offset drift vs. temperature. Exemplarily<br />

the zero g offset drift of a dual<br />

axis sensor AIM7E is shown in Fig. 5.<br />

As indicated a coeffi cient as low as 30<br />

μg/K has been achieved. This is a value<br />

which can be reached by other technologies<br />

usually only after sensor calibra-<br />

Current Results and Portfolios of Research Institutions<br />

Fig. 4: Frequency response of<br />

the inclination sensor AIM5i<br />

Fig. 5: Output signal of<br />

a sensor-ASIC systems<br />

(AIM7E+ELMOS M777.04)<br />

versus temperature (-40°C …<br />

85°C) at 39% relative humidity.<br />

tion. Similarly the sensitivity change with<br />

respect to the temperature has been<br />

measured for several AIM sensor types.<br />

Typically, the coeffi cients vary from 0 to<br />

0.025 %/K indicating a decrease of the<br />

spring stiffness with increased temperature<br />

as expected.<br />

Another critical parameter is the noise<br />

density. Calculating the mechanical<br />

noise only, a density of about 5 μg/Hz 1/2<br />

is obtained for the dual axis sensor<br />

AIM5i. Using the system combining the<br />

same sensor and an analogue ASIC<br />

(GEMAC CVC1.0) a total noise density<br />

below 20 μg/Hz 1/2 could be measured. It<br />

is expected that this gap can be further<br />

TU Chemnitz<br />

Zentrum für Mikrotechnologien<br />

D – 09107 Chemnitz<br />

Phone +49(0)371-531-24060<br />

Fax +49(0)371-531-24069<br />

Mail info@zfm.tu-chemnitz.de<br />

Web http://www.zfm.tu-chemnitz.de/<br />

75


Current Results and Portfolios of Research Institutions<br />

Microsystems and Nanotechnologies for the Manipulation and<br />

Analysis of Molecules, Cells, Tissues, and Interfaces<br />

Microsystems technology is a key technology<br />

with a high potential for value creation<br />

in the life sciences area. The NMI Natural<br />

and Medical Sciences Institute develops<br />

and manufactures microsystems using<br />

biostable and biocompatible materials for<br />

its clients in the pharmaceutical research,<br />

biotechnology and biomedical engineering<br />

markets.<br />

Electrophysiological sensor arrays<br />

A core technology of the NMI involves<br />

processes for the fabrication of microelectrode<br />

arrays (MEAs). These are<br />

substrates with surface-embedded<br />

electrodes for the gentle stimulation and<br />

low-noise recording of the electrophysiological<br />

activity of neuronal and cardiac cell<br />

and tissue cultures.<br />

Based on many years of experience,<br />

MEAs on glass and polymer substrates<br />

in application-specifi c designs are generated<br />

in many cases in combination with<br />

microfl uidic components. Enhanced<br />

functionality and new applications are<br />

achieved by combining various materials<br />

and methods.<br />

Micro- and nanoelectrodes for micromedicine<br />

The further development of MEA technology<br />

in turn leads to new micromedical applications.<br />

A current example is a retinal implant<br />

that enables blind people to navigate in<br />

an unknown environment by way of the<br />

electrical stimulation of retinal cells via an<br />

implanted light-sensitive chip.<br />

Nanolithographical methods enable the fabrication<br />

of nanoscale electrodes for highly<br />

sensitive electrochemical sensors integrated<br />

into lab-on-a-chip systems for medical<br />

diagnostics purposes.<br />

76<br />

MEA_1<br />

1 cm<br />

MEA_2<br />

500 μm<br />

MEA_3<br />

10 μm<br />

MEA_4<br />

0,5 μm<br />

MEA_1:<br />

Microelectrode array (MEA) for<br />

electrical stimulation and recording<br />

of electrical activity of living tissues.<br />

The amplifi er contact pads to the 60<br />

electrodes in the center of the chamber<br />

are aligned along the chip sides.<br />

Mikroelektroden Array (MEA) zur<br />

Elektrostimulation und Aufzeichnung<br />

elektrischer Signale in einem Gewebe.<br />

Außen Kontaktpads zu den 60 Elektroden,<br />

die im Zentrum der Messkammer<br />

liegen.<br />

MEA_2:<br />

Brain slice (hippocampus) on a microelectrode<br />

array (MEA). The electrical<br />

activity can be recorded from 60<br />

electrodes simultaneously, thus allowing<br />

the spatial and temporal analysis of the<br />

signal propagation within the brain slice.<br />

Darstellung eines Hirnschnittes (Hippocampus)<br />

auf einem Mikroelektroden<br />

Array (MEA). Die elektrische Aktivität<br />

kann mit 60 Elektroden gleichzeitig<br />

beobachtet werden, um die räumliche<br />

und zeitliche Signalausbreitung im<br />

Gehirnpräparat zu untersuchen.<br />

MEA_3:<br />

A single titanium nitride electrode. The<br />

highly sensitive and long-term stable<br />

electrodes are manufactured at the<br />

NMI.<br />

Einzelelektrode aus Titannitrid. In einem<br />

speziell entwickelten Prozess werden<br />

langzeitstabile und hochempfi ndliche<br />

Elektroden hergestellt.<br />

MEA_4:<br />

The nanostructure of the pin-like<br />

titanium nitride provides a large surface,<br />

a prerequisite for the electrodes’<br />

outstanding characteristics.<br />

Die Nanostruktur des stengelförmigen<br />

Titannitrids schafft eine große innere<br />

Oberfl äche, die Voraussetzung für<br />

die überragenden Eigenschaften der<br />

Elektroden ist.


Current Results and Portfolios of Research Institutions<br />

Mikrosysteme und Nanotechniken zur Manipulation und Analyse<br />

von Molekülen, Zellen, Geweben und Grenzflächen<br />

Titanium nitride<br />

electrode<br />

50 x 50 μm.<br />

Titannitrid<br />

Elektrode<br />

50 x 50 μm<br />

Stimulation pixel.<br />

Stimulationspixel<br />

Die Mikrosystemtechnik ist für die<br />

Lebenswissenschaften eine Schlüsseltechnologie<br />

mit hohem Wertschöpfungspotential.<br />

Das NMI Naturwissenschaftliche<br />

und Medizinische Institut entwickelt<br />

und fertigt für Kunden aus der Pharmaforschung,<br />

Biotechnologie und Biomedizintechnik<br />

Mikrosysteme aus Materialien,<br />

die biostabil und biokompatibel sind.<br />

Elektrophysiologische Sensorarrays<br />

Eine Kerntechnologie des NMI sind<br />

Prozesse zur Fertigung von Mikroelektrodenarrays<br />

(MEAs). Dies sind Substrate<br />

mit in die Oberfl äche eingebetteten<br />

Elektroden zur schonenden Stimulation<br />

und rauscharmen Messung elektrophysiologischer<br />

Aktivität in Zell- und Gewebekulturen<br />

des Nervensystems und von<br />

Herzmuskelzellen. Auf der Basis lang-<br />

jähriger Erfahrung entstehen MEAs auf<br />

Glas- und Polymersubstraten in anwendungsspezifi<br />

schen Ausführungsformen,<br />

vermehrt in Verbindung mit mikrofl uidischen<br />

Komponenten. Neue Funktionalitäten<br />

und Anwendungen werden<br />

durch die Kombination unterschiedlicher<br />

Materialien und Verfahren erreicht.<br />

Mikro-und Nanoelektroden für die Mikromedizin<br />

Weiterentwicklungen der MEA Technik<br />

führen zu neuen Anwendungen in der<br />

Mikromedizin. Aktuellstes Beispiel sind<br />

lichtempfi ndliche Implantate, die Blinden<br />

durch die elektrische Stimulation von<br />

Netzhautzellen eine zur Orientierung in<br />

unbekannter Umgebung ausreichende<br />

Sehfähigkeit ermöglichen. Nanolithographische<br />

Methoden ermöglichen die<br />

Functional diagram of the subretinal implant. Visual information is projected by the<br />

cornea and lens of the eye to a light-sensitive chip which replaces degenerated<br />

photoreceptors. Depending on the local contrast of the image, the retina is electrically<br />

stimulated by the electrodes. This results in spatially resolved activation of the<br />

retinal nerve cells, which is perceived by blind people as a phosphene pattern.<br />

(For more information visit www.retina-implant.de)<br />

Funktionsschema des subretinalen Implantates. Die Bildinformationen werden wie<br />

beim normalen Sehen über den optischen Apparat des Auges auf einen lichtempfi<br />

ndlichen Chip übertragen, der anstelle der degenerierten Sehzellen in die Netzhaut<br />

implantiert ist. Je nach lokalem Kontrast wird die anliegende Netzhaut über die<br />

einzelnen Stimulationselektroden verschieden stark elektrisch gereizt. Dies führt zur<br />

ortsabhängigen Netzhaut-Aktivierung, was als fl ächiges Lichtmuster wahrgenommen<br />

wird. (Weitere Info unter www.retina-implant.de)<br />

Herstellung nanostrukturierter Elektroden<br />

für hochsensitive elektrochemische Sensoren<br />

in Lab-on-a-Chip Systemen für die<br />

medizinische Diagnostik.<br />

NMI Naturwissenschaftliches<br />

und Medizinisches Institut<br />

an der Universität Tübingen<br />

NMI Natural and Medical Sciences<br />

Institute at the University<br />

of Tuebingen<br />

Dr. Alfred Stett<br />

Markwiesenstr. 55<br />

D – 72770 Reutlingen<br />

Phone +49(0)7121-51530-0<br />

Email stett@nmi.de<br />

Web www.nmi.de<br />

Retina<br />

implant.<br />

Retina<br />

Implantat<br />

77


Current Results and Portfolios of Research Institutions<br />

Sensors and Microsystems<br />

from the Institute of Photonic Technology, Jena<br />

The Institute of Photonic Technology<br />

(IPHT) has a long-standing experience<br />

in the fi eld of microsystems technology,<br />

especially in the development of<br />

sensors and chip devices by means of<br />

thin-fi lm deposition and micropatterning<br />

processes as well as in the research on<br />

optical fi bers and optical fi ber microsystems.<br />

Due to its well-skilled staff and its<br />

modern equipment IPHT is meanwhile<br />

well-known as one of the world-wide<br />

leading research facilities on sensorics<br />

and microsystems.<br />

The research activities of IPHT in microsystems<br />

technology cover a wide<br />

scope:<br />

✦ micromachined sensors and sensor<br />

arrays on thin-fi lm fl oating membranes<br />

(bolometers, thermopiles) for<br />

ultrasensitive IR and THz radiation<br />

detection<br />

✦ micromechanical components for<br />

digital switching of light and for coherent<br />

multispot light sources<br />

for compact high-performance<br />

spectrometers and imaging<br />

systems<br />

✦ chip-based assays with micropatterned<br />

spots and detection structures<br />

for bioanalytical applications in<br />

life science and health care with the<br />

focus on point-of-care diagnostics<br />

✦ microfl uidic chip elements for highthroughput<br />

liquid handling in the<br />

micro/nano litre scale and complete<br />

microanalytical devices as, e.g.,<br />

real-time PCR (polymerase chain<br />

reaction) reactors and LabOnChip<br />

systems with optical read out<br />

✦ planar thin-fi lm metallic nanostructures<br />

and molecular well-defi ned<br />

78<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

arrangements of metal nanoparticles<br />

for the use of plasmonic effects in<br />

spectraloptical analysis and diagnostics<br />

by SERS (Surface-Enhanced<br />

Raman Spectroscopy), TERS (Tip-<br />

Enhanced Raman Spectroscopy),<br />

chip analytics and for fi beroptical<br />

chemo- and biosensors<br />

optical speciality fi bers (including<br />

microstructured and photonic crystal<br />

fi bers) using MCVD technology and<br />

planar optical waveguides using<br />

fl ame hydrolysis technology<br />

active laser fi bers and fi ber lasers for<br />

high power output<br />

fi ber-Bragg-gratings and fi ber- Bragggrating<br />

arrays for sensor applications<br />

and information technology<br />

nanofi bers, nanotapers and nanoprobes<br />

in silica and nanowires in<br />

silicon<br />

optical fi ber sensor systems (single<br />

sensors and distributed/array<br />

sensors) using spectral encoding<br />

techniques for sensor applications in<br />

energy, process control, traffi c systems,<br />

environment or life sciences<br />

Production of<br />

microstructured optical<br />

fi bers is one of the<br />

core competences of<br />

the institute.<br />

Die Herstellung mikrostrukturierter<br />

optischer<br />

Fasern gehört zu den<br />

Kernkompetenzen des<br />

Instituts<br />

✦ sensors for the extremely sensitivedetection<br />

of magnetic fi elds made by<br />

sophisticated thin-fi lm circuits with<br />

superconducting layers for SQUIDsystems<br />

(SQUID: Superconducting<br />

Quantum Interference Device) and<br />

with magnetoresistive multilayer<br />

systems.<br />

Essential basis of these developments is<br />

the stock of technological processes for<br />

preparation and manufacturing at IPHT<br />

which can be divided into two branches:<br />

First, there is a complete line for thin-fi lm<br />

deposition and micro- and nanopatterning<br />

as well as for mounting and assembling.<br />

Second, all preparation steps for manufacturing<br />

and analyzing optical speciality<br />

fi bers and fi ber modules are established.<br />

By this, IPHT with its scientifi c expertise<br />

and technological knowhow in microsystems<br />

offers innovative custom-oriented<br />

solutions for a broad spectrum of industrial<br />

and academic partners around the<br />

world according to its motto „From Ideas<br />

To Instruments“.


Das Institut für Photonische Technologien<br />

(IPHT) verfügt über langjährige<br />

Erfahrungen auf dem Gebiet der<br />

Mikrosystemtechnologie, sowohl in<br />

der Entwicklung von Sensoren und<br />

Chip-Bausteinen mit Hilfe der Abscheidung<br />

dünner Schichten und Mikrostrukturierungsprozessen<br />

als auch in<br />

der Erforschung optischer Fasern und<br />

Fasermikrosystemen. Wegen seiner<br />

hochkompetenten Mitarbeiter und<br />

seiner modernen Ausstattung ist das<br />

IPHT inzwischen als eines der weltweit<br />

führenden Forschungszentren auf dem<br />

Gebiet der Sensorik und Mikrosysteme<br />

bekannt.<br />

Ultrasensitive supraconducting bolometer<br />

array for passive Terahetz-Imaging<br />

Ultraempfi ndliches supraleitendes Bolometerarray<br />

für passive Terahertz-Bildgebung<br />

Die Forschungsaktivitäten des IPHT in<br />

der Mikrosystemtechnologie decken ein<br />

weites Feld ab:<br />

✦ mikrostrukturierte Sensoren and<br />

Sensorarrays auf freischwebenden<br />

Dünnschicht-Membranen (Bolometer,<br />

Thermopile) für ultrasensitive<br />

Detektion von IR and THz Strahlung<br />

✦ mikromechanische Komponenten<br />

für digitale Lichtschaltung und für<br />

kohärente Multispot-Lichtquellen für<br />

leistungsstarke kompakte Spektrometer<br />

und Imaging-Systeme<br />

✦ Chip-basierte Assays mit mikrostrukturierten<br />

Spots und Detektionsstrukturen<br />

für bioanalytischen Anwendungen<br />

in den Lebenswissenschaften<br />

und im Gesundheitswesen mit dem<br />

Schwerpunkt der point-of-care-Diagnostik<br />

✦ mikrofl uidische Chip-Elemente für die<br />

Hochdurchsatzanalyse von Flüssigkeiten<br />

im Mikro- und Nanoliterbereich<br />

sowie komplette mikroanalytische<br />

Bauteile z. B. für Reaktoren für<br />

Current Results and Portfolios of Research Institutions<br />

Sensoren und Mikrosysteme aus dem Institut<br />

für Photonische Technologien, Jena<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

die Real-Time-PCR (Polymerasekettenreaktion)<br />

und LabOnChip-<br />

Systeme mit optischer Auslesung.<br />

planare metallische Dünnschicht-<br />

Nanostrukturen und molekular klar<br />

abgegrenzte Anordnungen metallischer<br />

Nanopartikel für die Anwendung<br />

plasmonischer Effekte in<br />

der spektraloptischen Analyse und<br />

Diagnostik mittels SERS (Surface-<br />

Enhanced Raman Spectroscopy), in<br />

TERS (Tip-Enhanced Raman Spectroscopy),<br />

in chipbasierter Analytik<br />

und für faseroptische Chemo- und<br />

Biosensoren<br />

optische Spezialfasern (einschließlich<br />

mikrostrukturierter Fasern und<br />

Photonischer Kristallfasern) auf der<br />

Basis der MCVD-Technologie sowie<br />

integriert-optische Wellenleiter auf<br />

der Basis der Flammenhydrolyse-<br />

Technologie<br />

aktive Laserfasern und Faserlaser für<br />

Hochleistungsanwendungen<br />

Faser-Bragg-Gitter und Faser-Bragg-<br />

Gitter-Arrays für die Sensorik und die<br />

Informationstechnik<br />

Nanofasern, Nanotaper und Nanosonden<br />

in Quarzglas und Nanowires<br />

in Silicium<br />

Faseroptische Sensorsysteme<br />

(Punktsensoren und ortsverteilte<br />

Sensoren) auf der Basis von<br />

Faser-Bragg-Gittern, Fabry-Perot-Elementen<br />

und evaneszenter Feldspektroskopie<br />

für Anwendungen z.B.<br />

in der Energie-, Pro zess-, Verkehrs-,<br />

Umwelttechnik und in der Bio- und<br />

Chemosensorik.<br />

Sensoren für die extreme sensitive<br />

Detektion von Magnetfeldern<br />

hergestellt mit anspruchsvollen<br />

Dünnschicht-Schaltkreisen mit<br />

supraleitenden Schichten für SQUID<br />

Systeme (SQUID: Supraleitende<br />

Quanteninterferenzdetektoren) und<br />

mit magnetwiderstandsbeständigen<br />

Multischichtsystemen<br />

Die notwendige Basis für diese Entwicklungen<br />

bildet ein großes Repertoire technologischer<br />

Präparations- und Herstellungsprozesse<br />

am IPHT, das sich in zwei<br />

Bereiche gliedert: Zum einen verfügt das<br />

Institut über eine vollständige Linie für<br />

die Abscheidung dünner Schichten, die<br />

Mikro- und Nanostrukturierung sowie<br />

Aufbau- und Verbindungstechniken.<br />

Zum anderen sind alle Schritte für die<br />

Herstellung optischer Spezialfasern und<br />

Fasermodule einschließlich der dazu<br />

gehörigen Charakterisierungstechniken<br />

etabliert. So ist das IPHT mit seiner<br />

wissenschaftlichen Expertise und seinem<br />

technologischen Knowhow in der Lage,<br />

innovative, kundenspezifi sche Lösungen<br />

für ein breites Spektrum industrieller und<br />

akademischer Partner in der ganzen<br />

Welt anzubieten, seinem Motto folgend,<br />

„From Ideas To Instruments“.<br />

Institut für Photonische<br />

Technologien<br />

Albert-Einsteinstraße 9<br />

D – 07745 Jena<br />

Phone +49(0)3641–206-300<br />

Fax +49(0)3641–206-399<br />

Mail info@ipht-jena.de<br />

Web www.ipht-jena.de<br />

79


Current Results and Portfolios of Research Institutions<br />

Institut fuer Mikrotechnik Mainz<br />

The Institut fuer Mikrotechnik Mainz<br />

(IMM) is a non-profi t research and development<br />

institution of the federal state of<br />

Rhineland-Palatinate. Since more than<br />

15 years IMM is devoted to the development<br />

of microsystems technology<br />

relevant to industry and to the exploration<br />

of technical applications for microstructures,<br />

today with a main focus on<br />

analytics, chemical process and energy<br />

technology. Since 2001, IMM is certifi ed<br />

according to the D<strong>IN</strong> ISO 9001 standard.<br />

Basically, the business activities of<br />

IMM comprise the whole chain: idea ➫<br />

design ➫ simulation ➫ engineering ➫<br />

packaging ➫ prototyping ➫ validation ➫<br />

complete system development.<br />

Analytical projects are predominantly<br />

motivated by biomedical problems and<br />

questions. A rapidly growing market for<br />

the so called point-of-care or on-site<br />

testing, is defi ning the specifi cations for<br />

sample preparation and processing of<br />

80<br />

a variety of diverse samples (such as<br />

blood, sputum, pap smear, air, water,<br />

soil), for the isolation and purifi cation of<br />

DNA, RNA and proteins as well as for<br />

the fi nally applied detection methods<br />

(frequently optical or electrochemical).<br />

The development of open but integrated<br />

architectures for new, microsystem technology<br />

based, bio diagnostic systems<br />

open up an enormous potential for<br />

improving prenatal diagnostics and early<br />

cancer detection as well as for the monitoring<br />

of the therapy success during the<br />

recovery process.<br />

The chemical process technology division<br />

at IMM is addressing micro process<br />

engineering issues and at the same time<br />

provides a bridge from microstructured<br />

reactor components to process technology<br />

and from the engineering to the application<br />

in chemical industry. The development<br />

of high throughput components<br />

for pilot and production plants, the plant<br />

Micro Mixers with very fi ne Leading Structures and a<br />

Geometrically Reducing Mixing Chamber Result in a<br />

Complete Mixing Within Splits of a Second<br />

all Pictures: IMM)<br />

Mikromischer mit sehr feinen Zuführungsstrukturen<br />

und einer sich verjüngenden Mischkammer führen<br />

zum vollständigen Vermischen in Sekundenbruchteilen<br />

(alle Fotos: IMM)<br />

development, the integration of micro<br />

process engineering components with a<br />

conventional plant periphery as well as<br />

the intensifi cation of existing and the development<br />

of new synthesis routes, also<br />

in unusual and novel process windows,<br />

play a key role.<br />

Energy technology at IMM is mainly<br />

based on hydrogen but as well on<br />

fossil and renewable energy sources.<br />

The research and development work<br />

comprises hydrogen transport with<br />

the aim of liquid hydrogen supply to<br />

households, mobile electricity producers<br />

based on fuel cells and the production<br />

of renewable fuels. Besides the reactor<br />

construction for entire reformer systems<br />

this includes the development of components<br />

(heat exchangers, evaporators,<br />

condensers), the system integration,<br />

the construction of pilot plants, sensor<br />

solutions as well as the improvement of<br />

fabrication technologies and the catalyst<br />

development.


Module for the Lysis of Bacteria<br />

Modul zur Lyse von Bakterien<br />

Micro Falling Film Reactors – Highly Effi cient Micro<br />

Reactors for gas/liquid Reactions from Lab- to Pilot-<br />

and Production Scale<br />

Mikrofallfi lmreaktoren – Hocheffi ziente Mikroreaktoren<br />

für gas/fl üssig Reaktionen vom Labor- bis in den<br />

Pilot- und Produktionsmaßstab<br />

Reformer: Integrated reactor system for the hydrogen<br />

production<br />

Reformer:Integriertes Reaktorsystem zur Herstellung<br />

von Wasserstoff<br />

Das Institut für Mikrotechnik in Mainz<br />

(IMM) ist eine gemeinnützige Forschungs-<br />

und Entwicklungseinrichtung<br />

des Landes Rheinland-Pfalz. Seit mehr<br />

als 15 Jahren widmet sich das Haus der<br />

Entwicklung einer industrierelevanten Mikrosystemtechnik<br />

und der Untersuchung<br />

von technischen Anwendungen für<br />

Mikrostrukturen, heute mit den Schwerpunktsbereichen<br />

Analytik, Chemische<br />

Prozesstechnik und Energietechnik. IMM<br />

ist seit 2001 zertifi ziert nach D<strong>IN</strong> ISO<br />

9001. Grundsätzlich umfasst das Leistungsspektrum<br />

von IMM die gesamte<br />

Kette: Idee ➫ Design ➫ Simulation ➫<br />

Engineering ➫ Aufbau- und Verbindungstechnik<br />

➫ Prototyping ➫ Validierung<br />

➫ komplette Systementwicklung.<br />

Projekte der Analysetechnik sind überwiegend<br />

durch biologische und medizinische<br />

Fragestellungen motiviert. Ein<br />

rasant wachsender Markt für das sog.<br />

Point-of-Care bzw. On-site Testing defi -<br />

niert die Anforderungen an die Vor- und<br />

Aufbereitung verschiedenster Proben<br />

(Blut, Speichel, Abstriche, Luft, Wasser,<br />

Boden), an die Isolation und Aufreinigung<br />

von DNA, RNA und Proteinen und<br />

letztlich an die zum Einsatz kommenden<br />

Detektionsverfahren (häufi g optisch<br />

oder elektrochemisch). Die Entwicklung<br />

offener aber integrierter Architekturen<br />

neuer, mikrosystemtechnischer, biodiagnostischer<br />

Systeme eröffnet ein großes<br />

Potenzial zur Verbesserung der pränatalen<br />

Diagnostik und der Krebsfrüherkennung,<br />

sowie zur Überwachung des<br />

Therapieerfolges im Genesungsprozess.<br />

Der Bereich Chemische Prozesstechnik<br />

widmet sich der Mikroverfahrenstechnik<br />

und schlägt die Brücke von mikrostrukturierten<br />

Reaktorkomponenten zur<br />

Current Results and Portfolios of Research Institutions<br />

Institut für Mikrotechnik in Mainz<br />

Prozesstechnik und vom Engineering<br />

zur Anwendung in der Chemie. Dabei<br />

nehmen die Entwicklung von Hochdurchsatzkomponenten<br />

für Pilot- und<br />

Produktionsanlagen, die Anlagenentwicklung,<br />

die Integration mikroverfahrenstechnischer<br />

Komponenten in eine<br />

konventionelle Anlagenumgebung sowie<br />

die Intensivierung bestehender und die<br />

Entwicklung neuer Syntheserouten auch<br />

in ungewöhnlichen Prozessfenstern eine<br />

zentrale Rolle ein.<br />

Energietechnik am IMM betrachtet<br />

hauptsächlich Wasserstoff, aber auch<br />

fossile und regenerative Energieträger.<br />

Die Forschungs- und Entwicklungsarbeiten<br />

umfassen den Wasserstofftransport<br />

mit dem Ziel der Flüssigwasserstoffversorgung<br />

von Haushalten,<br />

mobile Stromerzeuger auf der Basis<br />

von Brennstoffzellen und die Produktion<br />

von regenerativen Treibstoffen.<br />

Neben dem Reaktorbau für komplette<br />

Refor mersysteme schließt dies die<br />

Entwicklung von Komponenten (Wärmetauscher,<br />

Verdampfer, Kondensatoren),<br />

die Systemintegration, den Aufbau von<br />

Pilotanlagen, sensorische Lösungen<br />

sowie die Verbesserung von Fertigungstechniken<br />

und die Katalysatorentwicklung<br />

mit ein.<br />

IMM – Institut für Mikrotechnik<br />

Mainz GmbH<br />

Carl-Zeiss-Strasse 18<br />

D – 55129 Mainz<br />

Phone +49(0)6131-990-0<br />

Fax +49(0)6131-990-205<br />

Mail kiesewalter@imm-mainz.de<br />

Web www.imm-mainz.de/<br />

81


Current Results and Portfolios of Research Institutions<br />

Institut für Mikroaufbautechnik<br />

der Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.<br />

The Hahn-Schickard-Institute for Microassembly<br />

Technology (HSG-IMAT) is specialized<br />

in assembly- and packaging for<br />

microsystems and miniaturized systems<br />

based on plastic devices, particularly in<br />

Moulded Interconnect Devices (MID).<br />

Das Hahn-Schickard-Institut für Mikroaufbautechnik<br />

(HSG-IMAT) ist spezialisiert<br />

auf Gehäuse- und Verbindungstechniken<br />

für Mikrosysteme und miniaturisierte<br />

Systeme auf der Basis von Kunststoffbauteilen,<br />

insbesondere Moulded Interconnect<br />

Devices (MID).<br />

Das Institut bietet eine professionelle<br />

Dienstleistungspalette und Infrastruktur,<br />

ausgerichtet an den Bedürfnissen der<br />

Industrie.<br />

Unter einem Dach werden am<br />

HSG-IMAT Konstruktion, Simulation,<br />

Werkzeugbau, Spritzguss, Laserstrukturierung,<br />

Metallbeschichtung, Assemblierung<br />

und Test durchgeführt.<br />

Daher kann das HSG-IMAT ganzheitliche<br />

und durchgängige Forschungs- und Entwicklungsdienstleistungen<br />

von der Idee<br />

bis zum geprüften Prototypen anbieten.<br />

82<br />

The Institute offers a professional range<br />

of services such as construction, simulation,<br />

toolmaking, injection moulding,<br />

laser structuring, metal coating, assembling,<br />

testing and the infrastructure<br />

according to the industrial requirements.<br />

Therefore HSG-IMAT can offer holistic<br />

and continuous research and development<br />

services from idea to tested<br />

prototypes.<br />

Areas of operation<br />

Plastics for micro devices<br />

✦ Precision tool making<br />

✦ Micro injection moulding<br />

✦ Two shot injection moulding<br />

MID-Technologies<br />

✦ Hot embossing MID technology<br />

Arbeitsgebiete<br />

Kunststofftechnik für Mikrobauteile<br />

✦ Präzisionswerkzeugbau<br />

✦ Mikrospritzguss<br />

✦ Zweikomponentenspritzguss<br />

MID-Technologien<br />

✦ Heißpräge-MID-Technik<br />

✦ Laser-MID-Technik<br />

✦ Chemische Metallabscheidung<br />

Chip- und SMD-Montage auf MID<br />

✦ Drahtbondtechnik<br />

✦ Flip-Chip-Technik<br />

✦ Bleifreie SMD-Montage<br />

Sensoren und Aktoren<br />

✦ Touchsensoren<br />

✦ Beschleunigungssensoren<br />

✦ Neigungs- und Drehwinkelsensoren<br />

✦ Mikroventile<br />

✦ Laser MID technology<br />

✦ Electroless plating<br />

Chip-and SMD-assembly<br />

✦ Wire bonding<br />

✦ Flip chip-Technique<br />

✦ Lead-free SMD assembly<br />

Sensors and Actuators<br />

✦ Touchsensors<br />

✦ Accelerometers<br />

✦ Inclination sensors and rotary<br />

encoders<br />

✦ Microvalves<br />

HSG-IMAT<br />

Allmandring 9 B<br />

D – 70569 Stuttgart<br />

Phone +49(0)711-685-83712<br />

Fax +49(0)711-685-83705<br />

Mail info@hsg-imat.de<br />

Web www.hsg-imat.de


The Hahn-Schickard-Institute for Micromachining<br />

and Information Technology<br />

(HSG-IMIT) belongs to the leading R&D<br />

partners in Microsystems technology.<br />

Core competencies are the areas of<br />

sensors, microfl uidics, information technology<br />

and defi ned production process.<br />

In trustworthy cooperation with industry<br />

we implement innovative products and<br />

technologies.<br />

Several laboratories and a 600 sqm<br />

cleanroom are equipped with an extensive<br />

infrastructure needed to develop<br />

and fabricate Microsystems.<br />

The service centre provides specifi c<br />

consulting, advanced training, technological<br />

services, feasibility studies,<br />

prototyping, small scale production as<br />

Das Hahn-Schickard-Institut für Mikro-<br />

und Informationstechnik (HSG-IMIT)<br />

zählt zu den führenden Forschungs- und<br />

Entwicklungspartnern im Bereich der<br />

Mikrosystemtechnik.<br />

Die Kernkompetenzen liegen in der Sensorik,<br />

Mikrofl uidik, Informationstechnik,<br />

und defi nierten Herstellungsprozessen.<br />

In vertrauensvoller Zusammenarbeit mit<br />

der Industrie realisieren wir innovative<br />

Produkte und Technologien. Mehrere<br />

Labore und ein 600 m 2 grosser Reinraum<br />

sind mit einer umfangreichen Infrastruktur<br />

ausgestattet – Voraussetzung<br />

zur Entwicklung und Herstellung von<br />

Mikrosystemen. Das Dienstleistungszentrum<br />

bietet kundenspezifi sche Beratung<br />

und Fortbildung, technologische<br />

Dienstleistungen, Machbarkeitsstudien,<br />

Herstellung von Prototypen und Kleinserien<br />

sowie Serienproduktion in Kooperation<br />

mit kommerziellen Partnern.<br />

Current Results and Portfolios of Research Institutions<br />

Institut für Mikro- und Informationstechnik<br />

der Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.<br />

well as serial production in cooperation<br />

with industrial companies. HSG-IMIT is<br />

certifi ed after the new process oriented<br />

management system ISO 9001:2000.<br />

Areas of operation<br />

Sensors & Systems<br />

✦ Inertial Sensors<br />

✦ Thermal Sensors<br />

Microfl uidics<br />

✦ Lab-on-a-Chip<br />

✦ Microdosage Systems<br />

Mikro Medical Technology<br />

Energy Autonomous Systems<br />

Prototyping & Production<br />

✦ Wafer Technology<br />

✦ Flexible Microsystems<br />

✦ Assembly & Packaging<br />

Das HSG-IMIT ist zertifi ziert nach dem<br />

neuen prozessorientierten Managementsystem<br />

ISO 9001:2000.<br />

Arbeitsgebiete<br />

Sensoren & Systeme<br />

✦ Inertial Sensoren<br />

✦ Thermische Sensoren<br />

Mikrofl uidik<br />

✦ Lab-on-a-Chip<br />

✦ Mikrodosiersysteme<br />

MikroMedizin<br />

Energieautonome Systeme<br />

Mikrotechnologie<br />

✦ Wafertechnologie<br />

✦ Flexible Mikrosysteme<br />

✦ Aufbau & Verbindungstechnik<br />

Ingenieurtechnische Dienstleistungen<br />

✦ Modelling & Design<br />

✦ Schadensanalytik<br />

✦ Messplatzautomation<br />

✦ Elektronische Systeme<br />

Engineering Services<br />

✦ Modelling & Design<br />

✦ Failure Analysis<br />

✦ Measurement Automation<br />

✦ Electronic Systems<br />

HSG-IMIT<br />

Wilhelm-Schickard-Str 10<br />

D – 78052 Villingen-Schwenningen<br />

Phone +49(0)7721-943-0<br />

Fax +49(0)7721-943-210<br />

Mail info@hsg-imit.de<br />

Web www.hsg-imit.de<br />

83


Current Results and Portfolios of Research Institutions<br />

Institute of Micro- and Nanotechnologies –<br />

Technische Universität Ilmenau<br />

“Technische Universität Ilmenau”, a technical<br />

university in the heart of Germany,<br />

represents a tradition of 110 years in<br />

training and education of engineers.<br />

It started in 1894 with the „Thüringer<br />

Technikum“, a privately organised school<br />

for mechanical and electrical engineering<br />

that developed rapidly into a technical<br />

university with more than 6,400 students<br />

nowadays.<br />

As the biggest institute within the university,<br />

the interdisciplinary Institute of<br />

Micro- and Nanotechnologies (IMN) has<br />

now about 30 member-departments<br />

from four faculties. The main fi elds of<br />

interest focus on multiscale engineering,<br />

i.e. nanotechnologies, microsystems,<br />

micro-nano-integration, micro- and<br />

picofl uidics, polymer electronics and<br />

photovoltaics, materials research and<br />

nanoanalytics.<br />

Besides traditional master programmes<br />

in electrical and mechanical engineering,<br />

as well as materials science the faculties<br />

also offer a joint master programme in<br />

84<br />

Fig. 1<br />

Basic confi guration<br />

for f nanoresonators<br />

for f sensing<br />

applications: a coupled<br />

cantilever for physical<br />

measurements<br />

Micro- and Nanotechnologies. Lectures<br />

from all faculties are part of this master<br />

course that is intended for students with<br />

a bachelor degree in engineering as well<br />

as in physics or related courses.<br />

Most of the technical equipment used<br />

by the departments of the IMN is now<br />

located in a central facility called Center<br />

for Micro- and Nanotechnologies that<br />

Fig. 2<br />

Basic confi guration<br />

for nanoresonators for<br />

sensing applications:<br />

bridge-type resonator<br />

with cultivated<br />

CHO-1 cells<br />

was opened in 2002. It comprises of<br />

about 700 m 2 clean room area and an<br />

overall area of about 2000 m 2 . It also<br />

hosts an S1-laboratory for biological<br />

experiments and many further labs specialised<br />

in different areas of nano- and<br />

microtechnologies. About 110 scientists<br />

and technicians use this facility for their<br />

research.<br />

Work is carried out on various material<br />

systems: pyro- and piezoelectric semiconductors<br />

for use in sensors, polymers<br />

for solar cells or transistors, ceramics for<br />

hybrid assemblies, and the whole range<br />

of silicon technology to meet needs in<br />

fl uidics, sensors and microactuators.<br />

The picture is completed by analytical<br />

equipment capable of carrying out<br />

analysis down to the atomic level.<br />

The integration of micro- and nanotechnologies<br />

into systems is a key approach<br />

of the IMN. Nanostructures are usually<br />

too small for using them directly in<br />

macrosystems with user interfaces. An<br />

effi cient step is the multi-scale integration<br />

of the new functionalities into microscale-based<br />

subsystems that can be<br />

equipped with an interface to our macroworld.<br />

Due to the available technology<br />

chain starting from nano- and microfabrication<br />

and ending up in advanced<br />

nanoanalytics and nanomeasurement<br />

technologies the IMN offers the unique<br />

opportunity to investigate micro-nano-integration<br />

as a complex fi eld of research<br />

at one location and in one facility. Interdisciplinary<br />

expert groups are formed<br />

individually depending on the scientifi c<br />

research problems to be solved. The<br />

administration of the IMN supports this


y an effi cient project management. For<br />

external partners, the IMN is just one<br />

partner although many research groups<br />

may be involved in individual projects.<br />

In the following some samples of micronano-integration<br />

are shown for Nano-<br />

Electro-Mechanical Systems based<br />

on high resolution pattern transfer with<br />

defi ned nano-scale structures, a new<br />

Fig. 3<br />

NEMS-chip with an<br />

array of 128 independently<br />

controlled<br />

proximal scanning<br />

probes<br />

nanoscaled silicon – ceramic interface<br />

and their possible applications of a selfmasking<br />

process for assembly:<br />

Besides the well-known MEMS – microelectro-mechanical<br />

systems – now<br />

NEMS – nano-electro-mechanical<br />

systems – follow in research.<br />

Resonators with dimensions down<br />

to the nanoscale have been realised<br />

successfully (fi g.1, 2).<br />

On the other hand, a highly parallel<br />

approach is investigated by another<br />

group: it has demonstrated self-sensing<br />

cantilevers for a variety of nanoscience<br />

applications, and built a NEMS-chip<br />

consisting of parallel arrays of up to 128<br />

independently controlled proximal scanning<br />

probes (fi g. 3).<br />

Here, the small size of each component<br />

together with a high level of system<br />

integration leads to new, effi cient and<br />

parallel sensing tools.<br />

Furthermore, self-organising structures<br />

are investigated: so-called Black Silicon,<br />

a nano-scale silicon “grass” caused<br />

by plasma etching and nanowires that<br />

are grown on catalytic nanospots on<br />

silicon. Both materials show unique new<br />

properties that are now intensively investigated<br />

(fi g. 4). Also research on carbon<br />

nanotubes (CNT) is part of IMN research<br />

activities (fi g. 5). These investigations are<br />

especially catalysed by a large nanoanalytic<br />

expertise within the institute.<br />

Most of the projects are running in a<br />

close cooperation between at least<br />

two IMN-internal partners and external<br />

partners in national and international<br />

research programmes.<br />

Here, only a small number of examples<br />

can be mentioned from the broad range<br />

Current Results and Portfolios of Research Institutions<br />

Fig. 4<br />

Black Silicon needles<br />

with w<br />

nanowires<br />

connecting the tips<br />

of the needles<br />

Fig. 5<br />

HRTEM picture of<br />

a fullerene fi lled<br />

nanotube<br />

of research currently performed at the<br />

IMN. For more details, please visit the<br />

homepage at www.tu-ilmenau.de/imn.<br />

The annual report is available in the<br />

internet for downloading, as well. It addresses<br />

more details on these topics as<br />

well as the homepages of the 30 member<br />

departments.<br />

For any enquiry, please contact us:<br />

Technische Universität Ilmenau<br />

Prof. Dr. Martin Hoffmann<br />

Institut für Mikro- und Nanotechnologien<br />

Gustav-Kirchhoff-Straße 7<br />

D – 98693 Ilmenau – Germany<br />

Phone +49(0)3677-69-3402<br />

Fax +49(0)3677-69-1840<br />

Mail martin.hoffmann@tu-ilmenau.de<br />

85


Current Results and Portfolios of Research Institutions<br />

Ceramic Multilayer-based<br />

Microelectromechanical Systems (C-MEMS)<br />

Ceramic multilayer technology is currently<br />

used to manufacture highly reliable<br />

and highly integrated 3D circuit boards<br />

for electronic packaging which can be<br />

applied in telecommunications, automotive,<br />

aerospace as well as in medical<br />

industry.<br />

Fraunhofer IKTS works on the extension<br />

of the functionality of LTCC and<br />

HTCC multilayer systems (Low/High<br />

Temperature Cofi red Ceramics) in order<br />

to further develop this technology for<br />

the manufacturing of ceramic MEMS.<br />

Die keramische Multilayertechnik wird<br />

aktuell zur Herstellung hochzuverlässiger<br />

und hochintegrierter 3-D-Verdrahtungsträger<br />

für die Aufbau- und Verbindungstechnik<br />

(AVT) der Elektronik verwendet.<br />

Anwendungsgebiete liegen in den<br />

Bereichen Automotive, Telekommunikation,<br />

Luft- und Raumfahrt sowie Medizintechnik.<br />

Das Fraunhofer IKTS arbeitet an der<br />

Funktionserweiterung von LTCC- und<br />

HTCC-Multilayersystemen (Low/High<br />

Temperature Cofi red Ceramics), um diese<br />

Technologie für die Herstellung von<br />

keramischen MEMS nutzbar zu machen.<br />

Zur Realisierung weiterer Funktionen<br />

können beispielsweise zusätzliche Komponenten<br />

wie Kanäle, Kammern, Balken<br />

(Federn) oder Membranen integriert<br />

werden. Derartige Strukturen lassen sich<br />

auf einfache Weise erzeugen, indem ungesinterte<br />

Einzelfolien mittels Mikrostrukturierungsverfahren<br />

(Laser, Mikrostanzen,<br />

Mikroprägen) mit Layer-spezifi schen<br />

86<br />

Additional functions can be integrated<br />

by the implementation of e.g. channels,<br />

chambers, cantilever or membranes.<br />

Such elements can be simply realized<br />

by structuring green tapes by laser techniques,<br />

micropunching or microstamping.<br />

Thus, structures can be obtained<br />

that range in size from some 10 μm up<br />

to the sub-mm scale. These differently<br />

structured green tapes can be stacked<br />

and laminated resulting in a complex 3D<br />

geometry.<br />

Due to their properties C-MEMS can be<br />

used for various applications in the fi eld<br />

Keramische Multilayer-basierte<br />

Mikro-Elektro-Mechanische Systeme (C-MEMS)<br />

Small, handy and cost-effective: the integrated<br />

ceramic micro fuel cell.<br />

Klein, handlich und kostengünstig: die integrierte<br />

keramische Mikrobrennstoffzelle.<br />

Strukturen versehen werden. Die somit<br />

erreichbaren Strukturgrößen liegen im<br />

Bereich einiger 10 μm und können bis<br />

in den sub-mm-Bereich hineinreichen.<br />

Durch Kombination verschieden strukturierter<br />

Einzelfolien können komplexe<br />

3-D-Geometrien aufgebaut werden. Mit<br />

LTCC-based pressure sensors<br />

LTCC-basierte Drucksensoren<br />

Source/Quelle: Fraunhofer IKTS<br />

of sensor technology (e.g. pressure,<br />

force and acceleration), actuating technology<br />

(adaptive microoptical systems),<br />

microenergy technology (miniaturized<br />

fuel cells), microreaction technology (labon-chip<br />

systems) and chemical analysis<br />

(cyclic voltammetry, electrophoresis).<br />

dem dargestellten Eigenschaftsportfolio<br />

bieten sich C-MEMS für vielfältige Anwendungen<br />

in den Bereichen Sensorik<br />

(z.B. Druck, Kraft und Beschleunigung),<br />

Aktorik (adaptive mikrooptische Systeme),<br />

Mikroenergietechnik (miniaturisierte<br />

Brennstoffzellen), Mikroreaktorik (Lab-on-<br />

Chip-Systeme) und chemische Analytik<br />

(zyklische Voltammetrie, Elektrophorese)<br />

an.<br />

Fraunhofer-Institut für Keramische<br />

Technologien und Systeme<br />

Dr. Uwe Partsch<br />

Winterbergstrasse 28<br />

D – 01277 Dresden<br />

Phone + 49(0)351-2553-513<br />

Fax + 49(0)351-2554-161<br />

Mail Uwe.Partsch@ikts.fraunhofer.de<br />

Web http://www.ikts.fraunhofer.de


Current Innovations and Competencies<br />

of Companies<br />

Aktuelle Innovationen<br />

und Kompetenzen aus Unternehmen


Current Innovations and Competencies of Companies<br />

Small, Economical, and a Great Performer –<br />

MEMS from Infineon Technologies<br />

Infi neon Technologies offers semiconductors<br />

and system solutions for<br />

automotive, industrial electronics, chip<br />

card and security, and communications.<br />

The company has signifi cant expertise in<br />

microsystems and is a leading provider<br />

of innovative solutions based on<br />

Micro-Electro-Mechanical-Systems. Its<br />

MEMS portfolio consists of mechanical<br />

and high-frequency MEMS, including<br />

Infi neon’s „miniature“<br />

MEMS microphone:<br />

microphone cover<br />

(above left), opened<br />

microphone with<br />

the MEMS and the<br />

ASIC (above right)<br />

and back view<br />

(below).<br />

Das „Miniatur“-<br />

MEMS-Mikrofon<br />

von Infi neon:<br />

Deckelansicht (oben<br />

links), geöffnetes<br />

Mikrofon-Gehäuse<br />

mit MEMS und ASIC<br />

(oben rechts) and<br />

Rückansicht (unten).<br />

accelerometers, gyroscopes, pressure<br />

sensors, Bulk Acoustic Wave (BAW)<br />

fi lters, and silicon microphones. Infi neon’s<br />

highly integrated MEMS products<br />

benefi t our customers not only as a<br />

result of cost-effi ciency – thanks to the<br />

integration of a multitude of functions in<br />

one device – but also from low power<br />

consumption and high performance.<br />

The automotive market still includes the<br />

most important applications of MEMS.<br />

One relatively new application is the Tire<br />

Pressure Monitoring System (TPMS),<br />

which is mandatory on all new cars sold<br />

in the US. Infi neon made an early commitment<br />

to TPMS technology. Infi neon’s<br />

88<br />

TPMS builds in the company’s extensive<br />

know-how in sensors, radio-frequency<br />

devices, and microcontrollers. The<br />

incorporation of all major active functions<br />

into a single package makes the system<br />

a very cost-effective and highly reliable<br />

solution. Infi neon is a market leader in<br />

sensors and related integrated circuits<br />

for automotive safety applications,<br />

including TPMS, air bag, ABS, electronic<br />

stability control and roll-over sensors.<br />

Semiconductor-based MEMS also have<br />

found their way into communication and<br />

consumer applications. In 2006, Infi neon<br />

introduced a silicon microphone that<br />

has been optimized for use in mobile<br />

phones.<br />

The Infi neon silicon MEMS microphone<br />

is unique because the company is the<br />

only provider that combines MEMS and<br />

ASIC expertise in one package and<br />

offers the associated production skills<br />

all from a single source. Compared to<br />

conventional microphones, the major<br />

advantages are the great resistance to<br />

heat and the relative immunity to shock<br />

and vibration. Using MEMS technology<br />

makes it possible to equal the acoustic<br />

properties of conventional microphones<br />

while using only a third of the power<br />

at half the size. Another benefi t is the<br />

microphone’s enhanced and cost-reduced<br />

manufacturability. The silicon microphone<br />

is also suitable for automotive<br />

and industrial applications and medical<br />

applications.<br />

MEMS are also used in BAW fi lters. The<br />

BAW fi lter technology is semiconductorbased<br />

and used for performance-critical<br />

applications in cellular handsets. The<br />

technology exploits the piezo-electric<br />

resonator effect to generate Bulk Acoustic<br />

Waves, and guarantees the reception<br />

of the appropriate frequencies. The ongoing<br />

rollout of high-speed 3G wireless<br />

communication networks is spurring<br />

interest in small, lightweight 3G mobile<br />

phones, and fuelling a strong demand<br />

for BAW fi lters. Infi neon is the numberone<br />

supplier and volume leader for the<br />

most advanced BAW fi lter products, and<br />

supplies leading handset manufacturers<br />

and RF module vendors.<br />

Infi neon Technologies AG<br />

Am Campeon 1-12<br />

D – 85579 Neubiberg<br />

Phone +49(0)89-234-65555<br />

Web www.infi neon.com


Infi neon Technologies ist ein Anbieter<br />

von Halbleiter- und Systemlösungen<br />

für Automobil- und Industrieelektronik,<br />

Chipkarten und Sicherheit sowie<br />

Kommunikation. Das Unternehmen<br />

verfügt über eine umfassende Expertise<br />

bei Mikrosystemen und ist ein führender<br />

Anbieter von innovativen Lösungen, die<br />

auf mikroelektromechanischen Systemen<br />

basieren. Das MEMS-Portfolio von<br />

Infi neon besteht aus mechanischen<br />

und Hochfrequenz-MEMS. Dazu zählen<br />

unter anderem Beschleunigungsmesser,<br />

Gyroskope, Drucksensoren, BAW-Filter<br />

(Bulk Acoustic Wave) und Silizium-Mikrofone.<br />

Die MEMS-Produkte von Infi neon<br />

sind hochintegriert – die Kombination<br />

mehrerer Funktionen auf einem einzigen<br />

Bauteil liefert einen bedeutenden<br />

Kostenvorteil. Des weiteren profi tieren<br />

unsere Kunden vom geringen Stromverbrauch<br />

und der hohen Leistungsfähigkeit<br />

der Produkte.<br />

Die Automobilindustrie ist nach wie vor<br />

der wichtigste Anwendungsbereich<br />

von MEMS. Eine relativ neue Applikation<br />

ist das sogenannte Tire Pressure<br />

Monitoring System (TPMS), ein System<br />

zur Überwachung des Reifendrucks. In<br />

den USA müssen alle Neuwagen mit<br />

einem TPMS ausgestattet sein. Infi neon<br />

hat bereits sehr früh auf die TPMS-<br />

Technologie gesetzt. Das TPMS-Produkt<br />

von Infi neon kombiniert Infi neons<br />

umfassendes Know-how bei Sensoren,<br />

Hochfrequenz-Chips and Mikrocontrollern.<br />

Dadurch, dass alle wesentlichen<br />

Komponenten in einem einzigen Gehäuse<br />

integriert werden, ist das System<br />

sehr kostengünstig und dazu äußerst<br />

zuverlässig. Infi neon ist Marktführer bei<br />

Sensoren und integrierten Schaltkreisen<br />

für Sicherheitsanwendungen im Auto<br />

wie zum Beispiel TPMS, Airbag, ABS,<br />

elektronische Stabilitätskontrolle und<br />

Überschlagsensoren.<br />

Halbleiterbasierte MEMS haben auch in<br />

Kommunikations- und Consumer-Anwendungen<br />

Einzug gehalten. Infi neon<br />

hat 2006 ein Silizium-Mikrofon auf den<br />

Markt gebracht, das für den Einsatz in<br />

Mobiltelefonen optimiert wurde. Das<br />

MEMS-Silizium-Mikrofon ist einzigartig:<br />

Infi neon ist der einzige Hersteller, der<br />

seine Expertise bei MEMS und ASIC<br />

in einem Gehäuse kombiniert und die<br />

dazugehörigen Fertigungskompetenzen<br />

aus einer Hand anbietet. Im Vergleich<br />

zu herkömmlichen Mikrofonen zeichnet<br />

sich das Silizium-Mikrofon von Infi neon<br />

unter anderem durch eine hohe<br />

Hitzebeständigkeit aus. Des weiteren<br />

ist es vergleichsweise unempfi ndlich<br />

gegenüber Erschütterungen und<br />

Vibrationen. Dank der Nutzung der<br />

MEMS-Technologie werden dieselben<br />

akustischen Eigenschaften erreicht wie<br />

Current Innovations and Competencies of Companies<br />

Klein, wirtschaftlich und leistungsstark –<br />

MEMS von Infineon Technologies<br />

Tire T Pressure<br />

Monitoring<br />

Systems need<br />

advanced<br />

sensor,<br />

controller<br />

and RF IC<br />

concepts.<br />

Tire Pressure<br />

Monitoring-<br />

Systeme<br />

brauchen<br />

fortschrittliche<br />

Sensor-,<br />

Controllerund<br />

RF-IC-<br />

Konzepte.<br />

bei herkömmlichen Mikrofonen. Gleichzeitig<br />

ist das Silizium-Mikrofon nur etwa<br />

halb so groß wie herkömmliche Mikrofone,<br />

der Stromverbrauch liegt bei rund<br />

einem Drittel. Ein weiterer Vorteil besteht<br />

in der kostengünstigen Fertigung. Das<br />

Silizium-Mikrofon ist auch für den Einsatz<br />

in Automobil-, Industrie- und Medizinanwendungen<br />

geeignet.<br />

MEMS kommen auch in BAW-Filtern<br />

zum Einsatz. Die BAW-Filter-Technologie<br />

ist halbleiterbasiert und wird für leistungskritische<br />

Anwendungen in Mobiltelefonen<br />

eingesetzt. Die Technologie nutzt<br />

den piezo-elektrischen Resonatoreffekt,<br />

um akustische Volumenwellen zu erzeugen<br />

und den Empfang der entsprechenden<br />

Frequenzen sicherzustellen.<br />

Durch den kontinuierlichen Ausbau von<br />

3G-Mobilfunknetzen steigt das Interesse<br />

an kleinen, leichten 3G-Mobiltelefonen<br />

und folglich auch die Nachfrage nach<br />

BAW-Filtern. Infi neon ist führend bei<br />

modernsten BAW-Filtern und beliefert<br />

führende Mobiltelefon-Hersteller und<br />

Anbieter von RF-Modulen.<br />

89


Current Innovations and Competencies of Companies<br />

Microstructured Optics:<br />

Small Dimensions – Great Benefits<br />

Dr. Robert Brunner, Reinhard Steiner<br />

Optical components with structural<br />

sizes in the micrometer and sub-micrometer<br />

ranges provide an extremely<br />

high enabling factor for a wide variety of<br />

applications, permitting functionalities<br />

that would not otherwise be feasible in a<br />

wide diversity of optical devices.<br />

In spectral analysis devices, in particular,<br />

diffractive structures in the form of dispersive<br />

gratings featuring periodicities of<br />

a few micrometers and profi le tolerances<br />

in the order of a few nanometers are the<br />

central, function-critical components.<br />

In this fi eld, Carl Zeiss MicroImaging<br />

GmbH offers its customers a range of<br />

products customized to their requirements<br />

and wishes – from individual,<br />

microstructured components and<br />

spectrometer modules up to complete<br />

application solutions.<br />

A decisive success factor is the ability to<br />

master the entire product chain.<br />

The most important processes in the<br />

concept and development phases of<br />

micro-optical systems are the optics<br />

design, the rigorous electromagnetic<br />

modeling of the micro-optical structures,<br />

the thermomechanical system analysis<br />

and the production chain of the microstructured<br />

components comprising<br />

the mastering, tooling and replication<br />

processes.<br />

In particular, compact spectrometer<br />

modules requiring a very small number<br />

of optical components can be implemented<br />

on the basis of self-focusing,<br />

concave refl ection gratings. These<br />

concave gratings combine dispersing<br />

and imaging properties, which means<br />

that the light is separated into its spectral<br />

90<br />

Range of gratings<br />

from Carl Zeiss<br />

Gittersortiment<br />

von Carl Zeiss<br />

constituents and is at the same time imaged<br />

onto a focal array.<br />

To ensure high fl exibility and the fast<br />

implementation of customer-specifi c<br />

requirements on imaging spectrometer<br />

modules, the close coupling of technology<br />

and optics design is of vital importance.<br />

In addition to the actual design<br />

of the spectroscopic system, the optics<br />

designer also defi nes the exposure<br />

confi guration for the implementation of<br />

the imaging grating.<br />

Replication technologies based on<br />

epoxy resin replicas are used for highquality<br />

grating copies. This replication<br />

method provides both extremely high<br />

accuracy in the local profi le geometry<br />

and outstanding global precision to<br />

achieve the imaging performance of the<br />

concave grating.<br />

Alternative production methods are used<br />

to make spectrometer modules available<br />

in large quantities and at an economy<br />

price. In this process, the concave<br />

grating produced by interference optical<br />

methods is transferred to stable, convex<br />

tools. Injection molding technology is<br />

used for volume production not only of<br />

the diffraction grating, but also its housing.<br />

During the development of the production<br />

method for these modules, the<br />

alignment and assembly of the components<br />

are already taken into account at<br />

the design stage. The thermal behavior<br />

is simulated and optimized using FEM<br />

analysis on the basis of different plastic<br />

materials.


Optische Komponenten mit Strukturgrößen<br />

im Mikro- und Submikrometerbereich<br />

besitzen einen sehr hohen<br />

„Enabling -Faktor“ für vielfältige Anwendungsbereiche<br />

und erlauben in verschiedensten<br />

optischen Instrumenten Funktionalität<br />

die ansonsten nicht erfüllbar<br />

wären.<br />

Insbesondere bei Instrumenten zur spektralen<br />

Analyse bilden diffraktive Strukturen<br />

als „dispersive Gitter“, mit Perioden<br />

von wenigen Mikrometern und Profi ltoleranzen<br />

von wenigen Nanometern,<br />

das zentrale und funktionsbestimmende<br />

Element.<br />

In diesem Umfeld bietet die Carl Zeiss<br />

MicroImaging GmbH ihren Kunden maßgeschneiderte,<br />

an die Forderungen und<br />

Wünsche angepasste Produkte. Diese<br />

reichen von einzelnen mikrostrukturierten<br />

Komponenten, über Spektrometer-Module<br />

bis hin zu kompletten applikativen<br />

Lösungen.<br />

Ein entscheidender Erfolgsfaktor ist<br />

dabei die Beherrschung der kompletten<br />

Produktentstehungskette.<br />

Die wichtigsten Werkzeuge in der Konzeptions-<br />

und Entwicklungsphase der<br />

Possible<br />

grating<br />

profi les<br />

Mögliche<br />

Gitterprofi le<br />

Current Innovations and Competencies of Companies<br />

Mikrostrukturierte Optik:<br />

kleine Dimensionen – große Nutzen<br />

mikrooptischen Systeme sind dabei<br />

das Optik-Design, die rigorose elektromagnetische<br />

Modellierung der mikrooptischen<br />

Strukturen, die mechanischthermische<br />

Systemanalyse, sowie die<br />

Herstellungskette der mikrostrukturierten<br />

Elemente, die „Mastering-“, „Tooling-“<br />

und Replikationsprozess beinhaltet.<br />

Besonders kompakte Spektrometermodule,<br />

die eine sehr geringe Anzahl<br />

optischer Komponenten benötigen,<br />

lassen sich auf der Basis selbstfokussierender,<br />

konkaver Refl exionsgitter<br />

realisieren. Das Konkavgitter vereinigt<br />

dabei dispergierende und abbildende<br />

Eigenschaften, d.h. das Licht wird vom<br />

Gitter in seine spektralen Bestandteile<br />

zerlegt und gleichzeitig auf eine Fokuszeile<br />

abgebildet.<br />

Um eine hohe Flexibilität und schnelle<br />

Umsetzung kundenspezifi scher Wünsche<br />

von abbildenden Spektrometermodulen<br />

zu gewährleisten, ist eine enge<br />

Kopplung zwischen Technologie und<br />

Optikdesign unerlässlich. Neben der<br />

Festlegung des Gerätekonzepts des<br />

spektroskopischen Systems, defi niert<br />

der Optikdesigner auch die Belich-<br />

tungskonfi guration zur Realisierung des<br />

abbildenden Gitters.<br />

Für hochwertige Gitterkopien werden<br />

Replikationstechnologien auf der Basis<br />

von Epoxydharzabformungen angewendet.<br />

Dieses Kopierverfahren erlaubt<br />

extrem hohe Genauigkeiten sowohl im<br />

lokalen Bereich der Profi lgeometrie als<br />

auch eine hohe globale Exaktheit um die<br />

Abbildungsleistung des konkaven Gitters<br />

zu erzielen.<br />

Um Spektrometermodule in hohen<br />

Stückzahlen und kostengünstig zur<br />

Verfügung stellen zu können, werden<br />

alternative Herstellungsverfahren verwendet.<br />

Dabei wird das interferenzoptisch<br />

realisierte Konkavgitter in stabile konvexe<br />

Werkzeuge überführt. Für die Serienfertigung<br />

kommt die Spritzguss-Technologie<br />

sowohl für das Beugungsgitter als auch<br />

für das Gehäuse zum Einsatz. Bei der<br />

Entwicklung des Fertigungsverfahrens für<br />

diese Module werden die Justierung und<br />

Montage der Komponenten schon im<br />

Design berücksichtigt. Das thermische<br />

Verhalten wird mittels FEM-Analysen<br />

unter Berücksichtigung verschiedener<br />

Kunststoffe simuliert und optimiert.<br />

Carl Zeiss MicroImaging GmbH<br />

Optical Sensor Systems<br />

Carl Zeiss Promenade 10<br />

D – 07745 Jena<br />

Phone +49(0)3641-64-2838<br />

Fax +49(0)3641-64-2485<br />

Mail info.spektralsensorik@zeiss.de<br />

Web www.zeiss.de/spektral<br />

91


Current Innovations and Competencies of Companies<br />

TRIPLE Gas Sensor Module – The artificial nose module<br />

Gas sensor arrays are used e.g. in the<br />

air quality monitoring, the leak detection,<br />

the location of smouldering underground<br />

fi res, the detection of dangerous gas air<br />

mixtures or the detection of the lower<br />

explosive limit (LEL).<br />

The patented TRIPLE gas sensor<br />

element of UST Umweltsensortechnik<br />

GmbH (DE 102004060101 B4 / DE<br />

102006033528 B3) measures the concentration<br />

of various types of gases from<br />

the lower ppm range to the Vol% range.<br />

The gas sensor element with three metal<br />

oxide layers (MOS) in innovative interconnection<br />

on one chip realise together<br />

with a miniaturized electronic module<br />

a reasonable-priced gas detector with<br />

highest sensitivity, selectivity and long<br />

term stability. The operation principle is<br />

based on changes of the conductivity of<br />

a heated sensor element during the exposure<br />

of gases. The electronic module<br />

realise the pre-processing of the sensor<br />

signals and the data output through a<br />

digital interface. Safety-relevant functionality,<br />

like error detection during the<br />

measurement process is integrated. The<br />

factory-made customization to various<br />

measurement applications is possible.<br />

92<br />

TRIPLE<br />

gas sensor<br />

module<br />

Exemplary<br />

measurement<br />

of three different<br />

refrigerants and H 2<br />

UST Umweltsensortechnik GmbH,<br />

established in 1991, is a successful<br />

German medium sized company, recognised<br />

internationally as a leading manufacturer<br />

of innovative ceramic sensor<br />

technology. The leading position of the<br />

company is based on the visionary as<br />

well as market-driven development and<br />

production of ceramic sensor elements<br />

for gas and temperature measurements,<br />

together with innovative measuring<br />

instruments.<br />

Product range:<br />

✦ MOS gas sensor elements and<br />

arrays for the detection of CO, H2, C2H5OH, CH4, NO2, O3, NH3, Hydrocarbons<br />

(CxHy), R134a etc.<br />

✦ Platinum temperature sensors elements<br />

from -200°C to +1000°C<br />

(Pt10… Pt2000), also according to<br />

D<strong>IN</strong> EN 60751<br />

✦ Custom designed semi-fi nished<br />

temperature probes from -100°C<br />

to +1000°C (screw-in temperature<br />

probes, plug-in temperature probes,<br />

immersion temperature probes)<br />

✦ Portable gas detectors for the quick<br />

and selective detection of gases,<br />

like H2, CH4 etc., microdetectors for<br />

the stationary application to detect<br />

concentrations of combustible gases<br />

in the range of a few ppm up to the<br />

LEL in %<br />

✦ Portable gas detector for CO2<br />

based<br />

on a patented photo acoustical operation<br />

principle (DE 19957364 B4)<br />

Main application fi elds of the products<br />

are automotive engineering, industrial<br />

process measurement, energy and<br />

environmental technology, safety and<br />

medical engineering.<br />

UST Umweltsensortechnik GmbH is certifi<br />

ed according to ISO/TS 16949:2002,<br />

D<strong>IN</strong> EN ISO 14001:2005, ATEX RL<br />

94/9/EG Annex IV D<strong>IN</strong> EN 13980:2003.<br />

UST Umweltsensortechnik GmbH<br />

Dr. Olaf Kiesewetter<br />

Dieselstr. 2<br />

D – 98716 Geschwenda<br />

Phone +49(0)36205-713-0<br />

Fax +49(0)36205-713-10<br />

Mail info@umweltsensortechnik.de<br />

Web www.umweltsensortechnik.de


Greiner Bio-One is specialised in the<br />

development, design and manufacturing<br />

of disposables for medical applications,<br />

diagnostics and biotechnology. Generic<br />

and proprietary resins are used to<br />

produce catalogue items dedicated to a<br />

wide range of laboratory applications as<br />

well as customised products. The preferred<br />

manufacturing technology is injection<br />

moulding where the hot polymer is<br />

injected into the mould. Based on the<br />

intended application additional process-<br />

es are often applied to treat the surface<br />

for increased wettability or enhanced<br />

attachment of biological probes.<br />

Scientists and engineers from all areas<br />

of biology, chemistry and physics are<br />

working together on the development<br />

of new products and solutions for a<br />

high quality manufacturing process.<br />

Long-term expertise is the backbone to<br />

meet exactly our customer‘s needs as a<br />

generic product or co-developed as an<br />

OEM product. The complete in-house<br />

service at Greiner Bio-One includes<br />

material selection, design, manufacture,<br />

assembly and surface treatment.<br />

As further miniaturisation was requested<br />

Greiner‘s expertise in injection moulding<br />

was a reliable basis to enter into hot embossing<br />

to generate microfl uidic devices<br />

in the micro- and sub-microliter range.<br />

The advantage of microfl uidic channels<br />

is based on a major reduction of reagents<br />

in combination with speed. Test<br />

results are available within a fraction of<br />

time compared to conventional assays<br />

Current Innovations and Competencies of Companies<br />

Microfluidics for your Health<br />

Microchannels<br />

interconnected<br />

to funnel-like<br />

reservoirs were<br />

produced in a<br />

single step.<br />

due to the tiny and short fl ow channels.<br />

In general, these microchannels are<br />

approximately 100 to 500 μm wide and<br />

10 to 500 μm deep and connected inlet<br />

funnels and waste reservoirs in a millimetre<br />

scale. A major challenge amongst<br />

others is the assembling technology and<br />

a surface functionalisation.<br />

But hot embossing with a very long<br />

cycle time makes this technology really<br />

unattractive for mass production and it<br />

became obvious to adapt the product<br />

design to injection moulding and to overcome<br />

the major restrictions in unequal<br />

feature sizes to produce the device in a<br />

single step. The successful combination<br />

of a reliable manufacturing process and<br />

well known polymers makes the microfl<br />

uidic devices ideal for diagnostic chips<br />

in single use applications.<br />

As a consequence, our HTA TM platform<br />

was created to establish DNA-based diagnostics<br />

on a plastic chip. DNA-markers<br />

are spotted onto the treated surface<br />

to allow genotyping of a large variety<br />

of bacteria or viruses simultaneously.<br />

Meanwhile, a combination of biochips<br />

and microfl uidic devices is used for<br />

point-of-care (POC) testing. This procedure<br />

allows on-site testing, gives faster<br />

results, is easy to handle and patients<br />

can be treated right away.<br />

Many applications can be realised using<br />

microfl uidics, where the diagnostic fi eld<br />

is the most fascinating amongst others.<br />

Based on our experience, we can provide<br />

innovative solutions, tailor-made for<br />

your requirements.<br />

Greiner Bio-One GmbH<br />

Maybachstraße 2<br />

D – 72636 Frickenhausen<br />

Phone +49(0)7022-948-0<br />

Fax +49(0)7022-948-514<br />

Mail info@de.gbo.com<br />

Web www.gbo.com/bioscience<br />

93


Current Innovations and Competencies of Companies<br />

Plan Optik AG<br />

Advanced wafers for sophisticated MEMS applications<br />

As a result of many years of experience<br />

in glass processing, comprehensive<br />

technological know-how and an innovative<br />

way of thinking, Plan Optik AG<br />

is able to offer novel products for the<br />

MEMS market. Plan Optik AG, the world<br />

market leader in glass wafer production<br />

for MEMS applications, set the<br />

benchmark for best possible glass wafer<br />

surfaces. All wafers are characterized by<br />

low thickness tolerance, low roughness<br />

and high surface quality.<br />

The introduction of MDF<br />

(Micro Damaging Free) polished<br />

wafers to the market<br />

opened the possibility of<br />

reliable wet etching results<br />

in glass wafers due to the<br />

absence of sub surface<br />

damaging, which leads to<br />

undesirable small cavities<br />

or interconnections between<br />

etched structures.<br />

Besides blank glass wafers<br />

structures in glass are<br />

possible as well. USHD<br />

(ultra sonic high speed<br />

drilled) through holes<br />

or optical cavities in the<br />

wafer surface are typical<br />

products. Another kind of<br />

product are plano-convex<br />

as well as plano-concave<br />

micro lenses in glass. The<br />

combination of such kind<br />

of glass micro lenses to<br />

complex lens systems on<br />

wafer level are one of the<br />

key technologies in future<br />

for packaging of camera<br />

modules in laptops, mobile<br />

phones or in the automo-<br />

94<br />

tive or security market. The combination<br />

of lenses to complex lens stacks is currently<br />

under development.<br />

Since the beginning of MEMS fabrication,<br />

borosilicate glass plays an important<br />

role for MEMS products, because<br />

borosilicate glass is suitable for anodic<br />

bonding with silicon. Both materials have<br />

preferences concerning their machining<br />

and properties and the combination<br />

of silicon and glass is very popular for<br />

countless MEMS products. The specifi c<br />

properties of glass, especially the optical<br />

transparency, the chemical resistance<br />

and electrical insulation, are useful for<br />

the realization of innovative ideas for<br />

new and sophisticated MEMS applications.<br />

The adapted thermal expansion<br />

of borosilicate glass to silicon supports<br />

the combination of both materials.<br />

Today, glass wafers are usually used<br />

Micro lens camera<br />

module in glass with<br />

silicon aperture fabricated<br />

on waferlevel<br />

Through holes in<br />

glass wafer produced<br />

by ultra sonic<br />

high speed drilling<br />

for vacuum sealed<br />

packaging of MEMS<br />

structures to protect<br />

them against dust or<br />

humidity. The growing<br />

trend of wafer level<br />

packaging leads to<br />

an economic production<br />

of MEMS, but<br />

demands suitable<br />

substrates to put new<br />

ideas of MEMS packaging<br />

on wafer level<br />

into practice. Similar<br />

to the research on 3D<br />

interconnects instead<br />

of planar 2D interconnects<br />

regarding<br />

chip size reduction of<br />

integrated circuits (IC),<br />

3D MEMS packaging<br />

also provides many<br />

advantages such as<br />

smaller footprint and<br />

SMT compatibility.<br />

The basic necessity<br />

and challenge of 3D<br />

MEMS packaging<br />

are electrical through<br />

wafer vias which are<br />

often realized by met-


al fi lled DRIE etched holes<br />

in silicon with high aspect<br />

ratio using metal deposition<br />

and electroplating, but<br />

this approach has technical<br />

diffi culties like voids and<br />

mismatched thermal expansion<br />

of silicon and metal.<br />

For non-RF MEMS applications<br />

highly doped silicon<br />

is an acceptable material<br />

alternative for electrical vias<br />

used for voltage supply and<br />

signal transmission.<br />

In this regard Plan Optik<br />

AG developed a unique<br />

technology to combine<br />

silicon and glass for a new<br />

kind of wafer, which allows<br />

new possibilities for MEMS<br />

fabrication and packaging.<br />

These silicon-glass compound<br />

wafers are a mixture of both materials<br />

in one wafer and the composition<br />

of glass and silicon can vary in a wide<br />

range. The main application of these wafers<br />

is wafer level packaging. For this application<br />

different types of silicon-glass<br />

compound wafers are available which<br />

support electrical, vertical vias. Highly<br />

doped silicon is used to achieve small<br />

pins with low resistance, whereby glass<br />

wafers with single vias or silicon wafers<br />

with glass inlets including several silicon<br />

vias are possible. The glass material (insulator)<br />

supports the electrical insulation<br />

of the vertical vias and for redistribution<br />

lines on the wafer surface and offers<br />

possibilities for additional features like<br />

optical windows or cavities. The shape<br />

of silicon inlets in glass wafers and vice<br />

versa is almost free of design rules, only<br />

the minimal structure size is limited to<br />

approximately 50 microns by a typical<br />

wafer thickness between 300 and 400<br />

microns.<br />

These wafers can be used in two different<br />

versions: as cap wafers and as device<br />

wafers. Using a silicon-glass compound<br />

wafer as a cap wafer combines<br />

environmental protection and electrical<br />

connection at the same time. The minimization<br />

of the via resistance is possible<br />

by thinning the cap wafer after bonding<br />

to the device wafer down to less than<br />

100 microns. Using these wafers as<br />

bulk substrates for the device wafer<br />

enables the implementation of through<br />

wafer vias within the MEMS device. In<br />

this case it’s necessary to take account<br />

Current Innovations and Competencies of Companies<br />

Silicon-glass<br />

compound wafer<br />

– glass wafer with<br />

silicon inlets<br />

Silicon-glass<br />

compound wafer<br />

– glass wafer with<br />

highly doped silicon<br />

vias<br />

of process temperatures<br />

regarding the<br />

following process<br />

fl ow. Besides a few<br />

marginal conditions<br />

such as a maximum<br />

process temperature<br />

of 500 degrees<br />

centigrade caused by<br />

the temperature resistance<br />

of the glass,<br />

there are no other relevant<br />

process restrictions<br />

in comparison to<br />

traditional processes.<br />

Since there are<br />

process alternatives<br />

(e.g. Replacing high<br />

temperature LPCVD<br />

layers by PECVD<br />

layers), the design<br />

freedom is restricted<br />

only insignifi cantly.<br />

All packaged devices are SMT compatible<br />

and ready for 3D micro system<br />

integration. Full 3D packaging of MEMS<br />

is possible on wafer level using these<br />

advanced wafers to get all advantages<br />

regarding size reduction and vertical<br />

packaging and stacking of MEMS and<br />

electronic parts like ASIC or IC parts by<br />

fl ip chip bonding.<br />

Plan Optik AG<br />

Ueber der Bitz 3<br />

D – 56479 Elsoff<br />

Phone +49(0)2664-5068-0<br />

Fax +49(0)2664-5068-91<br />

Mail info@planoptik.com<br />

Web www.planoptik.com<br />

95


Current Innovations and Competencies of Companies<br />

Micro Mechatronic Technologies GmbH<br />

Mittels modernster Rapidtechnologien können wir innerhalb<br />

kürzester Zeit Prototypen und Serien herstellen. Unsere Experten<br />

kümmern sich um Messtechnik und Qualitäts sicherung und<br />

entwicken für Sie die optimale Anwendungslösung.<br />

Produkte<br />

Wir entwickeln und produzieren mikromechatronische Geräte<br />

für verschiedenste Anwendungsbereiche.<br />

Als Standardprodukt oder nach Kundenwunsch<br />

✦ Mikro-Aktoren<br />

✦ Mikro-Dosierpumpen<br />

✦ Mikro-Sensoren<br />

✦ Mikro-Schalt- und Absperrventile<br />

✦ Steuerungsmodule<br />

✦ Heiz- und Kühlelemente<br />

Dienstleistungen<br />

Wir verfügen über alle Möglichkeiten, mechanische und mikromechatronische<br />

Bauteile, Geräte, Prototypen und Produkte für<br />

Klein-, Vorserien, Serienanlauf und als Serie herzustellen.<br />

Für uns oder für Ihren Bedarf<br />

✦ Lasersintern<br />

✧ Metall ✧ Polyamid ✧ Flex<br />

✦<br />

96<br />

Vakuumgießen<br />

✦ Spritzgießen<br />

✧ Kunststoffe<br />

✦ mechanische ✧ bohren ✧ drehen ✧ lasern<br />

Präzisionsbearbeitung ✧ fräsen ✧ schleifen<br />

✦ 3D Messen<br />

✧ Grauwert ✧ tastend<br />

✧ Lasertriangulation<br />

✦ Montage<br />

Systeme<br />

Wir suchen bessere Technologien für Ihr Produkt und konzipieren<br />

Ihre Produkte neu mit mikromechatronischen Komponenten.<br />

Besser, kleiner, schneller völlig anders.<br />

Sparen Sie Raum, Zeit, Material und Kosten.<br />

Wir entwickeln und planen für Sie.<br />

Wir analysieren die Wett bewerssituation und die Umsatzaussichten<br />

für Ihr neues Produkt oder für Ihr neues Unternehmen.<br />

✦ komplette Businessplanung<br />

✦ neue Technik / Infrastruktur / Zulieferindustrie<br />

Die Produkte, die uns in der Zukunft umgeben, werden so klein<br />

sein, wie die Funktion der Dinge es zulässt.<br />

MMT Micro Mechatronic<br />

Technologies GmbH<br />

IHW-Park Gebäude M1<br />

Eiserfelder Straße 316<br />

D – 57080 Siegen<br />

Phone +49(0)271-31382-100<br />

Fax +49(0)271-31382-222<br />

Mobil 0170-315 4818<br />

Mail info@micromechatronic.com<br />

Internet www.micromechatronic.com


Due to increasing demands on performance<br />

and competitiveness of industrial<br />

plants the integration of condition and<br />

process monitoring systems into machines<br />

and their components gain more<br />

and more in importance. Especially the<br />

measurement of physical values such<br />

as temperature, force, momentum,<br />

acceleration, etc. on rotating or moving<br />

objects with wireless energy supply and<br />

data communication is of high interest.<br />

The company pro-micron GmbH & Co.<br />

KG, located in Kaufbeuren in Southwest<br />

Bavaria, is specialized on development<br />

and fabrication of wireless condition and<br />

process monitoring systems for use in<br />

engineering and factory automation.<br />

Pro-micron systems are based on micro<br />

system technology and are therefore<br />

very small in size, quite robust and have<br />

low energy consumption. Therefore, the<br />

systems can easily be integrated into<br />

machines and withstand harsh environments.<br />

One example for a pro-micron development<br />

is a tool holder with an integrated<br />

sensor system for measuring forces and<br />

momentums during a drilling or milling<br />

process. The whole sensor system<br />

including sensing elements, highly<br />

Current Innovations and Competencies of Companies<br />

Intelligence in Engineering and Factory Automation –<br />

Customized Wireless Micro Systems for Condition and Process Monitoring<br />

miniaturized electronics, power supply<br />

and modules for radio communication<br />

is fi tted onto the tool holder. With the<br />

sensor system the machining process<br />

can be monitored online due to data are<br />

sent from the tool holder wireless to the<br />

machine control unit. As a result, the<br />

process can be monitored continuously<br />

and enables a process optimization.<br />

With pro-micron’s highly sophisticated<br />

micro systems basically any physical<br />

parameter can be measured on rotating<br />

or moving subjects allowing a comprehensive<br />

monitoring of the condition of a<br />

machine and their components as well<br />

as the machining processes. Active<br />

systems using a battery or an accumulator<br />

as well as passive systems with<br />

permanent wireless energy supply using<br />

inductive coupling are available. Sensor<br />

systems based on new SAW (surface<br />

acoustic waves) sensor technology are<br />

currently being developed and should<br />

be available soon.<br />

In not every case a permanent transmission<br />

of data is required. For these<br />

applications pro-micron developed<br />

mobile data loggers with which physical<br />

parameters are continuously measured<br />

and in the fi rst instance are written in a<br />

non-volatile memory. Afterwards, the<br />

data will be transmitted on customer<br />

request to the control unit and analysed<br />

there. Again the used micro technology<br />

allows a customer specifi c solution<br />

optimized for the application in mind.<br />

Additional pro-micron was appointed by<br />

the German ministry for education and<br />

research as an offi cial application centre<br />

for micro systems with the focus on<br />

bringing micro technical innovations into<br />

solutions ready to go for industrial production.<br />

As a conclusion pro-micron can<br />

offer the service you need “from idea to<br />

product” out of one hand.<br />

pro-micron GmbH & Co. KG<br />

Applikationszentrum<br />

hybride Mikrosysteme<br />

Innovapark 20<br />

D – 87600 Kaufbeuren<br />

Phone +49(0)8341-9164-10<br />

Fax +49(0)8341-9164-20<br />

Mail info@pro-micron.de<br />

Web www.pro-micron.de<br />

97


Current Innovations and Competencies of Companies<br />

First Check the Production Machine,<br />

then Measure the Finished Part<br />

Carl Zeiss Industrielle Messtechnik is a partner in the development<br />

of a micro test workpiece for 5-axis micro-milling machines.<br />

OBERKOCHEN/Germany – 17 September<br />

2007.<br />

In the future, a standard test workpiece<br />

will make it easier to check the accuracy<br />

of a 5-axis micro-milling machine. Carl<br />

Zeiss Industrielle Messtechnik GmbH<br />

in Oberkochen, the Ulm-based company<br />

NC-Gesellschaft e.V. and the wbk<br />

Institute for Production Technology at<br />

the University of Karlsruhe are currently<br />

developing a high precision device of<br />

this type.<br />

Carl Zeiss Industrielle Messtechnik<br />

produced the draft of a micro test workpiece.<br />

It contains all critical geometric<br />

features and also freeform surfaces to<br />

allow the verifi cation and acceptance of<br />

the capabilities of a 5-axis micro-milling<br />

machine. Special elements serve to<br />

determine the interaction and interpolation<br />

accuracy of three axes and the<br />

orientation accuracy of the cutter. The<br />

interaction of all fi ve axes can be tested<br />

in a “crater”. The further enhancement<br />

and optimization of the test piece will<br />

be performed together with micro-milling<br />

machine manufacturers. The goal is<br />

to guarantee the suitability of the future<br />

NCG-2007 test workpiece for practical<br />

use.<br />

F25 from Carl Zeiss as a reference<br />

measuring machine<br />

The reference machine for accuracy<br />

verifi cation is the F25 multisensor coordinate<br />

measuring machine from Carl Zeiss<br />

Industrielle Messtechnik which is already<br />

used by institutes and companies all<br />

over the world. This friction-free 3D coordinate<br />

measuring machine supported<br />

on air bearings has a measuring volume<br />

98<br />

of one cubic decimeter – the draft of the<br />

micro test workpiece was produced with<br />

features in the dimensions of 90 x 90<br />

millimeters accordingly. With a resolution<br />

of 0.25 nanometers, the F25 makes it<br />

possible to conduct tactile measurements<br />

with minimum probing forces and<br />

with a deviation of 250 nanometers.<br />

current test workpiece<br />

with geometric features<br />

for the accuracy verifi cation<br />

of 5-axis micro-milling<br />

machines.


OBERKOCHEN – 17. September 2007.<br />

Künftig soll ein Standardprüfwerkstück<br />

es erleichtern, die Genauigkeit einer<br />

5-Achsen-Mikrofräsmaschine zu überprüfen.<br />

Zurzeit entwickeln die Oberkochener<br />

Carl Zeiss Industrielle Messtechnik<br />

GmbH, die Ulmer NC-Gesellschaft<br />

e.V. und das wbk Institut für Produktionstechnik<br />

der Universität Karlsruhe ein<br />

solches Präzisionsteil.<br />

Die Carl Zeiss Industrielle Messtechnik<br />

fertigte den Entwurf eines Mikroprüfwerkstücks.<br />

Es enthält alle kritischen<br />

Geometriemerkmale und auch Freiformfl<br />

ächen, um die Fähigkeiten einer 5-Achsen-Mikrofräsmaschine<br />

nachzuweisen<br />

und abzunehmen. Spezielle Elemente<br />

dienen dazu, das Zusammenspiel und<br />

Current Innovations and Competencies of Companies<br />

Erst die Fertigungsmaschine prüfen,<br />

dann das fertige Teil messen<br />

Carl Zeiss Industrielle Messtechnik ist Partner bei der Entwicklung<br />

eines Mikroprüfwerkstücks für 5-Achsen-Mikrofräsmaschinen<br />

die Interpolationsgenauigkeit von drei<br />

Achsen und die Orientierungsgenauigkeit<br />

des Fräsers zu bestimmen. In einem<br />

„Krater“ lässt sich das Zusammenspiel<br />

aller fünf Achsen testen. Die weitere<br />

Ausarbeitung und Optimierung des<br />

Prüfkörpers wird zusammen mit Herstellern<br />

von Mikrofräsmaschinen erfolgen.<br />

Damit soll die Praxistauglichkeit des<br />

zukünftigen Prüfwerkstücks „NCG-2007“<br />

gewährleistet werden.<br />

F25 von Carl Zeiss als Referenzmessgerät<br />

Referenzgerät für den Genauigkeitsnachweis<br />

ist das bereits bei Instituten<br />

und Firmen weltweit eingesetzte<br />

Multisensor-Koordinatenmessgerät F25<br />

der Carl Zeiss Industriellen Messtechnik.<br />

Dieses luftgelagerte, reibungsfrei<br />

aufgebaute 3D-Koordinatenmessgerät<br />

hat ein Messvolumen von einem<br />

Kubikdezimeter – entsprechend wurde<br />

der Entwurf des Mikroprüfwerkstücks mit<br />

seinen Merkmalen in den Abmessungen<br />

90 x 90 Millimetern hergestellt. Die F25<br />

ermöglicht es, bei einer Aufl ösung von<br />

0,25 Nanometern mit kleinsten Abtastkräften<br />

taktil bei einer Abweichung von<br />

250 Nanometern zu messen.<br />

Carl Zeiss Industrielle<br />

Messtechnik GmbH<br />

D – 73446 Oberkochen<br />

Phone +49(0)7364-20-3539<br />

Fax +49(0)7364-20-4657<br />

Mail lindmayer@zeiss.de<br />

Web www.zeiss.de/imt<br />

Das aktuelle Prüfwerkstück<br />

mit Geometriemerkmalen<br />

für den<br />

Genauigkeitsnachweis<br />

von 5-Achsen-Mikrofräsmaschinen.<br />

99


Current Innovations and Competencies of Companies<br />

Micro-Processing Materials with Industrial Picosecond Lasers<br />

Thousands of Nd-Lasers are manufactured<br />

every year for industrial applications:<br />

Spot-welding car bodies, cutting<br />

thin steel plates, drilling via-holes in<br />

PCBs, marking wafers or personalizing<br />

golf clubs.<br />

The laser radiation often consists of<br />

pulses with microsecond or nanosecond<br />

duration focussed on a small spot<br />

where the laser heats the material very<br />

fast, melts and vaporizes it.<br />

The negative side-effects of these thermal<br />

processes are micro-cracks, burrs<br />

and recast, which are unacceptable in<br />

high quality micro-machining applications.<br />

It has been known for decades that<br />

ultra-short laser pulses can be used to<br />

avoid these side-effects and allow for<br />

higher quality micro-processing. Until<br />

recently, picosecond- and femtosecond-lasers<br />

were complex, sensitive,<br />

expensive and bulky.<br />

100<br />

LUMERA LASER, a manufacturer of<br />

ultrashort pulse lasers, for the fi rst time<br />

demonstrated an industrially packaged<br />

reliable picosecond laser: The<br />

2,5 W RAPID. It is sealed and thermally<br />

stabilized and the software allows to preprogram<br />

different pulse sequences with<br />

variable delay. These sequences can be<br />

internally triggered with repetition rates<br />

up to 500 kHz or by external TTL pulses,<br />

which makes integration into machining<br />

systems very easy.<br />

Even at 500 kHz repetition rate, the<br />

RAPID provides suffi cient pulse energy<br />

to surpass the ablation threshold. It is<br />

very cost effi cient, with the total cost of<br />

ownership only in the order of 8 Euros<br />

per hour.<br />

LUMERA LASER also offers a 10 W amplifi<br />

ed version of the RAPID that combines<br />

the unrivalled new trigger capabilities<br />

and the 500 kHz rep rate with higher<br />

average power: The SUPER RAPID of-<br />

fers more than 4x the pulse energy for<br />

a price not even 40 % higher than the<br />

2,5 W RAPID. SUPER RAPID means<br />

increased throughput and higher cost<br />

effi ciency. Options for 532 nm, 355 nm<br />

and 266 nm are available for both the<br />

2,5 W and 10 W version.<br />

A new HYPER RAPID with 50 W average<br />

power and repetition rates up to 1 MHz<br />

is going to be launched soon.<br />

LUMERA LASER´s application lab demonstrated<br />

high quality micromachining on<br />

hundreds of materials with application<br />

engineers determining process parameters<br />

for optimized quality.<br />

Generally an energy density of about 1J<br />

per cm² is appropriate for high quality<br />

micromachining by “cold” ablation with<br />

good throughput.<br />

With a 10 W laser, up to 1 mm³ of different<br />

materials can be removed by ablation<br />

within one minute for a total cost of<br />

about 0.20 Euro.<br />

A 30 W prototype removed >10 mm³<br />

of material per minute, using a special<br />

burst mode!<br />

Recently, a new effect with high industrial<br />

potential was reported: Crack-free<br />

micro-welding of glass has been successfully<br />

demonstrated with a RAPID<br />

ps-laser with high process speeds<br />

(Miyamoto et.al., LAMP 2006).<br />

LUMERA-LASER GmbH<br />

Opelstraße 10<br />

D – 67661 Kaiserslautern<br />

Phone +49(0)6301-703-180<br />

Fax +49(0)6301-703-189<br />

Mail info@lumera-laser.com<br />

Web www.lumera-laser.com


Moving the Nano World<br />

Precision Positioning and Linear Drive Technology<br />

As a global market leader Physik Instrumente (PI) has been developing<br />

and manufacturing products in the fi eld of micro- and<br />

nanopositioning technology for more than 35 years.<br />

A great variety of piezo-driven positioning systems is available<br />

as standard, custom or OEM products. PI positioning systems<br />

like translation/rotation stages, PIFOC® microscope objective<br />

positioners, tip/tilt mirrors for beam steering, and 6-axis hexapods<br />

are characterized by their quality and innovation. They<br />

are used in various application areas such as optics/photonics,<br />

metrology, semiconductor technology, inspection systems,<br />

biotechnology and medical devices. PI employs more than<br />

450 staff worldwide and maintains sales, support and service<br />

Examples for<br />

high-precision<br />

nanopositioning<br />

systems for up<br />

to six degrees<br />

of freedom<br />

Beispiele<br />

hochpräziser<br />

Nanopositioniersysteme<br />

für<br />

Bewegungen<br />

in bis zu sechs<br />

Freiheitsgraden<br />

Präzisions-Positioniersysteme und Linearantriebe<br />

Physik Instrumente (PI) nimmt seit mehr als 35 Jahren eine<br />

Spitzenstellung auf dem Weltmarkt für hochpräzise Positioniertechnik<br />

ein. PI entwickelt Standard- und OEM-Produkte<br />

vornehmlich auf Basis von Piezoaktorik: Linear-/Rotationstische,<br />

PIFOC® Proben- und Objektiv-Positionierer für die<br />

Mikroskopie, Piezo-Kippspiegel zur optischen Strahlführung,<br />

Linear antriebe für bis zu 6-achsige Hexapoden. Die hochwertigen<br />

Positioniersysteme und Linearantriebe werden in den<br />

verschiedensten Anwendungen eingesetzt, darunter Optik &<br />

Photonik, Laserbearbeitung, Halbleiterfertigung, Inspektions-<br />

Current Innovations and Competencies of Companies<br />

offi ces in Germany, the USA, England, France, Italy, Japan<br />

and China. In addition, PI has representatives in many other<br />

countries around the world.<br />

systeme, Biotechnologie logie und für Medizingeräte Medizingeräte. Piezoelekt<br />

rische Aktoren ermöglichen Aufl ösungen im Sub-Nanometerbereich<br />

bei Ansprechzeiten von wenigen Millisekunden. Die<br />

klassische Nanostelltechnik nutzt im Bereich weniger Millimeter<br />

genau diese Eigenschaften.<br />

Piezolinearantriebe, die von PI entwickelt und eingesetzt<br />

werden, bieten darüber hinaus unbegrenzte Stellwege. Die<br />

verschiedenen Technologien wie Schreitantriebe oder Ultraschallmotoren<br />

besitzen dabei unterschiedliche Eigenschaften<br />

hinsichtlich der Krafterzeugung, Geschwindigkeit und Präzision.<br />

Allen diesen Antriebsprinzipien ist gemein, dass sie im<br />

Ruhezustand selbsthemmend sind und daher keine Halteströme<br />

benötigen. Sie sind kompakt, prinzipiell vakuumkompatibel<br />

und erzeugen keine Magnetfelder bzw. sie werden von diesen<br />

auch nicht beeinfl usst.<br />

Physik Instrumente (PI) GmbH & Co. KG<br />

Auf der Römerstrasse 1<br />

D – 76228 Karlsruhe<br />

Phone +49(0)721-4846-0<br />

Fax +49(0)721-4846-100<br />

Mail info@pi.ws<br />

Web www.pi.ws<br />

Piezo linear drives<br />

offer different levels of<br />

integrations: RodDrive<br />

(lower left corner), XY<br />

open-frame stages and<br />

Hexapods<br />

Piezolinearantriebe<br />

in verschiedenen<br />

Integrationsstufen: Vom<br />

RodDrive (unten links)<br />

über XY-Kreuztische bis<br />

hin zu Hexapoden<br />

Wir öffnen Nanowelten<br />

101


Current Innovations and Competencies of Companies<br />

The Micro System Analyzer –<br />

an All-In-One Measurement Workstation for Complete<br />

3-D Characterization of MEMS Dynamics and Topography<br />

The Polytec MSA-500 Micro<br />

System Analyzer is the premier<br />

measurement technology<br />

for the analysis and visualization<br />

of structural vibrations<br />

and surface topography in micro<br />

structures such as MEMS<br />

(Micro-Electro-Mechanical<br />

Systems) devices. By fully<br />

integrating a microscope with<br />

Scanning Laser-Doppler<br />

Vibrometry for fast, broadband,<br />

out-of-plane dynamics,<br />

Stroboscopic Video Microscopy<br />

for in-plane motion and<br />

White Light Interferometry for<br />

high resolution topography,<br />

the MSA-500 is designed as<br />

an all-in-one combination of<br />

technologies that clarifi es real<br />

microstructural response and topography.<br />

These technologies are integrated<br />

into a compact, robust and reliable all-inone<br />

measurement head.<br />

Non-Contact Measurements on Microstructures<br />

The MSA-500 Micro System Analyzer<br />

series was developed expressly for<br />

dynamic and static analysis of microstructures<br />

such as MEMS (or MOEMS)<br />

devices. These devices fi nd numerous<br />

applications in the automotive, medical,<br />

biochemical and aeronautic industries.<br />

As a consequence of this wide spread<br />

usage, standardized MEMS testing is<br />

essential for both packaged and unpackaged<br />

devices (single die and waferlevel<br />

testing). For wafer-level testing,<br />

the MSA-500 can easily be mounted<br />

onto manual or fully automated probe<br />

stations.<br />

102<br />

Incorporated in the MEMS design and<br />

test cycle, the MSA-500 provides<br />

precise 3-D data for dynamic response<br />

and static topography that simplifi es<br />

troubleshooting, enhances and shortens<br />

design cycles, improves yield and performance,<br />

and reduces production cost.<br />

Find All Mechanical Resonances<br />

without A-Priori Information<br />

Using wide-band excitation, the highly<br />

sensitive Laser-Doppler technique can<br />

rapidly fi nd all mechanical resonances<br />

(in-plane and out-of-plane) without<br />

a-priori information (a pure machine<br />

vision system could only measure at<br />

user-defi ned, discrete frequency points<br />

with single-frequency excitation). In a<br />

second step, the stroboscopic video<br />

microscopy technique is used to obtain<br />

accurate amplitude and phase information<br />

of in-plane resonances identifi ed by<br />

laser vibrometry.<br />

Convincing Benefi ts<br />

✦ Rapid identifi cation and visualization<br />

of both system resonances and<br />

static topography<br />

✦ Integrated microscope optics with<br />

optimized optical path for best lateral<br />

resolution and highest image quality<br />

✦ Easy integration with MEMS/wafer<br />

probe stations<br />

✦ Simple and intuitive operation, measurement<br />

ready within minutes<br />

✦ Increased productivity through short<br />

measurement cycle<br />

✦ Accelerates product development,<br />

troubleshooting and time-to-market<br />

Polytec GmbH<br />

Polytec-Platz 1-7<br />

D – 76337 Waldbronn<br />

Phone +49(0)7243-604-0<br />

Fax +49(0)7243-699-44<br />

Mail info@polytec.de<br />

Web www.polytec.com


Current Innovations and Competencies of Companies<br />

Der Micro System Analyzer – eine All-in-one Messstation<br />

zur vollständigen 3D-Charakterisierung der dynamischen<br />

Eigenschaften und der Topografie von MEMS<br />

Der Polytec MSA-500 Micro System<br />

Analyzer repräsentiert State-of-the-Art<br />

Messtechnik zur Analyse und Visualisierung<br />

der Schwingungsdynamik<br />

und der Oberfl ächentopografi e von<br />

Mikrosystemen wie z.B. MEMS<br />

(Micro-Electro-Mechanical System)<br />

und MOEMS. Das mikroskopbasierte<br />

MSA-500 integriert ein Mikro-Scanning<br />

Laser-Doppler Vibrometer für die<br />

schnelle, breitbandige Messung der<br />

„Out-of-plane”-Dynamik, ein stroboskopisches<br />

Video-Mikroskop für<br />

„In-Plane“-Bewegungen von MEMS<br />

sowie ein Weisslicht-Interferometer zur<br />

hochaufl ösenden Mikrotopografi emessung<br />

.<br />

Berührungslose Messung<br />

von Mikrostrukturen<br />

Der MSA-500 Micro System Analyzer<br />

wurde speziell entwickelt für die Analyse<br />

dynamischer und statischer Eigenschaften<br />

von Mikrostrukturen wie<br />

MEMS- (oder MOEMS-) Bausteinen.<br />

Derartige Bausteine werden mittlerweile<br />

in unzähligen Anwendungen in der<br />

Automobilindustrie, Medizintechnik,<br />

Biochemie und in der Luft- und Raumfahrt<br />

eingesetzt. Infolge der weiten<br />

Verbreitung und der Anwendung in<br />

sicherheitsrelevanten Bereichen sind<br />

systematische Testverfahren für MEMS-<br />

Mikrosysteme unerlässlich, sowohl an<br />

gekapselten als auch an ungekapselten<br />

Elementen (Single-Die und Wafer-Level-<br />

Testing). Für Anwendungen im Bereich<br />

des Wafer-Level-Testing, kann das<br />

MSA-500 einfach auf eine manuelle<br />

oder auch vollautomatische MEMS-<br />

Probestation montiert werden.<br />

Das MSA-500 integriert sich perfekt in<br />

den MEMS-Design- und -Test-Zyklus<br />

und liefert präzise dynamische und<br />

statische 3D-Daten. Die Ergebnisse<br />

verbessern und verkürzen die Design-<br />

Zyklen, vereinfachen die Fehlersuche,<br />

erhöhen die Ausbeute und Leistung und<br />

senken die Produktionskosten.<br />

Alle mechanischen Resonanzen werden<br />

ohne a-priori-Information gefunden<br />

Bei breitbandiger Anregung fi ndet<br />

die hochempfi ndliche Laser-Doppler-<br />

Technik sehr schnell und ohne a-priori<br />

Infor mation alle mechanischen Systemresonanzen<br />

(sowohl „Out-of-Plane“<br />

(aus der Bauteilebene heraus) als auch<br />

„ In-Plane“ (innerhalb der Bauteilebene)).<br />

(Ein reines „Machine-Vision“ System<br />

könnte nur an benutzerdefi nierten<br />

diskreten Frequenzen mit sinusartiger<br />

Anregung messen.) In einem zweiten<br />

Schritt wird die stroboskopische<br />

Video-Mikroskopie benutzt, um präzise<br />

Amplituden- und Phasen-Informationen<br />

für die In-Plane-Resonanzen zu erhalten,<br />

die durch die Laser-Vibrometrie identifi -<br />

ziert wurden.<br />

Überzeugende Vorteile<br />

✦ Schnelle Identifi zierung, Messung<br />

und Visualisierung sowohl der dynamischen<br />

System-Resonanzen als<br />

auch der statischen Topographie<br />

✦ Integriertes Mikroskop mit optimiertem<br />

optischen Pfad für hervorragende<br />

laterale Aufl ösung und beste<br />

Abbildungsqualität<br />

✦ Einfache Integration mit MEMS-Wafer-Probe-Stations<br />

✦ Einfache und intuitive Bedienung,<br />

messbereit in wenigen Minuten<br />

✦ Erhöhte Produktivität durch kurzen<br />

Messzyklus<br />

✦ Beschleunigt Produktentwicklung,<br />

Troubleshooting und Time-to-Market<br />

103


Current Innovations and Competencies of Companies<br />

Frequency Tuning of Bulk Material by Laser Trimming<br />

3D-Micromac AG<br />

Dipl.-Ing. Jens Hänel<br />

Dr.-Ing. Bernd Keiper<br />

Dipl.-Ing. Karsten Bleul<br />

The demand for increasing precision<br />

and yield of Microsystems requires new<br />

technologies in the fabrication process<br />

of sensors and actuators. In this paper<br />

the trimming of the resonant frequency of<br />

Micro Mirror Devices (MMD) are exemplifi<br />

ed, because MMDs are common<br />

used MEMS devices with a wide range<br />

of applications. Fabrication technologies<br />

cause tolerances in device dimensions<br />

and consequently on key parameters<br />

such as the resonant frequency. The<br />

standard deviation of the resonant frequency<br />

is up to 2.8% for MMDs at wafer<br />

level. The main goal is to trim all micro<br />

mirror elements on a wafer to one certain<br />

frequency value. The Center for Microtechnologies<br />

(ZfM) and the 3D-Micromac<br />

AG have developed a tool for automatic<br />

laser trimming of MEMS by using an ultra<br />

short pulsed laser. The investigations<br />

were done at 1-dimensional and 2-dimensional<br />

micro mirrors. Fig. 1 shows<br />

the FEM layout of the MMDs made in<br />

bulk technology with a detailed view of<br />

the previously etched trimming elements.<br />

A stepwise removal of these elements by<br />

laser cutting at the mirror plate effects a<br />

frequency increase because of mass reduction,<br />

whereas the removal at the torsion<br />

beams effects a frequency decrease<br />

because of a lower beam stiffness.<br />

Fig. 2<br />

SEM-Picture<br />

of the particle<br />

free cutting<br />

edge of a mass<br />

trimming element<br />

processed<br />

under vacuum<br />

conditions<br />

104<br />

Center for Microtechnologies (ZfM)<br />

Dr.-Ing. Christian Kaufmann<br />

Dipl.-Ing. Jens Bonitz<br />

The cutting was done by a picosecond<br />

and a femtosecond laser. In contrast to<br />

conventional long-pulse lasers a trimming<br />

by ultra-short laser pulses is preferred,<br />

because the ablation is accompanied<br />

only by a minimum of heat deposition<br />

into the material and only a narrow heat<br />

affected zone is formed. Though having<br />

longer pulse duration than a femtosecond<br />

laser, the picosecond laser is suitable<br />

for processing silicon micro mirror<br />

devices as well, when using the correct<br />

parameters. The surface contamination of<br />

the wafer is avoided by processing under<br />

Fig. 1<br />

FEM layout of<br />

the devices<br />

with a detailed<br />

view of the<br />

previously<br />

etched<br />

trimming<br />

elements<br />

(above:<br />

1D mirror,<br />

below:<br />

2D mirror)<br />

vacuum conditions, as shown in Fig. 2.<br />

With the presented process it is possible<br />

to shrink the standard deviation at wafer<br />

level down to 0.3%. In addition to the<br />

discrete removing of trimming elements<br />

with a frequency increment of 0.4% the<br />

material ablation on the micro mirror plate<br />

minimizes the standard deviation at wafer<br />

level down to 0.1%. The investigations<br />

prove that the ultra short pulsed lasers<br />

suit the frequency trimming very well and<br />

because of its fl exibility the process can<br />

be transferred to other applications and<br />

materials easily.<br />

3D-Micromac AG<br />

Annaberger Str. 240<br />

D – 09125 Chemnitz<br />

Phone +49(0)371-40043-0<br />

Fax +49(0)371-40043-40<br />

Mail info@3d-micromac.com<br />

Web www.3d-micromac.com


Rohwedder –<br />

Micro Technologies<br />

The division Micro Technologies of the<br />

Rohwedder AG represents within the<br />

Technology Portfolio of the corporation<br />

Group, system solutions for the micro<br />

assembly technique. Micro Technologies<br />

offers his customers complete solutions<br />

out of one hand, beginning at product<br />

development, up to the after Sales and<br />

offers thereby an customer-oriented<br />

service range, which goes far beyond<br />

pure technique solutions.<br />

Rohwedder offers more<br />

Particularly for the assembly of small<br />

and precise parts or units the<br />

MicRohCell® with the MicRohFlex®<br />

concept is a platform, which fulfi lls<br />

the substantial requirements to an<br />

economic assembly:<br />

✦ Flexibility and variability, with module<br />

component system<br />

✦ High re-use degree of all system<br />

components<br />

✦ Precision with continuous quality<br />

✦ Speed in combination with<br />

reliability<br />

Know how & many decades experience<br />

Beside micro assembly technology<br />

3 additional fi elds of operations covers<br />

the activities at the location Bruchsal:<br />

✦ High speed assembly machines for<br />

cycle times of 0,15 s / part<br />

✦ Plastic moulding automation<br />

✦ Automated optical Inspection (AOI)<br />

More than 500 manufacturing units<br />

and production systems for customers,<br />

from the ranges automotives, electronic<br />

industry, medical technology, optics<br />

and Consumer Goods were supplied<br />

worldwide.<br />

MicRohCell® mit MicRohFlex®<br />

Optical Barcode Reader<br />

Rohwedder AG – Micro Technologies<br />

Eisenbahnstraße 11<br />

D – 76646 Bruchsal<br />

Phone +49(0)7521-9824-4390<br />

Fax +49(0)7521-9824-2253<br />

Mail micro@rohwedder.com<br />

Web www.rohwedder.com<br />

Current Innovations and Competencies of Companies<br />

Rohwedder –<br />

Mikrotechnologien<br />

Die Division Micro Technologies der Rohwedder<br />

AG repräsentiert innerhalb des<br />

Technologie Portfolios der Konzern-Gruppe<br />

die Systemlösung für die Mikromontagetechnik.<br />

Micro Technologies bietet<br />

seinen Kunden von der Produktentwicklung,<br />

bis hin zum After Sales, Komplettlösungen<br />

aus einer Hand und bietet damit<br />

ein kundenorientiertes Leistungs-Paket,<br />

das weit über reine Techniklösungen<br />

hinausgeht.<br />

Rohwedder bietet mehr<br />

Speziell für die Montage kleiner und<br />

präziser Teile oder Baugruppen ist die<br />

MicRohCell® mit dem MicRohFlex®-<br />

Konzept eine Maschinenplattform, welche<br />

die wesentlichen Anforderungen an eine<br />

wirtschaftliche Montage erfüllt:<br />

✦ Flexibilität und Variabilität, durch<br />

Modulbaukasten<br />

✦ Hoher Wiederverwendungsgrad aller<br />

System- Komponenten<br />

✦ Präzision bei gleichbleibender Qualität<br />

✦ Schnelligkeit in Kombination mit Zuverlässigkeit<br />

Know-how und viele Jahrzehnte Erfahrung<br />

Neben der Mikromontage-Technologie<br />

prägen 3 weitere Tätigkeitsbereiche die<br />

Aktivitäten am Standort Bruchsal:<br />

✦ Kurztakt-Montageanlagen für<br />

Taktzeiten bis 0,15 sec/Teil<br />

✦ Spritzgussautomation<br />

✦ Automatisierte optische Inspektion<br />

(AOI)<br />

Über 500 Fertigungsanlagen- und<br />

Systeme wurden für Kunden aus den<br />

Bereichen Automotive, Elektronikindustrie,<br />

Medizintechnik, Optik und Consumer<br />

Goods weltweit geliefert.<br />

105


Current Innovations and Competencies of Companies<br />

Beam Shaping expands Laser Processing Potential<br />

High-power laser sources are used in<br />

a large variety of materials processing<br />

applications. Today, the most common<br />

include welding, soldering, cutting,<br />

drilling, laser annealing, micro-machining,<br />

ablation and micro-lithography. As<br />

well as choosing the right laser source,<br />

suitable high-performance optics that<br />

generate the appropriate beam profi le<br />

are critical.<br />

LIMO Lens Array Beam Shaping (LIMO<br />

LABS) improves the performance of<br />

many varieties of lasers: gas, solid-state,<br />

fi bre and diode. The beam shaping<br />

optics can be pre-aligned in compact<br />

and robust modules with well-defi ned<br />

interfaces and integrated into production<br />

systems for use in harsh environmental<br />

conditions.<br />

Various beam shaping principles, such<br />

as phase shifting for single-mode lasers<br />

and beam mixing for multi-mode lasers,<br />

are applied when we design industrial<br />

beam shaping solutions.<br />

Free-form micro-lens surfaces can be<br />

structured cost-effectively on glass<br />

and crystal wafers using LIMO’s unique<br />

Figure 1<br />

Joining of two thin<br />

steel springs by<br />

means of point<br />

welding at 20 W<br />

peak power, spot<br />

size 50 μm, three<br />

pulses of 4 μs<br />

duration.<br />

106<br />

production technology in tandem with<br />

computer-aided design. LIMO can structure<br />

theoretically optimised surfaces into<br />

almost any optical material with high precision,<br />

including fused silica, BK7 and<br />

calcium fl uoride for DUV applications as<br />

well as silicon, germanium and zinc selenide<br />

for CO2 lasers. Applying this technology<br />

to industrial diode laser systems<br />

with excellent beam quality combined<br />

with falling Dollar-per-Watt prices creates<br />

new opportunities, particularly in areas<br />

such as direct-diode welding or cutting<br />

and silicon thin-fi lm crystallization.<br />

x-head: Direct diode applications<br />

Compact and robust high-power diode<br />

lasers are reliable tools for materials<br />

processing. Fibre-coupled devices<br />

with more than 1 kW of output power,<br />

delivered via fi bres with core diameters<br />

ranging from 200 to 600 μm, are readily<br />

available for use in applications such as<br />

plastics welding, heat conduction welding<br />

of stainless steel and soldering in<br />

semiconductor, automotive or electronics<br />

industries.<br />

But the potential scope of direct-diode<br />

laser processing is much larger. New<br />

applications such as micro-welding of<br />

sensor housings or electrical contacts<br />

in PCB production, fi ne cutting of thin<br />

metal sheets and soldering or annealing<br />

processes in semiconductor and display<br />

production illustrate this point.<br />

Fibre-coupled and line-focus industrial<br />

ultra-high brightness diode lasers using<br />

simple interfaces and application specifi<br />

c beam shaping and delivery create<br />

opportunities by increasing throughput<br />

of and easing integration into OEM<br />

production equipment. Beam shaping<br />

and delivery designs that have a high<br />

optical effi ciency translate directly into<br />

lower operating currents and extend the<br />

lifetimes of diodes to 30,000 hours and<br />

beyond, according ISO17526:2003(E).<br />

A low operating current also reduces the<br />

thermal load and allows compact cooling<br />

technologies to be used.<br />

x-head: Welding and cutting<br />

with diode lasers<br />

In the past, pulsed lasers have been<br />

the light sources of choice especially for<br />

micro-materials processing. Pulsed laser<br />

sources with high repetition rates, pulse<br />

durations in the nanosecond range and<br />

high peak intensities show a good penetration<br />

into highly refl ective materials.<br />

However, many applications do not<br />

require these high peak pulse powers. In<br />

conductive welding, this process turns<br />

out to be a disadvantage as the resulting<br />

welding seam can suffer from spilling<br />

and pores.<br />

Figure 1 shows the spot welding of two<br />

steel springs. The micro-welding process


equires only three laser shots, each 4 μs<br />

in duration. A precisely pulsed current<br />

supply controls the laser power accurately<br />

yielding a stable output power with<br />

less than 1% power fl uctuations.<br />

Industrial diode laser system accessories<br />

include process heads with sensors<br />

to increase the process stability and<br />

reliability. In a closed loop circuit fed by<br />

online laser power or process temperature<br />

the diode current is adjusted<br />

with 1 kHz frequency. A vision system<br />

with an integrated camera is deployed<br />

in the process heads to position the<br />

laser beam on the work piece with high<br />

precision. A product example is shown<br />

in fi gure 3.<br />

x-head: Crystallization of semiconductor<br />

thin fi lms<br />

Industrial crystallization of silicon thin<br />

fi lms has traditionally been dominated<br />

by Excimer laser based processes. The<br />

arrival of ultra-homogeneous diode line<br />

beams of up to several meters in length<br />

combined with the design freedom<br />

provided by lens array beam shaping<br />

Figure 2<br />

Crystallites in a recrystallized<br />

500 nm<br />

Si thin fi lm on glass<br />

using a diode laser<br />

courtesy of IPhT,<br />

Jena, Germany.<br />

(LIMO LABS) creates new opportunities<br />

in this application. Falling diode prices<br />

continue to improve the business case<br />

for very large systems with several tens<br />

of kilowatts of power.<br />

Researchers at IPhT in Jena and CIS<br />

in Erfurt, both Germany, have used a<br />

maintenance-free 350 W diode line laser<br />

to treat thin-fi lm solar cells (fi gure 4). Mi-<br />

Current Innovations and Competencies of Companies<br />

Figure 3<br />

Diode laser<br />

processing head<br />

with integrated<br />

sensors: power<br />

meter, pyrometer,<br />

camera, and digital<br />

interfaces to control<br />

the process<br />

Figure 4<br />

350W diode<br />

laser module with<br />

homogeneous<br />

line profi le of<br />

12 x 0,1 mm<br />

used for the<br />

crystallization of<br />

silicon thin fi lms<br />

cro-optic lens arrays are integrated into<br />

the laser head to shape the processing<br />

line making it scalable to several meters.<br />

Crystallization of 200 nm and 500 nm<br />

a-Si fi lms on a SixNy diffusion barrier on<br />

glass has been demonstrated. Large<br />

crystallites of more than 100 μm size<br />

are achieved at a scanning speed of 33<br />

mm/s. The result is shown in fi gure 2.<br />

LIMO Lissotschenko Mikrooptik GmbH<br />

Bookenburgweg 4-8<br />

D – 44319 Dortmund<br />

Phone +49(0)231-22 241-0<br />

Fax +49(0)231-22 241-301<br />

Mail sales@limo.de<br />

Web www.limo.de<br />

107


Current Innovations and Competencies of Companies<br />

Megasonic Cleaning in<br />

Microsystems Technology<br />

and Semiconductor Production<br />

The increasing integration of ever smaller<br />

structures in semiconductors and microsystems<br />

places growing demands on their<br />

cleaning. Smallest particles down to nano<br />

scales need to be cleaned off of sensitive<br />

surfaces. (Fig. 1)<br />

Fig.1: Megasonic nozzle, mounted on a movable arm,<br />

above rotating wafer.<br />

Source: SONOSYS Ultrasonic Systems GmbH<br />

An ultrasonic system with a working<br />

frequency of 1 Megahertz (MHz), also<br />

called megasonic system, is clearly superior<br />

to a conventional, low-frequency<br />

Fig. 2: Principle of megasonic cleaning.<br />

Source: SONOSYS Ultraschallsysteme GmbH.<br />

108<br />

ultrasonic system with, for example, 40<br />

kilohertz (kHz). Because of the signifi -<br />

cantly lower cavity energy, microstructures<br />

are not destroyed and the cleaning<br />

process is optimized. Megasonic<br />

systems are particularly well suited for<br />

use in fl uid processes in manufacture of<br />

semiconductor wafers, substrates, optical<br />

glasses and microsystems.<br />

Ultrasound systems are described as<br />

megasonic systems, if they work at a<br />

frequency range of 700 kHz to 4 MHz.<br />

The cavities and micro currents generated<br />

in fl uids (Fig. 2) allow removal of<br />

adhesive particles with sizes down to<br />

nano scales, for instance from sensitive<br />

substrate surfaces and out of grooves in<br />

microstructures. Particle size and sensitivity<br />

of the substrate surface are criteria<br />

for selection of the appropriate ultrasonic<br />

frequency.<br />

Of similar interest is the process support<br />

in production of micro structures with<br />

high aspect ratio through X-ray lithography.<br />

Fig. Fi 33: Developed D l d micro i structure t t bbefore f and d after ft<br />

megasonic cleaning. Source: SONOSYS Ultraschallsysteme<br />

GmbH / Forschungszentrum Karlsruhe<br />

During the development process, particles<br />

are completely fl ushed out due to<br />

the created microstream and the development<br />

times are reduced by a factor of<br />

7. The depth of fragile structures can be<br />

enlarged by a factor of 2 (Fig. 3).<br />

Our Services – Your Benefi t<br />

In developing our megasonic systems<br />

we relied on a close dialog with our<br />

customers. You will get a system solution,<br />

specifi cally developed and geared<br />

towards your requirements and your<br />

application area, according to the newest<br />

technological developments, from<br />

SONOSYS®.<br />

✦ SONOSYS® is known world wide<br />

for unique and future-proof solutions.<br />

✦ Immersible ultrasonic transducers<br />

or fl oor-mounted systems with a<br />

frequency of 400 kHz to 2 MHz and<br />

megasonic nozzles with a frequency<br />

of 1 / 2 / 3 or 4 MHz guarantee an<br />

unmatched cleaning of particles<br />

down to nano scales while fully prevent<br />

the microstructures.<br />

✦ Some standard confi gurations are<br />

available as test system on rental<br />

basis.<br />

✦ Problem-free integration of our<br />

systems in your production lines and<br />

processes through minimal installation<br />

effort and simple operation.<br />

✦ The modular generator design guaranties<br />

an individually adapted service<br />

and high serviceability.<br />

SONOSYS® Ultraschallsysteme GmbH<br />

Daimlerstrasse 6<br />

D – 75305 Neuenbürg – Germany<br />

Phone +49(0)7082-79184-0<br />

Fax +49(0)7082-79184-99<br />

Mail info@sonosys.de<br />

Web www.sonosys.de


Sophisticated<br />

Opportunity –<br />

Fabrication and Mounting<br />

of Image Sensors<br />

Many of today‘s machines can only<br />

be optimized through miniaturization:<br />

Chip-on-Board technologies<br />

(COB) continue to fi nd even more<br />

new applications. One of these is<br />

the production of camera modules<br />

with image sensors. With COB<br />

technology the ‚naked‘ chip is<br />

adhered to the circuit board and<br />

then connected with bonding wire.<br />

Another option is to mount the<br />

chip in a ceramic housing, using<br />

wire positioning, which can then<br />

be hermetically sealed, as needed.<br />

Both of these methods set high<br />

demands on the processing conditions.<br />

Clean rooms are needed<br />

since even a single speck of dust<br />

can make the optical chip unusable.<br />

Furthermore, the later operational<br />

conditions can be demanding<br />

of the camera module: If built into<br />

an automobile, e.g., the sensors<br />

will need to withstand water spray,<br />

moisture, vibrations or extreme<br />

temperatures and temperature<br />

changes. Additionally, the positioning<br />

precision of the image sensor<br />

is particularly important. In order<br />

to ensure that connections remain<br />

intact despite material expansion,<br />

a good knowledge of materials<br />

essential. The materials used for<br />

producing, e.g., boards or adhesives<br />

play a deciding role in the<br />

quality and reliability of the fi nished<br />

product. Microelectronic Packaging<br />

Dresden has decades of experience<br />

manufacturing microelectronic<br />

components, so-called ‚packaging‘,<br />

and makes this experience available<br />

as a service provider.<br />

Cross section of an image sensor, showing the die, bond<br />

wires, housing and substrate<br />

A complex microsystem: camera module with mixed<br />

signal electronic, image sensor and optical lenses.<br />

Production Facility and Headquarters of MPD in Silicon<br />

Saxony, Germany.<br />

MPD GmbH<br />

Thomas Ruf (Sales Manager)<br />

Grenzstr.22<br />

D – 01109 Dresden<br />

Phone +49(0)351-2136 -033<br />

Fax +49(0)351-2136 -109<br />

Mail Thomas.Ruf@mpd.de<br />

Web www.mpd.de<br />

Current Innovations and Competencies of Companies<br />

Filigrane<br />

Angelegenheit –<br />

Verarbeitung und Montage<br />

von Image-Sensoren<br />

Viele technische Geräte lassen sich<br />

heute nur durch Miniaturisierung weiter<br />

optimieren: Die Chip-on-Board-Technologie<br />

(COB) erobert immer mehr<br />

Einsatzbereiche. Einer davon ist die<br />

Produktion von Kameramodule mit Imagesensoren.<br />

Bei der COB-Technologie<br />

werden die „nackten“ Chips direkt auf<br />

die Leiterplatte geklebt und anschließend<br />

mit Bonddrähten kontaktiert. Eine<br />

andere Möglichkeit ist Draht-positionierte<br />

Montage in Keramikgehäusen,<br />

bei Bedarf mit anschließendem hermetischen<br />

Verschluss. Beide Methoden<br />

stellen hohe Anforderungen an die<br />

Verarbeitungsbedingungen. Reinräume<br />

werden benötigt, denn bereits ein<br />

einziges Staubkorn kann den optischen<br />

Chip unbrauchbar machen. Gleichzeitig<br />

stellen auch die späteren Einsatzbedingungen<br />

hohe Anforderungen an die<br />

Kamera-Module: Beim Einbau im Automobil<br />

z.B. müssen die Sensoren mit<br />

Spritzwasser, Feuchtigkeit, Vibrationen<br />

oder extremen Temperaturen und Temperaturschwankungen<br />

klar kommen.<br />

Zusätzlich ist bei der Verarbeitung des<br />

Image-Sensors die Positioniergenauigkeit<br />

äußerst wichtig. Um sicher zu stellen,<br />

dass trotz Materialausdehnungen<br />

dichte Verbindungen auch dicht<br />

bleiben, ist eine gute Materialkenntnis<br />

unerlässlich. Die eingesetzten Werkstoffe<br />

z.B. für Boards oder Klebstoffe<br />

bestimmen in entscheidendem Maße<br />

die Qualität und Zuverlässigkeit der Aufbauten.<br />

Die Microelectronic Packaging<br />

Dresden hat jahrzehntelange Erfahrung<br />

mit der Verarbeitung von Mikroelektronischen<br />

Komponenten, so genanntes<br />

„Packaging“ und bietet dieses Knowhow<br />

als Dienstleister an.<br />

109


Current Innovations and Competencies of Companies<br />

microform.200 –<br />

The Most Flexible Single Wafer ECD Tool<br />

For almost 20 years<br />

technotrans is renowned<br />

world-wide for its turnkey<br />

electroforming systems<br />

for the production of<br />

mould inserts for optical<br />

storage media such as<br />

CD’s, DVD’s and high<br />

density formats. With<br />

the benefi t of experience<br />

gained over the<br />

years a new system of<br />

the microform.line was<br />

introduced in 2003: the<br />

microform.50.<br />

The basic idea was to develop the<br />

industrially proven technology of optical<br />

disc production for new micro technology<br />

applications. The intention is<br />

to provide the market with a fl exible<br />

development tool: fi rst it could be used<br />

for process development, then for pilot<br />

production and fi nally for series production<br />

of micro components and microstructures.<br />

The aim was to considerably<br />

shorten the “Time-To-Market“ of various<br />

products.<br />

Meanwhile several microform.50 and<br />

100 systems as well as the large format<br />

system microform.500 have been<br />

installed at various R&D facilities in Europe,<br />

the USA and Asia.<br />

In September 2007 the latest development<br />

in the microform product group<br />

was introduced at the SEMICON<br />

Europa: the microform.200. In co-operation<br />

with NXP, one of the leading<br />

manufacturers of semiconductors, chips<br />

and electronic components world-wide,<br />

110<br />

technotrans has developed a highly<br />

fl exible electroplating system, which has<br />

been specifi cally designed for the more<br />

sophisticated requirements in the production<br />

of passive components, fl ip chip<br />

bumping and through-silicon-via plating.<br />

While typical front-end production technology<br />

for such applications generally<br />

provides insuffi cient deposition capacity,<br />

PCB board technology is frequently not<br />

adequately geared toward the requirements<br />

of wafer technology. The microform.200<br />

fi lls this gap. High deposition<br />

rates combined with highest precision<br />

and repeatability within a compact clean<br />

room tool.<br />

The purpose-designed alignment of<br />

anode and cathode at a 45° angle in<br />

combination with the high overfl ow of<br />

the cathode ensures a very thin and<br />

very even boundary layer on the surface<br />

of the wafer. In connection with the<br />

geometric form of the electrical fi eld<br />

between anode and cathode this results<br />

in a very even distribution<br />

of the dissolved metal on<br />

the surface.<br />

The system can be<br />

individually equipped for<br />

process development. For<br />

example all the usual wafer<br />

formats up to 240 mm can<br />

be processed in appropriate<br />

substrate holders. Various<br />

process rectifi ers for<br />

direct current and pulse<br />

plating processes in various<br />

power stages are also<br />

available. Furthermore the<br />

tank system and the circulation system<br />

can be prepared for various electrolytes<br />

and applications.<br />

The important thing for developer and<br />

operator alike is that the operational<br />

concept and the basic design of the<br />

system are identical. For applications in<br />

the semiconductor industry this means<br />

that, regardless whether the customer<br />

processes copper, tin, gold, nickel or<br />

alloys, he can fi rst develop the process<br />

with a unit and then increase capacity to<br />

fulfi l market demands with identical units<br />

– without having to adapt or redevelop<br />

the processes on other units.<br />

technotrans AG<br />

Robert-Linnemann-Strasse 17<br />

D – 48336 Sassenberg<br />

Phone +49(0)2583-301-0<br />

Fax +49(0)2583-301-1030<br />

Mail stefan.knipper@technotrans.de<br />

Web technotrans.de


technotrans ist seit fast zwei Jahrzehnten<br />

weltweit bekannt für seine schlüsselfertigen<br />

Galvaniksysteme zur Herstellung<br />

von Spritzgießwerkzeugeinsätzen für<br />

optische Datenträger wie CD, DVD und<br />

High-Density Formate. Basierend auf<br />

dieser Erfahrung wurde 2003 erstmalig<br />

ein System der microform Linie vorgestellt:<br />

die microform.50.<br />

Kernidee war, die industriell erprobte<br />

Technik der Optical-Disc Fertigung für<br />

neue Anwendungen im Bereich der<br />

Mikrotechnik weiter zu entwickeln. Dem<br />

Markt sollte ein Entwicklungstool an<br />

die Hand gegeben werden, mit dem<br />

zunächst die Prozessentwicklung,<br />

anschließend die Pilotfertigung und<br />

schließlich die erste Serienfertigung von<br />

Mikrobauteilen oder -strukturen<br />

möglich ist. Ziel war es, die „Time-<br />

To-Market“ unterschiedlichster<br />

Produkte erheblich zu verkürzen.<br />

In der Zwischenzeit konnten in<br />

verschiedenen Forschungs- und<br />

Entwicklungseinrichtungen in Europa,<br />

den USA und Asien Systeme<br />

vom Typ microform.50 und 100<br />

sowie das Großformat System<br />

microform.500 in Betrieb gehen.<br />

Im September 2007 wurde im<br />

Rahmen der SEMICON Europa die<br />

neueste Entwicklung der microform<br />

Produktgruppe vorgestellt: die<br />

microform.200. In Kooperation mit<br />

NXP, einem der weltweit führenden<br />

Produzenten für Halbleiter,<br />

Chips und Elektronikbaugruppen,<br />

entstand ein hochfl exibles Galvaniksystem,<br />

welches explizit für die<br />

steigenden Anforderungen bei der<br />

Herstellung von passiven Bauelementen,<br />

Flip-Chip Bumping und Through-Silicon-<br />

Via Plating ausgelegt ist.<br />

Während typische Front-End Produktionstechnik<br />

für diese Anwendungen im<br />

allgemeinen eine zu geringe Abscheidekapazität<br />

hat, ist die Leiterplattentechnik<br />

vielfach nicht ausreichend auf die Anforderungen<br />

der Wafertechnik ausgelegt.<br />

Die microform.200 füllt genau diese<br />

Lücke auf: Hohe Abscheidekapazität<br />

verbunden mit größtmöglicher Präzi sion<br />

und Wiederholgenauigkeit in einem<br />

kompakten Reinraumtool.<br />

Die spezielle Anordnung von Anode<br />

und Kathode im 45° Winkel in Kombination<br />

mit der hohen Überströmung<br />

der Kathode erzeugen eine sehr dünne<br />

Current Innovations and Competencies of Companies<br />

und sehr gleichmäßige Grenzschicht auf<br />

der Oberfl äche des Wafers. In Verbindung<br />

mit der geometrischen Form des<br />

elektrischen Feldes zwischen Anode<br />

und Kathode, ergibt sich so eine sehr<br />

gleichmäßige Verteilung des gelösten<br />

Metalls auf der Oberfl äche.<br />

Für die Prozessentwicklung kann das<br />

System sehr individuell ausgestattet<br />

sein. Zum Beispiel können alle gängigen<br />

Waferformate bis 240mm in entsprechenden<br />

Substrataufnahmen prozessiert<br />

werden. Darüber hinaus stehen diverse<br />

Prozessstromquellen für Gleichstrom<br />

und Puls-Plating Prozesse in unterschiedlichen<br />

Leistungsstufen bereit.<br />

Auch das Tank- und Zirkulationssystem<br />

kann auf verschiedenste Elektrolyte und<br />

Anwendungen ausgelegt werden.<br />

Wichtig sowohl für den Entwickler als<br />

auch für den Bediener einer Produktionsanlage<br />

ist, dass das Bedienkonzept<br />

und der prinzipielle Aufbau des Systems<br />

immer identisch sind. Für die Anwendungen<br />

im Halbleitermarkt heißt das,<br />

egal ob der Kunde Kupfer, Zinn, Gold,<br />

Nickel oder Legierungen verarbeitet,<br />

er kann mit einem identischen Gerät<br />

zunächst den Prozess erarbeiten und<br />

anschließend mit der Marktentwicklung<br />

die Kapazität erhöhen – ohne die Prozesse<br />

auf anderen Systemen erst wieder<br />

neu zu adaptieren oder entwickeln zu<br />

müssen.<br />

111


Current Innovations and Competencies of Companies<br />

Innovation for Micro and Precision Technology<br />

of Tomorrow<br />

For many years, SCHUNK has been<br />

working on an enlargement of its product<br />

program in the areas of toolholding,<br />

workholding, and automation to<br />

meet the requirements of micro-system<br />

technology.<br />

In the areas of toolholding and workholding,<br />

SCHUNK is offering the TRIBOS-<br />

Mini, a toolholder designed for micro<br />

clamping. The TRIBOS-Mini can clamp<br />

shank diameters as small as 0.3 mm<br />

with highest centering accuracy. Another<br />

example for uniqueness pertains to<br />

the customized clamping component,<br />

where two fi ligree clockwork parts are<br />

clamped concentrically to each other on<br />

a few micrometers.<br />

For automated technology, SCHUNK<br />

has enlarged its proven gripper series<br />

MPG and SWG with sizes below<br />

10 (edge length). Simultaneously the<br />

company offers a miniature changing<br />

112<br />

system, MWS, which is the smallest<br />

automated gripper changing system<br />

world-wide. Aside from a large, centered<br />

aperture, it is also equipped with integrated<br />

feedthroughs for pneumatic and<br />

electric hoses.<br />

Together with gripper and rotary<br />

modules, linear axes, or positioning<br />

modules from the SCHUNK modular<br />

system, a compact assembly group for<br />

micro machining can be arranged in a<br />

very short period of time. As a result,<br />

SCHUNK will lead the way as a supplier<br />

of desktop manufacturing components.<br />

In the future, SCHUNK will also further<br />

drive the technological development in<br />

micro-manufacturing by implementing<br />

market-driven innovations.<br />

Managing Directors:<br />

Heinz-Dieter Schunk<br />

Henrik A. Schunk<br />

Year of foundation: 1945<br />

Employees world-wide: more than 1,600<br />

Consolidated turnover of the<br />

organization<br />

in 2006 worldwide: 150 million. Euro<br />

PRODUCT RANGE<br />

Workholding and Toolholding<br />

Technology<br />

✦ Toolholding Systems<br />

✦ Stationary Workholding Systems<br />

✦ Lathe Chucks<br />

✦ Chuck Jaws<br />

✦ Customized Toolholding Solutions<br />

✦ Industry Solutions<br />

Automation<br />

✦ Gripping Modules<br />

✦ Rotary Modules<br />

✦ Linear Modules<br />

✦ Robot Accessories<br />

✦ Mechatronics<br />

✦ System GEMOTEC<br />

✦ Special Automation<br />

✦ Industry Solutions<br />

SCHUNK GmbH & Co. KG<br />

Spann- und Greiftechnik<br />

Bahnhofstr. 106 – 134<br />

D – 74348 Lauffen/Neckar<br />

Phone +49(0)7133-103-0<br />

Fax +49(0)7133-103-2399<br />

Mail info@de.schunk.com<br />

Web www.schunk.com


Impressum<br />

Publisher/Herausgeber<br />

trias Consult<br />

Johannes Lüders<br />

Crellestraße 31<br />

D – 10827 Berlin<br />

Phone +49 (0)30-781 11 52<br />

Mail trias-consult@gmx.de<br />

Translation/Übersetzung<br />

Dr. Otto-G. Richter<br />

Richter IT & Science Consulting<br />

Costa Mesa, CA, USA<br />

Mail: otto@rits-consulting.us<br />

otto@richter-its-consulting.de<br />

Layout<br />

Uta Eickworth, Berlin<br />

Mail: eickworth@onlinehome.de<br />

Printing/Druck<br />

CCC Grafi sches Centrum Cuno, Calbe<br />

2008, Printed in Germany<br />

114<br />

Photo Credits/Bildnachweis<br />

Title/Titel<br />

Micro Mixers with very fi ne Leading Structures and a Geometrically Reducing Mixing<br />

Chamber Result in a Complete Mixing Within Splits of a Second<br />

Mikromischer mit sehr feinen Zuführungsstrukturen und einer sich verjüngenden Mischkammer<br />

führen zum vollständigen Vermischen in Sekundenbruchteilen<br />

Source/Quelle: IMM Institut für Mikrotechnik Mainz<br />

Page/Seite<br />

2/3<br />

ZrO 2-Nozzle-Plate of a Ceramic Micro Turbine – Compared with the Size of an Ant<br />

Düsenplatte einer keramischen Mikroturbine aus ZrO2-Größenvergleich mit einer Ameise<br />

Source/Quelle: Forschungszentrum Karlsruhe<br />

8/9<br />

ESP Sensor Cluster MM3<br />

ESP Sensorcluster MM3<br />

Source/Quelle: Robert Bosch GmbH<br />

13<br />

MagnetoResitive Sensors for Novel Applications in Industrial Automation, Automotive<br />

Applications, Medicine or Bio Analytics<br />

MagnetoResitive Sensoren für innovative Anwendungsfelder in der Industrieautomation,<br />

automotiven Anwendungen,der Medizin und BioAnalytik<br />

Source/Quelle: Sensitec GmbH<br />

38/39<br />

Source/Quelle: Fraunhofer IZM<br />

57<br />

Materials for Circuit Assembly and Semiconductor Packaging<br />

Hochwertige Materialien für die Aufbau und Verbindungtechnik sowie Halbleiterindustrie<br />

Source/Quelle: W. C. Heraeus GmbH<br />

71<br />

Source/Quelle: Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin<br />

87<br />

Roll Clad Composite Materials, Contact Materials, Bonding Wires, Solder Pastes and<br />

Conductive Adhesives for Die-attach Applications For Packaging of Integrated Circuits<br />

e. g. for Hydraulic Brake Systems.<br />

Walzplattierte Verbundwerkstoffe, Kontaktmaterialien, Bonddrähte, Lotpasten und Leitkleber<br />

für Die-Attach Applikationen für die Aufbau- und Verbindungstechnik<br />

z. B. für hydraulische Bremssysteme.<br />

Source/Quelle: W. C. Heraeus GmbH


Für Wissenschaft+Innovation<br />

TSB Technologiestiftung Berlin Gruppe<br />

Die TSB<br />

… fördert Wissenschaft und Forschung<br />

… entwickelt und realisiert die Innovationsstrategie<br />

des Landes Berlin<br />

Die TSB GmbH<br />

… berät innovationsorientierte Gründer sowie<br />

kleine und mittlere Unternehmen<br />

… unterstützt den Technologietransfer von<br />

den Hochschulen in die Wirtschaft<br />

Die TSB Initiativen<br />

… vernetzen Wissenschaft und Wirtschaft<br />

… managen Netzwerke und Leuchtturmprojekte<br />

www.technologiestiftung-berlin.de<br />

Unsere Schwerpunkte<br />

… Medizintechnik (TSB Medici)<br />

… Verkehrssystemtechnik (TSB FAV)<br />

… Biotechnologie (BioTOP)<br />

… Informations- und Kommunikationstechnologie<br />

(TSB Adlershof)<br />

… Optische Technologien/Mikrosystemtechnik<br />

(TSB Adlershof)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!