21.03.2015 Views

Padé approximations for Painlevé I and II transcendents

Padé approximations for Painlevé I and II transcendents

Padé approximations for Painlevé I and II transcendents

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Padé</strong> <strong>approximations</strong> <strong>for</strong><br />

<strong>Painlevé</strong> I <strong>and</strong> <strong>II</strong> <strong>transcendents</strong><br />

Victor Novokshenov<br />

Institute of Mathematics<br />

Ufa Scientific Center<br />

Russian Academy of Sciences<br />

The Fifth International Workshop<br />

«SOLITONS, COLLAPSES AND TURBULENCE:<br />

Achievements, Developments <strong>and</strong> Perspectives»<br />

CHERNOGOLOVKA, Moscow region, RUSSIA<br />

August 2-7, 2009


Outline<br />

• Motivation: focusing NLS equation <strong>and</strong> PI<br />

• Poles of PI tritronqueé solution<br />

• Fast algorithm <strong>for</strong> <strong>Padé</strong> approximation<br />

• Tronqueé vs. tritronqueé<br />

• Exponentially vanishing terms<br />

• Dubrovin’s conjecture<br />

• <strong>Padé</strong> <strong>approximations</strong> <strong>for</strong> P<strong>II</strong><br />

V.Novokshenov, TMPh, 159(3): 853-862 (2009).


Focusing NLS equation<br />

A model <strong>for</strong> incipient modulation instability<br />

with initial profile<br />

2<br />

<br />

2<br />

it<br />

<br />

xx<br />

| | 0, 1<br />

2<br />

2 <br />

( x,0) A( x)exp iS( x) / .<br />

x<br />

<br />

x<br />

<br />

Take u | | , v ,<br />

2i<br />

<br />

ut<br />

( uv) x<br />

0,<br />

<br />

2<br />

2<br />

uxx<br />

u <br />

x<br />

vt vvx ux<br />

<br />

2 <br />

<br />

4 u 2u<br />

x<br />

Elliptic umbilic catastrophe [1] :<br />

A( x) A sech x, S( x) tanh x<br />

0<br />

2<br />

1 2 2 2<br />

H uv u ux<br />

,<br />

2 8u<br />

u ( H ) 0, v ( H ) 0.<br />

t v x t u x<br />

[1]<br />

B.Dubrovin, T.Grava <strong>and</strong> C.Klein, J.Nonlin.Sci.19 (2009) 57-94


Universality of critical behavior: PI special solution<br />

2/5<br />

4/5<br />

( x, t, ) ( X , T ) ( z),<br />

z z( X , T ) / , where X,T – slow space-time,<br />

2<br />

zz<br />

6 z - <strong>Painlevé</strong> I equation<br />

tritronquée solution ( z)<br />

Pierre<br />

Boutroux<br />

1880 - 1922<br />

• All solutions are meromorphic<br />

• The poles accumulate along the rays<br />

2<br />

i<br />

arg z n, n 0, 1, 2.<br />

5<br />

• Tronquée solution: no poles in two<br />

consecutive sectors (say, along z )<br />

• Trironquée solution: no poles along three<br />

consecutive rays [2]<br />

• Asymptotics at infinity:<br />

z<br />

z O z z <br />

6<br />

2<br />

( ) 1 ( ) , .<br />

[2]<br />

'P.Boutroux,. Ann.Ecole Norm., 30 (1913) 265 - 375.


PI <strong>and</strong> isomonodromic de<strong>for</strong>mations<br />

2 2<br />

z<br />

2<br />

2<br />

z 2<br />

<br />

<br />

2( )<br />

<br />

z<br />

,<br />

<br />

<br />

0 2<br />

<br />

z <br />

1 0 <br />

14 1 4<br />

1 <br />

<br />

( z)<br />

3<br />

k<br />

( z)<br />

<br />

e <br />

2 <br />

<br />

14 1<br />

4<br />

<br />

<br />

4<br />

1 0 <br />

<br />

5<br />

0 1<br />

52 12<br />

( z)<br />

z <br />

3<br />

<br />

( z) ( z)<br />

S <br />

k1 k k k k 1<br />

S<br />

The Lax pair<br />

normalization<br />

k<br />

1<br />

s 1 0<br />

S <br />

2k1<br />

2k1 2k<br />

0 1 s2k<br />

1<br />

1 1 1 <br />

13 z<br />

3<br />

<br />

z<br />

<br />

2 1 1<br />

12<br />

( z) lim 4 ( ) e<br />

( )<br />

1<br />

<br />

<br />

<br />

<br />

11<br />

Inversion <strong>for</strong>mula<br />

Tritronquée solution: s1 s2 s3 s4 i, s5<br />

0


<strong>Padé</strong> <strong>approximations</strong> <strong>for</strong> PI solutions<br />

Q: How to find poles of PI function?<br />

A: For large by Isomonodromy Method, else – numerically.<br />

| z |<br />

Main diagonal <strong>Padé</strong> approximation:<br />

( z)<br />

<br />

0<br />

1z<br />

1<br />

z<br />

1 1<br />

2<br />

<br />

The idea of algorithm: an invariance of <strong>Painlevé</strong> equations under Möbius<br />

trans<strong>for</strong>mation.<br />

2 2 3<br />

A Bu u C Du u B u<br />

E Fu Gu Hu<br />

2 0,<br />

zz z z<br />

where A…H are polynomials of z vanishing at zero, <strong>and</strong><br />

retains the <strong>for</strong>m of equation.<br />

u<br />

u<br />

<br />

u


Let<br />

u<br />

n<br />

n<br />

, then<br />

1 zu<br />

n1<br />

The Fair-Luke algorithm [3]<br />

2 2 3<br />

A B u u C D u u B u<br />

E F u G u H u<br />

2 0,<br />

n n n n n n n n n n n n n n n n n<br />

<strong>and</strong> the recurrence holds<br />

<strong>and</strong><br />

If<br />

An nBn<br />

An 1 An nBn , Bn 1<br />

zAn , Cn<br />

1<br />

2 Cn nDn<br />

,<br />

z<br />

C <br />

D E<br />

D 2 A zC , F 3 2 F <br />

G ,<br />

n n n n<br />

n1 n n n1<br />

n n n<br />

z n<br />

<br />

E z E F G H , H z A ,<br />

1 1 2 1 2<br />

n1 n n n n n n n n1<br />

n n<br />

G z A C z E F<br />

<br />

1 1<br />

n1<br />

2<br />

n n<br />

3<br />

n n n<br />

,<br />

n1<br />

un<br />

1<br />

0<br />

E<br />

<br />

F<br />

n1<br />

n<br />

1<br />

, then<br />

(0) .<br />

(0)<br />

<br />

<br />

<br />

0<br />

Pn<br />

( z)<br />

u( z) u0( z)<br />

<br />

1z 1<br />

Qn<br />

( z)<br />

2z<br />

1 1<br />

[3]<br />

W.Fair, Y.Luke, Math.Comp. 20 (1968), p.602-605


<strong>Padé</strong> approximation <strong>for</strong> PI<br />

<br />

zz<br />

<br />

2<br />

6 z,<br />

(0) ,<br />

0<br />

(0)<br />

<br />

1<br />

u( z)<br />

Put<br />

2<br />

0 1<br />

2 2 3 4 2<br />

<br />

0 1 0 1<br />

0<br />

Pn<br />

( z)<br />

<br />

<br />

1z <br />

Qn<br />

( z)<br />

n-th order Pade fraction<br />

<br />

1 1<br />

1<br />

( z) z z u( z),<br />

then<br />

2<br />

z u 4zu 2 1 6 z 6 z u 6z u z 6 z 0<br />

generic tronquée tritronquée<br />

0.1<br />

0<br />

0.3<br />

1<br />

0.16<br />

0<br />

0.2193934573994778462<br />

1<br />

0.18755430834118852651722253248835<br />

0<br />

0.30490556026020212024373994560756<br />

1


Why the precision of<br />

Exponentially vanishing terms<br />

<br />

, <br />

0 1<br />

is crucial?<br />

z 1<br />

( z)<br />

<br />

2<br />

6 48z<br />

a <br />

8 3 <br />

4<br />

5/ 4 <br />

4/5<br />

exp z<br />

5/8 1 O( z ) | z | <br />

z <br />

5 2 <br />

18<br />

3<br />

a arg z <br />

( s s ), z <br />

7 /8<br />

2 <br />

1 4 1 5<br />

( z)<br />

<br />

( z)<br />

<br />

a 0<br />

z<br />

6<br />

z<br />

6<br />

a 0 - tronquée, a 0<br />

- tritronquée<br />

Exponential terms are hard to control numerically.<br />

<br />

Initial conditions<br />

while a is changing.<br />

, <br />

0 1<br />

are almost the same<br />

But not the distribution of the poles!<br />

a 0


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Evolution of poles towards tritronqueé solution<br />

2<br />

uzz<br />

6u z


Elliptic function asymptotics at infinity<br />

<br />

i 5/ 4<br />

( z) ( e z g2( ) g3( )) | z |<br />

where is Weierstrass function with modules<br />

g ( ) 2 i<br />

2<br />

<br />

o<br />

e <br />

<br />

g<br />

( ) A( ) 4 <br />

3 1 2 3<br />

a<br />

( ) b<br />

( ) <br />

ln( is22k<br />

)<br />

2<br />

i<br />

b<br />

( ) ln(<br />

1<br />

is5 2k<br />

) O (<br />

<br />

<br />

<br />

z ) <br />

2<br />

i<br />

4<br />

6<br />

arg z [4]<br />

5 5<br />

. - poles of elliptic function<br />

- <strong>Padé</strong> approximation<br />

The Boutroux problem<br />

2 3 1 i 1<br />

w ( ) e A( )<br />

2 4<br />

( )( )( ) <br />

1 2 3<br />

<br />

1 2 3<br />

0<br />

<br />

1 i<br />

1 2<br />

23 31<br />

e <br />

<br />

2<br />

Re w( ) d<br />

0<br />

<br />

<br />

a,<br />

b<br />

1 4<br />

1 3<br />

as <br />

6<br />

5<br />

<br />

Find de<strong>for</strong>mation of the<br />

elliptic curve<br />

such that<br />

1 6<br />

6<br />

5<br />

i<br />

/5<br />

2 3<br />

e <br />

<br />

as <br />

[4]<br />

A.A.Kapaev, J. Phys.A:Math.Gen.37 (2004)11149–11167


Dubrovin’s conjecture<br />

<br />

zz<br />

<br />

2<br />

6 z,<br />

z 1<br />

( z) | z | <br />

2<br />

6 48z<br />

( z)<br />

is tritronquée<br />

solution<br />

4<br />

arg z <br />

5<br />

There are no poles of at infinity as<br />

Proof: Kapaev’s theorem, [4]<br />

Conjecture. [1]<br />

A way to prove: Let<br />

( z)<br />

Reduce the Lax pair equation<br />

to a scalar ODE as 0<br />

( ) 0,<br />

Y V z Y<br />

<br />

0<br />

1/ 4 4<br />

5/ 2 1/ 2 <br />

Y s1 exp i z0 , ,<br />

5<br />

<br />

4<br />

arg z <br />

5<br />

has no poles in the sector<br />

z 0 2<br />

0 a pole, put<br />

<br />

2<br />

4<br />

arg z <br />

5<br />

1 z<br />

( z) , z z0<br />

0<br />

10<br />

3 2 2 4<br />

2 2 2 0<br />

2<br />

<br />

<br />

<br />

2 3<br />

<br />

2( ) 2<br />

<br />

1/ 4 4 5/ 2 1/ 2 <br />

Y s4 | | exp i | | z0<br />

| | , .<br />

5<br />

<br />

Prove that spectrum z<br />

4<br />

0 does not contain arg z0<br />

<br />

5


<strong>Painlevé</strong> <strong>II</strong> equation. Hastings-McLeod solution [5]<br />

u zu 2u<br />

zz<br />

3<br />

u 1 1/ 4 2 3/ 2<br />

( z ) exp , ,<br />

2<br />

z <br />

<br />

3<br />

z <br />

z <br />

<br />

z 1 73 <br />

u( z) 1 <br />

, z .<br />

3 6 <br />

2 8z<br />

128z<br />

<br />

[5] C.Tracy <strong>and</strong> H.Widom, Comm.Math.Phys. 177 (1996) 727–754..


<strong>Painlevé</strong> <strong>II</strong> equation. Ablowitz-Segur solution [6]<br />

u zu 2u<br />

zz<br />

a 2 <br />

u z z z <br />

z<br />

2 3 <br />

1/ 4 3/ 2<br />

( ) exp , ,<br />

2 3<br />

<br />

u z b z z b z z<br />

3 4<br />

<br />

1/ 4 3/ 2 2<br />

( ) ( ) sin ( ) log( ) <br />

, .<br />

3<br />

[6] M.J.Ablowitz <strong>and</strong> H.Segur, Stud.Appl.Math.57 (1977) 13–44.


Conclusion<br />

• <strong>Padé</strong> <strong>approximations</strong> has been found <strong>for</strong> PI <strong>and</strong> P<strong>II</strong> solutions<br />

• The Boutroux lines of poles are visualized<br />

• Distribution of poles at infinity has a good correlation<br />

with that of | z | 10<br />

• Dubrovin’s conjecture justified<br />

• Applications to focusing NLS equation<br />

2<br />

1.5<br />

10<br />

1<br />

0.5<br />

5<br />

0<br />

-10<br />

0<br />

-5<br />

0<br />

5<br />

10 -10 -5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!