21.03.2015 Views

Reciprocal Lattice

Reciprocal Lattice

Reciprocal Lattice

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Reciprocal</strong> space<br />

Ernesto Estévez Rams<br />

Instituto de Ciencia y Tecnología de Materiales (IMRE)-Facultad de Física<br />

Universidad de la Habana<br />

IUCr International School on Crystallography, Brazil, 2012.


2 / 26<br />

Definition<br />

While constructing the<br />

stereographic projection<br />

we saw that the angle<br />

between planes could be<br />

also measured as the<br />

angles between the<br />

corresponding normal.


3 / 26<br />

Definition<br />

We can add metric<br />

information to the<br />

normals by asociating<br />

the norm of the vector<br />

somehow to the<br />

interplanar distance.


Definition<br />

We can add metric<br />

information to the<br />

normals by asociating<br />

the norm of the vector<br />

somehow to the<br />

interplanar distance.<br />

The reciprocal vector<br />

⃗ r<br />

∗<br />

hkl<br />

is defined as a vector normal to plane<br />

(hkl) with length 1/d hkl<br />

3 / 26


Definition<br />

⃗ r ∗ hkl || ˆ n hkl<br />

| ⃗ r ∗ hkl | = 1<br />

d hkl<br />

4 / 26


5 / 26<br />

Equation of a plane<br />

(u, 0, 0) (0, v, 0) (0, 0, w)<br />

⃗u = u⃗a<br />

⃗v = v ⃗ b<br />

⃗w = w⃗c


6 / 26<br />

Equation of a plane<br />

⃗n = (⃗u − ⃗v) × (⃗v − ⃗w)<br />

⃗n = (⃗v × ⃗w) + ( ⃗w × ⃗u) + (⃗u × ⃗v)<br />

⃗n = vw( ⃗ b × ⃗c) + uw(⃗c × ⃗a) + uv(⃗a × ⃗ b)


7 / 26<br />

Equation of a plane<br />

⃗n · (⃗r − ⃗u) = 0<br />

⃗n · ⃗r = ⃗n · ⃗u<br />

⃗n = vw( ⃗ b × ⃗c) + uw(⃗c × ⃗a) + uv(⃗a × ⃗ b)<br />

⃗r = x⃗a + y ⃗ b + z⃗c<br />

vwx( ⃗ b × ⃗c) · ⃗a + uwy(⃗c × ⃗a) ·⃗b + uvz(⃗a × ⃗ b) · ⃗c =<br />

uvw( ⃗ b × ⃗c) · ⃗a


8 / 26<br />

Equation of a plane<br />

vwx( ⃗ b × ⃗c) · ⃗a + uwy(⃗c × ⃗a) ·⃗b + uvz(⃗a × ⃗ b) · ⃗c =<br />

uvw( ⃗ b × ⃗c) · ⃗a


8 / 26<br />

Equation of a plane<br />

vwx( ⃗ b × ⃗c) · ⃗a + uwy(⃗c × ⃗a) ·⃗b + uvz(⃗a × ⃗ b) · ⃗c =<br />

uvw( ⃗ b × ⃗c) · ⃗a<br />

[ ] [ ] [<br />

x ⃗b × ⃗c<br />

u ⃗a · ( ⃗ · ⃗a + y ⃗c × ⃗a<br />

b × ⃗c) v ⃗a · ( ⃗ ·⃗b + z ⃗a × ⃗ ]<br />

b<br />

b × ⃗c) w ⃗a · ( ⃗ · ⃗c = 1<br />

b × ⃗c)


Equation of a plane<br />

vwx( ⃗ b × ⃗c) · ⃗a + uwy(⃗c × ⃗a) ·⃗b + uvz(⃗a × ⃗ b) · ⃗c =<br />

uvw( ⃗ b × ⃗c) · ⃗a<br />

[ ] [ ] [<br />

x ⃗b × ⃗c<br />

u ⃗a · ( ⃗ · ⃗a + y ⃗c × ⃗a<br />

b × ⃗c) v ⃗a · ( ⃗ ·⃗b + z ⃗a × ⃗ ]<br />

b<br />

b × ⃗c) w ⃗a · ( ⃗ · ⃗c = 1<br />

b × ⃗c)<br />

⃗a ∗ =<br />

⃗ b × ⃗c<br />

⃗a · ( ⃗ b × ⃗c)<br />

⃗b ∗ ⃗c × ⃗a<br />

=<br />

⃗a · ( ⃗ b × ⃗c)<br />

⃗c ∗ =<br />

⃗a ×⃗ b<br />

⃗a · ( ⃗ b × ⃗c)<br />

8 / 26


9 / 26<br />

Equation of a plane<br />

⃗a ∗ =<br />

⃗ b × ⃗c<br />

⃗a · ( ⃗ b × ⃗c)<br />

⃗b ∗ ⃗c × ⃗a<br />

=<br />

⃗a · ( ⃗ b × ⃗c)<br />

⃗c ∗ =<br />

⃗a ×⃗ b<br />

⃗a · ( ⃗ b × ⃗c)<br />

⃗a · ⃗a ∗ = 1<br />

⃗a · ⃗b ∗ = 0<br />

⃗a · ⃗c ∗ = 0<br />

⃗ b · ⃗a ∗ = 0<br />

⃗ b · ⃗ b ∗ = 1<br />

⃗ b · ⃗ b ∗ = 0<br />

⃗c · ⃗a ∗ = 0<br />

⃗c · ⃗b ∗ = 0<br />

⃗c · ⃗b ∗ = 1


10 / 26<br />

Equation of a plane<br />

[ ] [ ] [<br />

x ⃗b × ⃗c<br />

u ⃗a · ( ⃗ · ⃗a + y ⃗c × ⃗a<br />

b × ⃗c) v ⃗a · ( ⃗ ·⃗b + z ⃗a × ⃗ ]<br />

b<br />

b × ⃗c) w ⃗a · ( ⃗ · ⃗c = 1<br />

b × ⃗c)


10 / 26<br />

Equation of a plane<br />

[ ] [ ] [<br />

x ⃗b × ⃗c<br />

u ⃗a · ( ⃗ · ⃗a + y ⃗c × ⃗a<br />

b × ⃗c) v ⃗a · ( ⃗ ·⃗b + z ⃗a × ⃗ ]<br />

b<br />

b × ⃗c) w ⃗a · ( ⃗ · ⃗c = 1<br />

b × ⃗c)<br />

(x⃗a) · (h ⃗a ∗ ) + (y ⃗ b) · (k ⃗ b ∗ ) + (z⃗c) · (l ⃗c ∗ ) = 1<br />

Equation of the plane<br />

hx + ky + lz = 1


Some history<br />

Gibbs (1839-1903)<br />

Gibbs introduced the reciprocal base { a ⃗∗ j<br />

} from the<br />

condition ⃗a i · ⃗a ∗ j =K δ ij<br />

11 / 26


<strong>Reciprocal</strong> vector<br />

(x⃗a) · (h ⃗a ∗ ) + (y ⃗ b) · (k ⃗ b ∗ ) + (z⃗c) · (l ⃗c ∗ ) = 1<br />

can be written as<br />

where<br />

hx + ky + lz = 1<br />

r xyz ⃗ · r ⃗∗ hkl<br />

= 1<br />

⃗ r ∗ hkl = h ⃗a ∗ + k ⃗ b ∗ + l ⃗c ∗<br />

if<br />

⃗ r ∗ hkl || ˆ n hkl<br />

| ⃗ r ∗ hkl | = 1<br />

d hkl<br />

12 / 26


<strong>Reciprocal</strong> vector<br />

r⃗<br />

hkl ∗ · (⃗r − p r ⃗ hkl ∗ ) = 0<br />

p| ⃗ r ∗ hkl |2 = ⃗r · ⃗ r<br />

∗<br />

hkl<br />

= 1<br />

Now by construction<br />

p = 1<br />

| ⃗ r ∗ hkl |2<br />

p| ⃗ r ∗ hkl | = d hkl ⇒ | ⃗ r ∗ hkl | = 1<br />

d hkl<br />

13 / 26


Coordinates transformations<br />

⃗r = (⃗a ⃗ b⃗c) · ⎝<br />

from where<br />

⎛<br />

x<br />

y<br />

z<br />

⎞<br />

⎛<br />

⎝<br />

Basis transformation<br />

x ′ ⎞<br />

y ′ ⎠ = F ·<br />

z ′<br />

⎛<br />

⎠ = ( a ⃗′ b ⃗′ c ⃗′ ) · ⎝<br />

⎛<br />

⎝<br />

x<br />

y<br />

z<br />

x ′<br />

y ′<br />

z ′ ⎞<br />

⎞<br />

⎠<br />

⎛<br />

⎠ = ( a ⃗′ b ⃗′ c ⃗′ ) · F · ⎝<br />

x<br />

y<br />

z<br />

⎞<br />

⎠<br />

( ⃗ a ′ ⃗ b ′ ⃗ c ′ ) = (⃗a ⃗ b⃗c) · F −1 14 / 26


Metric tensor transformations<br />

⎛<br />

⃗r · ⃗r = (x y z) · G · ⎝<br />

x<br />

y<br />

z<br />

⎞<br />

from where calling M = (F T ) −1<br />

Metric tensor transformation<br />

⎛<br />

⎠ = (x ′ y ′ z ′ ) · G ′ · ⎝<br />

(x y z) · F T · G ′ · F · ⎝<br />

x ′ ⎞<br />

y ′ ⎠ =<br />

z ′<br />

⎛<br />

x<br />

y<br />

z<br />

⎞<br />

⎠<br />

G ′ = M · G · M T 15 / 26


16 / 26<br />

Metric tensor transformations<br />

Consider the transformation<br />

⎛<br />

⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = M · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⎞<br />


16 / 26<br />

Metric tensor transformations<br />

Consider the transformation<br />

⎛<br />

⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = M · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⎞<br />

⎠<br />

from where<br />

⎛<br />

⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ · (⃗a ⃗ b⃗c) = M · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⎞<br />

⎠ · (⃗a ⃗ b⃗c)


17 / 26<br />

Metric tensor transformations<br />

⎛<br />

⎜<br />

⎝<br />

⃗a ∗ · ⃗a ⃗a ∗ ·⃗b ⃗a ∗ · ⃗c<br />

⃗b ∗ · ⃗a b∗ ⃗ ·⃗b b∗ ⃗ · ⃗c<br />

⃗c ∗ · ⃗a ⃗c ∗ ·⃗b ⃗c ∗ · ⃗c<br />

⎞<br />

⎛<br />

⎟ ⎜<br />

⎠ = M · ⎝<br />

⃗a · ⃗a ⃗a ·⃗b ⃗a · ⃗c<br />

⃗ b · ⃗a ⃗ b ·⃗ b ⃗ b · ⃗c<br />

⃗c · ⃗a ⃗c ·⃗b ⃗c · ⃗c<br />

⎞<br />

⎟<br />


17 / 26<br />

Metric tensor transformations<br />

⎛<br />

⎜<br />

⎝<br />

⃗a ∗ · ⃗a ⃗a ∗ ·⃗b ⃗a ∗ · ⃗c<br />

⃗b ∗ · ⃗a b∗ ⃗ ·⃗b b∗ ⃗ · ⃗c<br />

⃗c ∗ · ⃗a ⃗c ∗ ·⃗b ⃗c ∗ · ⃗c<br />

⎞<br />

⎛<br />

⎟ ⎜<br />

⎠ = M · ⎝<br />

⃗a · ⃗a ⃗a ·⃗b ⃗a · ⃗c<br />

⃗ b · ⃗a ⃗ b ·⃗ b ⃗ b · ⃗c<br />

⃗c · ⃗a ⃗c ·⃗b ⃗c · ⃗c<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

⎝<br />

1 0 0<br />

0 1 0<br />

0 0 1<br />

⎞<br />

⎛<br />

⎠ ⎜<br />

= M · ⎝<br />

⃗a · ⃗a ⃗a ·⃗b ⃗a · ⃗c<br />

⃗ b · ⃗a ⃗ b ·⃗ b ⃗ b · ⃗c<br />

⃗c · ⃗a ⃗c ·⃗b ⃗c · ⃗c<br />

⎞<br />

⎟<br />

⎠ = M · G<br />

M = G −1<br />

F = G


18 / 26<br />

Metric tensor transformations<br />

⎛<br />

⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = G −1 · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⎞<br />


18 / 26<br />

Metric tensor transformations<br />

⎛<br />

⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = G −1 · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⎞<br />

⎠<br />

and<br />

G = F T · G ∗ · F = G T · G ∗ · G<br />

G −1 · G = G −1 · G · G ∗ · G<br />

I = G ∗ · G


Metric tensor transformations<br />

⎛<br />

⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = G −1 · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⎞<br />

⎠<br />

and<br />

G = F T · G ∗ · F = G T · G ∗ · G<br />

G −1 · G = G −1 · G · G ∗ · G<br />

I = G ∗ · G<br />

<strong>Reciprocal</strong> tensor<br />

G ∗ = G −1 18 / 26


19 / 26<br />

Transformation in reciprocal space<br />

⎛<br />

⃗r ∗ = (h k l) · ⎝<br />

⎛<br />

(h k l) · G −1 · ⎝<br />

⃗a<br />

⃗ b<br />

⃗c<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = (h ′ k ′ l ′ ⎜<br />

) · ⎝<br />

⎞<br />

⎛<br />

⎠ = (h k l) · G −1 · F T ⎜<br />

⎝<br />

⃗a ∗′<br />

⃗b ∗′<br />

⃗c ∗′<br />

⃗a ′<br />

⃗b ′<br />

⃗c ′<br />

⎛<br />

(h k l) · G −1 · F T · G ′ ⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠ =<br />

⎞<br />

⎟<br />

⎠ =<br />

⃗a ∗′<br />

⃗b ∗′<br />

⃗c ∗′<br />

⎞<br />

⎟<br />


Transformation in reciprocal space<br />

⎛<br />

⃗r ∗ = (h k l) · ⎝<br />

⃗a ∗<br />

⃗b ∗<br />

⃗c ∗<br />

⎞<br />

⎛<br />

⎠ = (h k l) · G −1 · F T · G ′ ⎜<br />

⎝<br />

⃗a ∗′<br />

⃗b ∗′<br />

⃗c ∗′<br />

⎞<br />

⎟<br />

⎠<br />

Now<br />

G ′ = M · G · M T = (F T ) −1 · G · F −1<br />

and finally<br />

<strong>Reciprocal</strong> coordinates<br />

(h ′ k ′ l ′ ) = (h k l) · M T = (h k l) · F −1 20 / 26


Point symmetry transformation in<br />

reciprocal space<br />

Let R be a point symmetry operation acting over the<br />

coordinates of the atoms, then according to the transformation<br />

rules already derived<br />

(h e k e l e ) = (h k l) · R −1<br />

and (h e k e l e ) is a plane symmetry related to (h k l). Therefore:<br />

Point symmetry in reciprocal space<br />

R ∗ = R −1 21 / 26


Point symmetry transformation in<br />

reciprocal space<br />

22 / 26<br />

Example:<br />

Three fold axis 3 [0 0 1] :<br />

(x y z) −→ (−y x − y z) −→ (y − x − x z)


Point symmetry transformation in<br />

reciprocal space<br />

22 / 26<br />

Example:<br />

Three fold axis 3 [0 0 1] :<br />

(x y z) −→ (−y x − y z) −→ (y − x − x z)<br />

⎛<br />

R = ⎝<br />

0 ¯1 0<br />

1 ¯1 0<br />

0 0 1<br />

⎞<br />


Point symmetry transformation in<br />

reciprocal space<br />

22 / 26<br />

Example:<br />

Three fold axis 3 [0 0 1] :<br />

(x y z) −→ (−y x − y z) −→ (y − x − x z)<br />

⎛<br />

R = ⎝<br />

0 ¯1 0<br />

1 ¯1 0<br />

0 0 1<br />

⎞<br />

⎠<br />

⎛<br />

R ∗ = ⎝<br />

¯1 1 0<br />

¯1 0 0<br />

0 0 1<br />

⎞<br />


Point symmetry transformation in<br />

reciprocal space<br />

22 / 26<br />

Example:<br />

Three fold axis 3 [0 0 1] :<br />

(x y z) −→ (−y x − y z) −→ (y − x − x z)<br />

⎛<br />

R = ⎝<br />

0 ¯1 0<br />

1 ¯1 0<br />

0 0 1<br />

⎞<br />

⎠<br />

⎛<br />

R ∗ = ⎝<br />

¯1 1 0<br />

¯1 0 0<br />

0 0 1<br />

⎞<br />

⎠<br />

(h k l) −→ (−h − k h l) −→ (k − h − k l)


23 / 26<br />

Symmetry group in reciprocal space<br />

Symmetry group in reciprocal space<br />

{R ∗ } = {R}


Fourier transform and reciprocal<br />

vectors<br />

24 / 26<br />

Fourier transform<br />

Γ [f(⃗r)] = ̂f( ⃗r ∗ ) = F ( ⃗r ∗ ) ≡ ∫ ∞<br />

−∞ f(⃗r) exp (−2πi ⃗r ∗ · ⃗r)d⃗r<br />

where<br />

⃗r ∗ = x ∗ ⃗a ∗ + y ∗ ⃗ b ∗ + z ∗ ⃗c ∗<br />

⃗r = x⃗a + y ⃗ b + z⃗c<br />

and therefore<br />

⃗r ∗ · ⃗r = x ∗ x + y ∗ y + z ∗ z


25 / 26<br />

Fourier transform of the lattice<br />

Definition (Dirac comb)<br />

L = ∑ ∞<br />

u,v,w=−∞ δ(⃗r − u⃗a − v⃗ b − w⃗c)<br />

∫<br />

Γ [L(⃗r)] =<br />

∫ ∞<br />

· · ·<br />

=<br />

∞∑<br />

−∞ u,v,w=−∞<br />

∞∑<br />

u=−∞<br />

=<br />

e (−2πiu ⃗r ∗·⃗a)<br />

δ(⃗r − u⃗a − v ⃗ b − w⃗c) exp (−2πi ⃗r ∗ · ⃗r)d⃗r<br />

∞∑<br />

u,v,w=−∞<br />

∞∑<br />

v=−∞<br />

exp (−2πi ⃗r ∗ · (u⃗a + v ⃗ b + w⃗c))<br />

e (−2πiv ⃗r ∗·⃗b)<br />

∞∑<br />

w=−∞<br />

e (−2πiw ⃗r ∗·⃗c)


Fourier transform of the lattice<br />

Dirac comb<br />

1<br />

|a|<br />

∑ ∞<br />

n=−∞ exp (2πinx/a) = ∑ ∞<br />

m=−∞ δ(x − ma) 26 / 26


26 / 26<br />

Fourier transform of the lattice<br />

Dirac comb<br />

1<br />

|a|<br />

∑ ∞<br />

n=−∞ exp (2πinx/a) = ∑ ∞<br />

m=−∞<br />

δ(x − ma)<br />

∞∑<br />

Γ [L(⃗r)] =<br />

e (−2πiu ⃗r ∗·⃗a)<br />

∞∑<br />

e (−2πiv ⃗r ∗·⃗b)<br />

∞∑<br />

u=−∞<br />

v=−∞<br />

w=−∞<br />

e (−2πiw ⃗r ∗·⃗c)


26 / 26<br />

Fourier transform of the lattice<br />

Dirac comb<br />

1<br />

|a|<br />

∑ ∞<br />

n=−∞ exp (2πinx/a) = ∑ ∞<br />

m=−∞<br />

δ(x − ma)<br />

∞∑<br />

Γ [L(⃗r)] =<br />

e (−2πiu ⃗r ∗·⃗a)<br />

∞∑<br />

e (−2πiv ⃗r ∗·⃗b)<br />

∞∑<br />

u=−∞<br />

v=−∞<br />

w=−∞<br />

e (−2πiw ⃗r ∗·⃗c)<br />

∞∑<br />

L ∗ ( ⃗r ∗ ) = δ( ⃗r ∗ · ⃗a − h)δ( ⃗r ∗ ·⃗b − k)δ( ⃗r ∗ · ⃗c − l)<br />

h,k,l=−∞<br />

=<br />

∞∑<br />

h,k,l=−∞<br />

δ( ⃗r ∗ − h ⃗a ∗ )δ( ⃗r ∗ − k ⃗ b ∗ )δ( ⃗r ∗ − l ⃗c ∗ )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!