21.03.2015 Views

Soil priming effects following biochar incorporation - International ...

Soil priming effects following biochar incorporation - International ...

Soil priming effects following biochar incorporation - International ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Soil</strong> <strong>priming</strong> <strong>effects</strong> <strong>following</strong><br />

<strong>biochar</strong> <strong>incorporation</strong><br />

Yu Luo 1,2 , Mark Durenkamp 1<br />

Qimei Lin 2 and Phil Brookes 1<br />

1<br />

Department of <strong>Soil</strong> Science, Rothamsted Research, Harpenden, UK<br />

2<br />

China Agricultural University, Beijing, China


Carbon sequestration<br />

Biochar<br />

<strong>Soil</strong> Organic C<br />

<strong>Soil</strong> Organic C<br />

<strong>biochar</strong> contributes to<br />

the refractory soil<br />

organic carbon pool<br />

help decrease the<br />

<strong>effects</strong> of global<br />

warming.


The <strong>priming</strong> <strong>effects</strong> <strong>following</strong><br />

substrate addition<br />

CO 2 CO 2<br />

substrate<br />

<strong>Soil</strong> Organic C<br />

soil organic C<br />

mineralisation increased<br />

or decreased by the<br />

addition of organic<br />

substrates.<br />

positive <strong>priming</strong> <strong>effects</strong> (PE).<br />

Negative PE.


The <strong>priming</strong> <strong>effects</strong> <strong>following</strong> <strong>biochar</strong> addition<br />

CO 2 CO 2 CO 2<br />

Biochar C<br />

How about <strong>biochar</strong>?<br />

?<br />

Biochar<br />

<strong>Soil</strong> Organic C<br />

Positive PE may partially<br />

offsets the <strong>effects</strong> of<br />

<strong>biochar</strong> as a long-term<br />

carbon sink in soil<br />

Negative PE could benefit<br />

It still remain poorly understood.


Experimental design<br />

• <strong>Soil</strong>: Hoosfield pH 4 and pH 8<br />

• Biochar: Miscanthus produced at 350 and 700 o C<br />

• Biochar rate: 50 g C kg -1 soil<br />

• Incubation: 90 and 180 days at 40 % Water<br />

Holding Capacity at 25 °C


pH<br />

8.5<br />

7.5<br />

6.5<br />

5.5<br />

4.5<br />

3.5<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Distance (m)<br />

Site: Hoosfield acid strip<br />

HOOSFIELD ACID STRIP<br />

Started more than 100years ago<br />

pH 8.0<br />

pH 5.0<br />

pH 4.0<br />

Organic C (%)<br />

1.05<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

flinty silty clay loam (18-27 % clay)<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Distance (m)


Experimental design<br />

• <strong>Soil</strong>: Hoosfield pH 4 and pH 8<br />

• Biochar: Miscanthus produced at 350 and 700 o C<br />

• Biochar rate: 50 g C kg -1 soil<br />

• Incubation: 90 days at 40 % Water Holding<br />

Capacity at 25 °C


Experimental design<br />

• <strong>Soil</strong>: Hoosfield pH 4 and pH 8<br />

<strong>Soil</strong> Biochar Treatments<br />

pH4 Nil pH4<br />

• Biochar: pH4 Miscanthus BC350 produced at pH4+BC350<br />

and 700 o C<br />

pH4 BC700 pH4+BC700<br />

• Biochar rate: 50 g C kg-1soil<br />

pH8 Nil pH8<br />

pH8 BC350 pH8+BC350<br />

• Incubation: pH8 90 days BC700 at 40 % Water pH8+BC700 Holding<br />

Capacity at 25 °C


soil organic C loss after 90 days<br />

1000<br />

900<br />

800<br />

µg CO 2-C 2 g -1 soil<br />

700<br />

600<br />

500<br />

400<br />

300<br />

?<br />

?<br />

200<br />

100<br />

?<br />

?<br />

0<br />

pH 4 pH 4 +<br />

<strong>biochar</strong><br />

350<br />

pH 4 +<br />

<strong>biochar</strong><br />

700<br />

pH 8 pH 8 +<br />

<strong>biochar</strong><br />

350<br />

pH 8 +<br />

<strong>biochar</strong><br />

700


Quantification of CO 2 evolution<br />

δ 13 C<br />

C3-<strong>Soil</strong> pH 4 -26.579<br />

pH 8 -26.946<br />

C4-Biochar BC350 -12.002<br />

BC700 -12.291<br />

Based on the different stable isotope composition<br />

(represented as δ 13 C value), the percentage of CO 2 -C<br />

from C4 plant can be known by determining the carbon<br />

isotopic composition after <strong>incorporation</strong> of new C4<br />

vegetation C in C3 SOM pools.


Quantification of CO 2 evolution<br />

µg CO 2-C 2 g -1 soil<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

soil-derived CO2<br />

<strong>biochar</strong>-derived CO2<br />

PE<br />

PE<br />

PE<br />

PE<br />

0<br />

pH 4 pH 4 +<br />

<strong>biochar</strong><br />

350<br />

pH 4 +<br />

<strong>biochar</strong><br />

700<br />

pH 8 pH 8 +<br />

<strong>biochar</strong><br />

350<br />

pH 8 +<br />

<strong>biochar</strong><br />

700


The <strong>Soil</strong> organic C loss caused by the <strong>priming</strong> <strong>effects</strong> offsets<br />

the positive <strong>effects</strong> of <strong>biochar</strong> on carbon sequestration<br />

But…


This loss will be more than compensated<br />

CO 2 CO 2<br />

by <strong>biochar</strong> <strong>incorporation</strong><br />

CO2<br />

Biochar C<br />

<strong>biochar</strong> loss<br />

SOC loss<br />

<strong>Soil</strong> Organic C<br />

<strong>Soil</strong><br />

<strong>Soil</strong><br />

Organic<br />

Organic C<br />

<strong>Soil</strong> Organic C<br />

With <strong>biochar</strong><br />

Without <strong>biochar</strong>


Organic C in soil after 90 days<br />

7<br />

6<br />

% of C in<br />

soil<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

pH 4 pH 4 +<br />

BC350<br />

pH 4 +<br />

BC700<br />

pH 8 pH 8 +<br />

BC350<br />

pH 8 +<br />

BC700


Unpyrolyzed<br />

biomass<br />

CO 2 CO 2<br />

CO 2 CO 2<br />

pyrolyzed<br />

<strong>biochar</strong><br />

?<br />

<strong>Soil</strong> Organic C<br />

<strong>Soil</strong> Organic C<br />

With pyrolysis<br />

Without pyrolysis


Short conclusion<br />

• Biochar caused <strong>priming</strong> effect, especially with <strong>biochar</strong>350, thus,<br />

partially offsets the positive <strong>effects</strong> of <strong>biochar</strong> on carbon<br />

sequestration<br />

• Priming <strong>effects</strong> caused by Miscanthus <strong>biochar</strong> might be smaller<br />

than non-pyrolysed Miscanthus. Also, this C loss might be more<br />

than compensated. Both needs further research.


Correlation between soil organic C mineralisation<br />

and <strong>biochar</strong> mineralisation<br />

Interactive increased mineralisation between added <strong>biochar</strong> and soil organic C<br />

was explained as microbial co-metabolism


iological<br />

<strong>Soil</strong> Organic C<br />

Biochar


<strong>Soil</strong> ATP after 90 days<br />

ATP nmol g-1 soil<br />

5<br />

4<br />

3<br />

2<br />

1<br />

pH 4<br />

5<br />

4<br />

3<br />

2<br />

1<br />

pH 8<br />

0<br />

0


<strong>Soil</strong> microbial biomass<br />

200<br />

pH 4<br />

200<br />

pH 8<br />

Microbial biomass C<br />

(µg C g- -1 soil)<br />

150<br />

100<br />

50<br />

150<br />

100<br />

50<br />

0<br />

O 350 700<br />

0<br />

O 350 700<br />

BC350 increase biomass but BC700 doesn’t change<br />

All data represent the mean of 3 replicates +/- SE


Microbial colonization in pH high soil<br />

+BC350<br />

+BC700


Water Extractable Organic Carbon and Nitrogen


Biochar <strong>incorporation</strong> into Biomass<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

pH4 pH8<br />

<strong>biochar</strong> derived<br />

microbial biomass (%)<br />

BC700 in<br />

pH4 soil<br />

0<br />

O + BC350 O + BC700


iological<br />

<strong>Soil</strong> Organic C<br />

Biochar<br />

Physicochemical


<strong>Soil</strong> acid properties<br />

K 2 SO 4<br />

extractable Al<br />

K 2 SO 4<br />

extractable Mn<br />

Treatments<br />

<strong>Soil</strong>s<br />

pH<br />

(µg g -1 soil)<br />

(µg g -1 soil)<br />

O Low pH 3.73 (0.02) 540.41 (5.27) 66.30 (1.30)<br />

High pH 7.47 (0.03) 6.63 (2.84) DD<br />

O+<strong>biochar</strong>350 Low pH 4.41 (0.03) 265.12 (18.0) 105.66 (2.64)<br />

High pH 7.70 (0.02) 3.82 (1.50) DD<br />

O+<strong>biochar</strong>700 Low pH 5.14 (0.01) 203.98 (10.9) 7.40 (0.07)<br />

High pH 8.06 (0.02) 2.92 (2.12) DD


The mechanisms of short term PE<br />

It may caused by the activated soil microorganisms<br />

through:<br />

Food--labile organic C and nutrient availability<br />

House—large surface area<br />

Better environment--Liming effect


iological<br />

<strong>Soil</strong><br />

charsphere<br />

Biochar<br />

Physicchemical


1. Large surface area<br />

2. available C and nutrient<br />

3. Water<br />

4. Temperature<br />

5. Aeration<br />

6. Liming effect<br />

Microorganisms<br />

<strong>Soil</strong> Organic C<br />

Root<br />

Added OM


Conclusion<br />

Biochar caused short term <strong>priming</strong> effect, especially with <strong>biochar</strong>350<br />

The soil organic C loss or surplus with the addition of <strong>biochar</strong> needs<br />

further investigation.<br />

The <strong>priming</strong> <strong>effects</strong> were most probably caused by the activated soil<br />

microorganisms through the water soluble components of the<br />

<strong>biochar</strong>, or by others, like, surface area, liming <strong>effects</strong>.<br />

The interaction between different organic C in the charsphere<br />

requires further investigation


Acknowledgements<br />

Jean Devonshire<br />

Wendy Wilmer<br />

Anne Duffy<br />

Martina Masna<br />

-Rothamsted Research, Harpenden, UK<br />

Guitong Li<br />

Xiaorong Zhao<br />

Tao Ma<br />

-China Agricultural University, Beijing, China<br />

CSC funding


The mechanisms of short term PE<br />

Caused by the activated soil microorganisms through:<br />

Food--labile organic C and nutrient availability<br />

House—large surface area<br />

Better environment--Liming effect<br />

Also, possibly, advanced home appliances<br />

a) air conditioner (aeration)<br />

b) Humidifier (moisture)<br />

c) heater (albedo)


appendix<br />

13 C Calculation<br />

ATP,<br />

biomass, methodology


The standard equation for determining δ 13 C (‰) is derived from:<br />

δ 13 C (‰) = [(R sample /R VPDB ) – 1] × 1000, Eqn. 1<br />

where R sample is the mass ratio of 13 C to 12 C and R VPDB is the international PDB<br />

limestone standard.<br />

The labelled 13 C (%) was then estimated from:<br />

CO 2 - 13 C (%) = (δ treatment - δC3) / (δC4 - δC3), Eqn. 2<br />

where CO 2 - 13 C (%) is the proportion of evolved CO 2 from C4 (Miscanthus <strong>biochar</strong>)<br />

materials, δ treatment is the δ 13 C (‰) in treatment, δC3 is the δ 13 C (‰) in control soil<br />

and δC4 is the δ 13 C (‰) from C4 (Miscanthus <strong>biochar</strong>) materials.<br />

Thus, the CO 2 -C produced by <strong>biochar</strong> during the incubation was calculated from:<br />

CO 2 - 13 C (μg g -1 soil) = CO 2 - 13 C (%) × total evolved CO 2 -C (μg g -1 soil) Eqn. 3


The absolute <strong>priming</strong> effect (or primed soil CO 2 -C) with the addition of <strong>biochar</strong> was<br />

calculated from:<br />

Primed soil CO 2 -C (µg C g -1 soil) = CO 2 -C treatment - CO 2 -C control , Eqn. 4<br />

where CO 2 -C treatment is the non-isotopically labelled CO 2 -C evolved from <strong>biochar</strong><br />

amended soil, CO 2 -C control is non-isotopically labelled CO 2 -C evolved from control.<br />

The <strong>priming</strong> effect of soil organic C, expressed as the % increase compared to CO 2 -<br />

C evolved from the control was calculated from:<br />

Priming effect (%) = 100 × (CO 2 -C treatment - CO 2 -C control ) / CO 2 -C control Eqn. 5


Plants possessing the C3 pathway have δ 13 C<br />

values with a mean of –27‰.<br />

Plant with C4 photosynthesis discriminate less<br />

Plant with C4 photosynthesis discriminate less<br />

against 13 CO 2 , thus have greater δ 13 C values<br />

than C3 plants, with a mean of –13‰.


<strong>Soil</strong> microbial biomass--ATP<br />

An independent measure of soil microbial<br />

biomass<br />

Only present in living cells<br />

Linearly related to soil microbial biomass C<br />

May be accurately and precisely extracted<br />

from soil and measured by firefly luciferin –<br />

luciferase reagent.


ATP concentration of microbial biomass<br />

10.4 µmoles ATP g -1 biomass C (n=207)<br />

Contin<br />

et al.<br />

(2001)


ERROR: syntaxerror<br />

OFFENDING COMMAND: --nostringval--<br />

STACK:<br />

86<br />

14042<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!