Application of biochar in rice productivity and nitrogen run-off control

Application of biochar in rice productivity and nitrogen run-off control Application of biochar in rice productivity and nitrogen run-off control

biochar.international.org
from biochar.international.org More from this publisher
21.03.2015 Views

International Workshop on Production and Application of Biochar in China’s Agriculture Application of biochar in rice productivity and nitrogen run-off control Weixiang Wu, Min Yang, Yuxue Liu, Da Dong, Qibo Feng, Minmin Zhou College of Environment and Resource Science, Zhejiang University E-mail: weixiang@zju.edu.cn Sept, 2011

International Workshop on Production <strong>and</strong> <strong>Application</strong> <strong>of</strong> Biochar <strong>in</strong> Ch<strong>in</strong>a’s Agriculture<br />

<strong>Application</strong> <strong>of</strong> <strong>biochar</strong> <strong>in</strong> <strong>rice</strong> <strong>productivity</strong><br />

<strong>and</strong> <strong>nitrogen</strong> <strong>run</strong>-<strong>of</strong>f <strong>control</strong><br />

Weixiang Wu, M<strong>in</strong> Yang, Yuxue Liu, Da Dong, Qibo Feng, M<strong>in</strong>m<strong>in</strong> Zhou<br />

College <strong>of</strong> Environment <strong>and</strong> Resource Science,<br />

Zhejiang University<br />

E-mail: weixiang@zju.edu.cn<br />

Sept, 2011


Current situation <strong>of</strong> soil quality <strong>in</strong> Ch<strong>in</strong>a<br />

Low organic matter content: average 1% <strong>in</strong> Ch<strong>in</strong>a<br />

Large area <strong>of</strong> middle <strong>and</strong> low yield arable l<strong>and</strong><br />

Lack <strong>of</strong> nutrients<br />

Arable l<strong>and</strong> <strong>of</strong> different yield <strong>in</strong> Zhejiang (2006)<br />

Intensive cropp<strong>in</strong>g system is one <strong>of</strong> the most important reasons.


2400<br />

5000<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

N-fertilizer<br />

4800<br />

Produ. rate<br />

4600<br />

4400<br />

4200<br />

4000<br />

3800<br />

3600<br />

Year<br />

(Zhu & Chen, 2004)<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

Nitrogen fertilizer (10 4 ton)<br />

Production rate (kg/ha)<br />

Increas<strong>in</strong>g rate<br />

1000<br />

3400<br />

Decade<br />

1949– 1958<br />

1959– 1968<br />

1969– 1978<br />

1979– 1988<br />

1989– 1998<br />

1949– 1998<br />

Nitrogen fertilizer VS food production<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

(Ch<strong>in</strong>a Statistical Yearbook, 2008)<br />

b Y=A+bX


Run-<strong>of</strong>f <strong>nitrogen</strong> fertilizer & water eutrophication<br />

Crop<br />

Sown area<br />

(×10 8 hm 2 )<br />

Consumption <strong>of</strong> chemical<br />

Fertilizer (kg/hm 2 )<br />

Amount <strong>of</strong> N <strong>run</strong>-<strong>of</strong>f<br />

(×10 4 t/a)<br />

Rice 3.06 300 77.69<br />

Vegetable 1.8 720 57.60<br />

Nitrogen <strong>run</strong>-<strong>of</strong>f rate from paddy field: 30-70%


A new technology ?<br />

Reduce <strong>nitrogen</strong> <strong>run</strong>-<strong>of</strong>f pollution<br />

Improve soil quality<br />

Increase crop yield<br />

Carbon sequestration


Biochar<br />

Temperature<br />

residence time<br />

oxygen<br />

feedstock<br />

Great porosity<br />

Large surface<br />

area<br />

High stability<br />

High capability<br />

<strong>of</strong> adsorption<br />

…<br />

Reta<strong>in</strong><br />

nutrients<br />

Reduce<br />

fertilizer used<br />

Improve soil<br />

<strong>productivity</strong><br />


Equipment for <strong>rice</strong> straw <strong>biochar</strong> production (small scale)<br />

Rice straw/bamboo<br />

Biochar


Facility for produc<strong>in</strong>g <strong>biochar</strong> <strong>and</strong> <strong>biochar</strong>-based slow release<br />

fertilizer<br />

Carbonization<br />

equipment<br />

Gr<strong>in</strong>der<br />

Waste gas treatment<br />

Control System<br />

Waste/heat<br />

recovery unit<br />

Conveyor<br />

Suction device<br />

Cutt<strong>in</strong>g Mach<strong>in</strong>e<br />

(Patent <strong>Application</strong> No: 201010514198.7)


70-100 kg/d <strong>of</strong> <strong>rice</strong> straw <strong>biochar</strong><br />

Rice straw production facilities <strong>in</strong> pilot scale


Rice straw <strong>biochar</strong><br />

600<br />

500<br />

Temperature ( ℃)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 20 40 60 80<br />

Time (h)


Facility for produc<strong>in</strong>g slow release fertilizer<br />

Yield: 10-100 kg/h


Slow release fertilizers<br />

1# 2# 3#<br />

4# 5#<br />

Raw materials<br />

Common N fertilizers<br />

Rice straw <strong>biochar</strong><br />

Bentonite<br />

…<br />

(Patent <strong>Application</strong> No: 201110110405.7.)


Release rate <strong>of</strong> slow release fertilizer<br />

samples<br />

24h(%)<br />

7d(%)<br />

10d(%)<br />

14d(%)<br />

28d(%)<br />

1#<br />

87.59<br />

---<br />

---<br />

---<br />

---<br />

2#<br />

51.38<br />

63.58<br />

63.86<br />

---<br />

---<br />

3#<br />

15.05<br />

26.79<br />

27.64<br />

28.45<br />

63.66<br />

4#<br />

51.10<br />

67.88<br />

68.31<br />

---<br />

---<br />

5#<br />

14.88<br />

25.10<br />

26.04<br />

27.24<br />

60.88<br />

The 5# sample meets the Ch<strong>in</strong>a criterion that Release rate <strong>of</strong> slow release<br />

fertilizer < 15% <strong>in</strong> 24hrs <strong>and</strong>


Physiochemical property <strong>of</strong> bamboo <strong>and</strong> <strong>rice</strong> straw charcoal<br />

Pack<strong>in</strong>g density<br />

(g·cm -3 )<br />

pH<br />

CEC<br />

(cmol·kg -1 )<br />

BET SA<br />

(m 2·g-1 )<br />

Pore Volume<br />

(cm 3·g-1 )<br />

Bamboo<br />

char(BC)<br />

0.568<br />

9.81<br />

15.3<br />

182.6<br />

0.171<br />

Straw char(SC)<br />

0.125<br />

10.8<br />

23.9<br />

101.6<br />

0.070<br />

0.2<br />

0.18<br />

BC<br />

SC<br />

0.16<br />

D iffe r e n tia l P o r e V o lu m e (c m 3 g - 1 )<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

a<br />

b<br />

0.04<br />

0.02<br />

0<br />

2<br />

5<br />

2 0<br />

Pore Width (nm)<br />

5 0<br />

2 0 0<br />

3 0 0<br />

c<br />

d<br />

Pore size distribution curves <strong>of</strong> <strong>biochar</strong><br />

SEM photos <strong>of</strong> <strong>biochar</strong><br />

(a、b: bamboo char; c、d: c<br />

straw char )


Adsorption capacity <strong>of</strong> <strong>biochar</strong><br />

8<br />

7<br />

6<br />

BC<br />

SC<br />

q e (mg/g)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 200 400 600 800 1000<br />

C e (mg/L)<br />

Equilibrium adsorption isotherm <strong>of</strong> NH + 4 -N N on bamboo <strong>and</strong> <strong>rice</strong> straw char<br />

Rice straw char exhibited a much higher adsorption capacity for<br />

NH 4+<br />

-N than bamboo char at 25℃.


Stability <strong>of</strong> <strong>rice</strong> straw <strong>biochar</strong><br />

Micrographs <strong>of</strong> <strong>biochar</strong> <strong>in</strong> ancient paddy soil


Evaluation <strong>of</strong> <strong>biochar</strong> amendment on <strong>nitrogen</strong><br />

retention <strong>and</strong> leach<strong>in</strong>g characteristic<br />

Bamboo charcoal: 0.5%<br />

N fertilizer: 400 kg N ha -1


Effect <strong>of</strong> <strong>biochar</strong> amendment on NH 4+<br />

-N concentration <strong>in</strong> the<br />

leachate <strong>of</strong> soil columns at different depth<br />

300<br />

250<br />

200<br />

150<br />

*<br />

*<br />

*<br />

* *<br />

*<br />

1 0 cm 6 0<br />

2 0 cm<br />

C K<br />

N<br />

N B<br />

5 0<br />

4 0<br />

3 0<br />

*<br />

* *<br />

*<br />

NH4 + -N (mg L -1 )<br />

100<br />

50<br />

16<br />

14<br />

2 0<br />

1 0<br />

30 c m 1 8<br />

4 0 cm<br />

1 6<br />

12<br />

10<br />

8<br />

6<br />

1 4<br />

1 2<br />

1 0<br />

4<br />

0 7 14 21 2 8 35 42 4 9 56 6 3 7 0<br />

8<br />

0 7 14 21 2 8 35 4 2 49 56 6 3 70<br />

Tim e (d )<br />

Addition <strong>of</strong> BC could significantly reduce NH 4+<br />

-N concentration <strong>in</strong> leachate from 10 cm depth<br />

with<strong>in</strong> the first 7 days. However, it was <strong>in</strong> reverse from 7 to 28 days dur<strong>in</strong>g the experiment.<br />

No significant difference <strong>in</strong> leachate NH 4+<br />

-N concentration was observed until day 49 at 20 cm<br />

depth.


Effect <strong>of</strong> <strong>biochar</strong> amendment on cumulative losses <strong>of</strong> NH 4+<br />

-N<br />

from soil columns at different depths<br />

100<br />

80<br />

CK<br />

N<br />

NB<br />

20<br />

10 cm 20 cm<br />

15<br />

*<br />

*<br />

NH 4<br />

+ -N (mg column<br />

-1 )<br />

60<br />

40<br />

20<br />

10<br />

8<br />

6<br />

*<br />

*<br />

*<br />

*<br />

*<br />

10<br />

5<br />

30 cm<br />

10<br />

40 cm<br />

8<br />

6<br />

4<br />

4<br />

2<br />

2<br />

1 4 7 10 14 21 28 35 42 49 56 63 70<br />

Time (d)<br />

1 4 7 10 14 21 28 35 42 49 56 63 70<br />

<strong>Application</strong> <strong>of</strong> BC can reduce cumulative losses <strong>of</strong> NH 4+<br />

-N via leach<strong>in</strong>g by 15.2% at 20 cm<br />

with<strong>in</strong> 70 days observation.<br />

(Water Air Soil Pollut. 2010, 213:47–55.)


Influence <strong>of</strong> <strong>biochar</strong> (SC <strong>and</strong> BC) amendment on <strong>rice</strong><br />

<strong>productivity</strong><br />

Head<strong>in</strong>g<br />

Control<br />

Rice straw <strong>biochar</strong><br />

1%<br />

Maturity<br />

CK: <strong>control</strong>; BC: bamboo char; SC: <strong>rice</strong> straw char;<br />

CKU: urea; BCU: BC + urea; SCU: SC + urea;


CK<br />

BC<br />

SC<br />

CKU<br />

BCU<br />

SCU<br />

SRU<br />

CK BC SC CKU BCU SCU SRU<br />

Heitht (cm)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

ab ab ab<br />

ab a<br />

bcc<br />

c<br />

c<br />

c<br />

cd<br />

d<br />

b<br />

bc b<br />

a<br />

bc<br />

ab<br />

cd c<br />

d<br />

bc<br />

a<br />

ab<br />

70<br />

60<br />

50<br />

a a a a a a a<br />

Seedl<strong>in</strong>g Boot<strong>in</strong>g Head<strong>in</strong>g Matur<strong>in</strong>g<br />

Stages <strong>of</strong> <strong>rice</strong> development<br />

Effect <strong>of</strong> <strong>rice</strong> straw <strong>biochar</strong> on <strong>rice</strong> height


10<br />

8<br />

c<br />

c<br />

b<br />

CK BC SC CKU BCU SCU<br />

a<br />

ab<br />

b ab<br />

bc<br />

c<br />

a<br />

abc abc<br />

Yield(t/ha)<br />

6<br />

4<br />

2<br />

0<br />

2009 2010<br />

Time<br />

Effect <strong>of</strong> <strong>biochar</strong> on <strong>rice</strong> yield over 2 years’ field experiment (experiment set <strong>in</strong> 2009)<br />

CK: <strong>control</strong>; BC: bamboo char; SC: <strong>rice</strong> straw char;<br />

CKU: urea; BCU: BC + urea; SCU: SC + urea;<br />

Average <strong>in</strong>creas<strong>in</strong>g rate: SC 19.8-21.6%(Compared to CK); SCU 11.1-14.4%<br />

(Compared to CKU).


Influence <strong>of</strong> <strong>rice</strong> straw <strong>biochar</strong> on <strong>nitrogen</strong> fertilizer<br />

<strong>in</strong>put reduction<br />

SC<br />

1%straw char + CK<br />

CK<br />

general amount <strong>of</strong> fertilizer<br />

SCL<br />

1%SC + 10% less <strong>of</strong> CK<br />

Second field experiment set <strong>in</strong> 2010


Influence on concentration <strong>of</strong> NH 4 + -N, NO 3 - -N <strong>in</strong> surface water<br />

NH4 + -N(mg/L)<br />

40.00<br />

35.00<br />

30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

* *<br />

CK BC SC SCL RS SRF1 SRF2<br />

Treatment<br />

2010-7-27 2010-9-5<br />

CK: general amount <strong>of</strong> fertilizer (180kg N/ha)<br />

BC: bamboo char(1%) + CK (180kg N/ha)<br />

SC: straw char (1%) + CK (180kg N/ha)<br />

SCL: straw char(1%) +less CK(162kg N/ha)<br />

RS: <strong>rice</strong> straw(1.3%) + CK (180kg N/ha)<br />

SRF1: charcoal coated slow released fertilizer1 (180kg N/ha)<br />

SRF2: charcoal coated slow released fertilizer2 (180kg N/ha)


13.5% 7.14% 15.1% 10.3%<br />

Gloss fresh Yield(t/ha)<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

cd<br />

ab bc cd<br />

a d<br />

ab<br />

CK BC SC SCL RS SR1 SR2<br />

Treatment<br />

Effect <strong>of</strong> <strong>biochar</strong> <strong>and</strong> <strong>biochar</strong>-based based slow released fertilizer on <strong>rice</strong><br />

yield (experiment set <strong>in</strong> 2010)


Conclusions<br />

Biochar might be used as an ideal amendment for<br />

retard<strong>in</strong>g vertical movement <strong>of</strong> NH 4+ -N <strong>and</strong> m<strong>in</strong>imiz<strong>in</strong>g<br />

the <strong>nitrogen</strong> loss through leach<strong>in</strong>g.<br />

Biochar amendment <strong>in</strong> paddy field is able to<br />

significantly <strong>in</strong>crease <strong>rice</strong> <strong>productivity</strong> <strong>and</strong> reduce N<br />

fertilizer <strong>in</strong>put. Thus, it may prevent N fertilizer <strong>run</strong>-<strong>of</strong>f<br />

from paddy field.<br />

Rice straw <strong>biochar</strong>-based slow released fertilizer can<br />

not only <strong>in</strong>crease <strong>rice</strong> <strong>productivity</strong>, but also reduce N<br />

fertilizer <strong>run</strong>-<strong>of</strong>f from paddy field.<br />

Rice straw <strong>biochar</strong> with proper properties might be <strong>and</strong><br />

ideal material for improv<strong>in</strong>g low fertility paddy field.


Perspectives<br />

1<br />

Optimiz<strong>in</strong>g <strong>biochar</strong> ???<br />

Characteristics Function<br />

Soil-<strong>biochar</strong>-crop <strong>in</strong>teraction<br />

70<br />

1h 2h 3h 5h<br />

CEC(cmol/kg)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

300 400 500 600 700<br />

Temperature(℃)<br />

1.0<br />

0.8<br />

300 400 500 600 700<br />

H/C<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

O /C


2<br />

Mechanisms <strong>and</strong> technology development<br />

for N <strong>run</strong>-<strong>of</strong>f <strong>control</strong> <strong>in</strong> agriculture<br />

Biochar??<br />

http://www.google.com.hk/imgres<br />

www.google.com.hk/imgres?


3<br />

Risk Assessment?<br />

a<br />

b<br />

Biochar concentration<br />

Biochar concentration<br />

c<br />

d<br />

Comet assay<br />

Biochar concentration<br />

Biochar concentration<br />

Distributions <strong>and</strong> mean levels <strong>of</strong> DNA damage caused by <strong>biochar</strong>. (a) Tail<br />

length; (b) Tail moment; (C) Oliver tail moment; (d) Tail DNA (*: p


Acknowledgments:<br />

• National Natural Science Foundation <strong>of</strong> Ch<strong>in</strong>a (NSFC)<br />

• Natural Science Foundation <strong>of</strong> Zhejiang Prov<strong>in</strong>ce<br />

• National Critical Project for Science <strong>and</strong> Technology on<br />

Water Pollution Prevention <strong>and</strong> Control<br />

Thanks for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!