20.03.2015 Views

Energy hay and straw (PDF) - bioenergybaltic

Energy hay and straw (PDF) - bioenergybaltic

Energy hay and straw (PDF) - bioenergybaltic

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The production <strong>and</strong> use<br />

of energy <strong>hay</strong> <strong>and</strong> <strong>straw</strong><br />

MSc Elina Virkkunen<br />

MTT Agrifood Research<br />

Finl<strong>and</strong><br />

MTT Sotkamo<br />

Tarto 4.3.2008


MTT is the leading<br />

research institute in<br />

its field<br />

-operating under the Ministry<br />

of Agriculture <strong>and</strong> Forestry<br />

-employs approximately 850<br />

people, including more than<br />

300 researchers <strong>and</strong> other<br />

experts<br />

-14 locations across Finl<strong>and</strong><br />

-the budget for 2006 was EUR<br />

46 million, one third of which<br />

comes from outside<br />

-www.mtt.fi/english


MTT Sotkamo, Kainuu region<br />

• Northern lake area<br />

– Snow cover 4 to 6 months<br />

– Thermal growing period 3,5 months<br />

• Research subjects<br />

– Bioenergy<br />

• Field energy in Kainuu (developing project)<br />

• Fertilization of reed canary grass<br />

• Observational research in energy willow etc.<br />

• Pilot biogas reactor (spring/summer 2008)<br />

– Berry research<br />

– Grassl<strong>and</strong> farming<br />

• 40 ha field, 7 workers + summer workers


<strong>Energy</strong> consumption <strong>and</strong> sources in Finl<strong>and</strong> 2005<br />

Wood industry<br />

17%<br />

Wood home<br />

4%<br />

Other<br />

2%<br />

Oil<br />

26%<br />

Peat<br />

5%<br />

Wind <strong>and</strong> water<br />

4 %<br />

Import electr.<br />

4%<br />

Nuclear<br />

energy<br />

18%<br />

Source: Finl<strong>and</strong>'s annual inventory report on greenhouse gases<br />

http://www.stat.fi/til/ehkh/2006/03/ehkh_2006_03_2006-12-20_tau_001.xls<br />

Coal<br />

9%<br />

Natural gas<br />

11%<br />

Total energy<br />

consumption in Finl<strong>and</strong><br />

in 2005: 1 366 295 TJ<br />

(380 TWh)


Field use in Finl<strong>and</strong> in 2006<br />

1 %<br />

1 %<br />

1 %<br />

1 %<br />

1 %<br />

1 %<br />

Cereals<br />

Forages<br />

Fallow<br />

5 %<br />

Oilseeds<br />

Pastures 5 years<br />

11 %<br />

27 %<br />

51 %<br />

Reed canary grass<br />

Potato<br />

Sugar beet<br />

Caraway<br />

Other crops<br />

Field area 2.3 mill. ha<br />

Source: MMM/Matilda 2006


Scenario for field use in 2012<br />

(Ministry of Agriculture <strong>and</strong> Forestry)<br />

4 % 4 % 43 %<br />

11 %<br />

4 %<br />

4 %<br />

23 %<br />

7 %<br />

Cereals<br />

Cereals for ethanol<br />

Forage<br />

Fallow<br />

Oilseeds for food<br />

Oilseeds for energy<br />

Reed canary grass<br />

Other crops<br />

• Field area 2,3 Mha<br />

• For food <strong>and</strong> feed<br />

production 1,8 Mha<br />

• For energy<br />

production max 0,5<br />

Mha


Reed canary grass<br />

Phalaris arundinacea L.<br />

(RCG) in Finl<strong>and</strong><br />

• In 2007 there was 20 000 ha RCG in Finl<strong>and</strong><br />

• The target at the year 2015 is 100 000 ha RCG<br />

• The total area of agricultural l<strong>and</strong> in Finl<strong>and</strong> is 2,3<br />

million hectares. 0,5 million ha of it could be set<br />

aside or used for non-food production.<br />

• Used varieties (Chiefton, Palaton, Lara, Venture)<br />

are all developed for fodder production<br />

– They are not perfect for the energy purpose because of<br />

the high leaf content<br />

– Breeding for energy purpose is going on


RCG uses nutrients effectively<br />

• A native, perennial grass, grows also in Lapl<strong>and</strong><br />

• In the shores of lakes <strong>and</strong> rivers, in ditches, at the verge of the roads<br />

• 80─200 cm high<br />

• Strong rootstock<br />

(mostly 2─8 cm deep)<br />

-> st<strong>and</strong>s well wetness <strong>and</strong> draught<br />

• Sprouts continue growing<br />

late in the autumn<br />

• Utilizes well ash, slurry <strong>and</strong> compost<br />

• Before winter the nutrients transfer to<br />

the roots ─> does not need much<br />

fertilizers


RCG is good for soil<br />

• Prevents erosion<br />

• Reduces N <strong>and</strong> P leaching 40 %<br />

compared to cereals<br />

• Improves the texture of the soil<br />

• Adds the humus <strong>and</strong> coal content of<br />

the soil because of the rootstock<br />

• If needed, the field area can<br />

be taken to food or fodder<br />

production<br />

• The l<strong>and</strong>scape stays open<br />

• Offers shelter for wild <strong>and</strong> game<br />

animals


RCG grows at least 10 years<br />

• RCG grows best in organic soil<br />

• Biological yield 5─8 tons dry matter/ha<br />

(1 tn DM = 4,5 - 4,9 MWh)<br />

• Produces crop at least 10 years<br />

• First harvesting two years after seeding<br />

• Harvesting in April or May<br />

– Low moisture content in spring (10-15%)<br />

– Low alkali <strong>and</strong> chloride content in spring<br />

– More cellulose (<strong>straw</strong>) in spring than in autumn<br />

• After sowing year doesn’t need much work<br />

– good for part-time or retiring farmers


Ruokohelven kasvu edellisenä vuonna<br />

Growth habbit of reed canary grass<br />

*<br />

* * *<br />

* * * *<br />

*<br />

* *<br />

*<br />

Toukokuu<br />

May<br />

Heinäkuu<br />

July<br />

Elokuu<br />

August<br />

Syksy – talvi<br />

Sept-April<br />

Toukokuu<br />

May<br />

Kasvu edellisenä kesänä<br />

Talven lumiolot Korjuu<br />

Growth in the previous year Snow cover Harvesting<br />

K. Pahkala 05


November<br />

K.Pahkala<br />

September<br />

K.Pahkala<br />

April<br />

E.Virkkunen


Sowing of the RCG<br />

• control of the quick grass in the previous autumn<br />

• good water ditches<br />

• collecting stones<br />

• good cultivation -><br />

flat field surface<br />

• sowing shallow<br />

enough (1-2 cm)<br />

• rolling after sowing<br />

• weed control<br />

Photos: E.Virkkunen


RCG farming (Katri Pahkala)<br />

• -----------------------------------------------------------------------------<br />

-----1st year May Sowing, seed 11 kg/ha<br />

Fertilization N 40-60 kg/ha<br />

June Weed control<br />

• Plants 0.8 - 0.9 m in November<br />

• -----------------------------------------------------------------------------<br />

-----<br />

• 2nd year May Fertilization N 60-90 kg/ha<br />

• Plants 1.5 - 2 m in November<br />

• -----------------------------------------------------------------------------<br />

-----3rd - 16th year<br />

• May 1st - 15th harvest 7-8 t/ha DM<br />

• May Fertilization N 60-90 kg/ha<br />

• Plants 1.5 - 2 m in November


Fertilization <strong>and</strong> soil type<br />

Katri Pahkala<br />

Sato DM yield kg/ha<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Jokioinen Ruukki Vihti<br />

Savimaa Clay Hietamaa Loamy s<strong>and</strong> Multamaa Humus<br />

0 N<br />

50 N<br />

100 N<br />

150 N


RCG harvest: mowing<br />

• mowing is the critical part of harvest<br />

– the snow lodges the crop very badly<br />

– the crop is fragile<br />

– when the grass was harvested at 5 cm<br />

instead of 10 cm, the yield losses increases<br />

25 % (Lötjönen 2006)<br />

– use special cutting blades for lodged plants<br />

– when using conditioner, decrease rotation<br />

speed


Effect of stubble height<br />

Sato kg/ha<br />

Dm yield<br />

Niittokorkeuden vaikutus<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Stubbble height<br />

0 1 2 3<br />

Korjuuaika Harvesting date<br />

5 cm 10 cm<br />

5 cm 10 cm<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Kuiva-aine %<br />

Dm%<br />

• Stubble height markedly<br />

affected the harvested DM<br />

yield <strong>and</strong> DM content of reed<br />

canary grass.<br />

• When grass was harvested at<br />

5 cm instead of 10 cm, the<br />

DM yield was more than 30%<br />

higher<br />

• The harvest period allowed<br />

by weather conditions<br />

ranged from 10 to 15 days in<br />

Finl<strong>and</strong>.<br />

Korjuuaika: viikkoja ensimmäisestä mahdollisesta korjuupäivästä (=0)<br />

Harvesting date: weeks from the first possible harvesting date (=0)<br />

K.Pahkala et al. 05


Yield <strong>and</strong> purity of reed canary grass (RCG)<br />

harvested in August <strong>and</strong> May<br />

• Dry matter (DM)<br />

yield of RCG<br />

harvested in spring<br />

improves after the<br />

first harvesting<br />

• Yield of RCG was<br />

higher if harvested in<br />

spring instead of<br />

August<br />

• RCG trial sown in<br />

1990 stayed<br />

productive 16 years<br />

if harvested in spring<br />

K. Pahkala 2007<br />

kg/ha<br />

DM yield kg/ha<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

August<br />

May<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

Reed canary grass % of dry matter (DM)<br />

% of DM<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

Trial was sown in 1990/MTT<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007


Two experiments were set up in 2006 – 2007:<br />

(Timo Lötjönen, Mika Isolahti))<br />

1) Autumn / spring mowing experiment<br />

2) Spring mowing experiment<br />

Biological yield was measured by Haldrup.


Autumn<br />

Experiment 1: Autumn / spring mowing<br />

Photo: Timo Lötjönen,<br />

Mika Isolahti<br />

Autumn<br />

Spring<br />

Spring<br />

Spring


Results:<br />

- the winter caused 15 – 28 % yield losses<br />

100.0<br />

90.0<br />

80.0<br />

Gained RCG yield, %<br />

70.0<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

Treatment A<br />

Conditioner in autumn<br />

Treatment B<br />

Disc mower in autumn<br />

Treatment C<br />

Conditioner in spring<br />

Figure 1. Gained RCG yield in Autumn mowing experiment. (= Dry matter of<br />

harvested yield / Dry matter of biological yield in the spring x 100 %)<br />

The bars indicate min. <strong>and</strong> max. values. (Lötjönen, Isolahti)


Table 1. Quality of RCG in Autumn mowing experiment. (Lötjönen, Isolahti)<br />

Sampling date 4.10.06 13.10.06 28.5.07<br />

Treatment A<br />

Conditioner<br />

in autumn<br />

Treatment B<br />

Disc mower<br />

in autumn<br />

Treatment C<br />

Conditioner<br />

in spring<br />

Cl g/kg dm. 3.4 3.6 1450


Experiment 2: Spring mowing<br />

Photo: Lötjönen, Isolahti


100<br />

90<br />

80<br />

70<br />

Gained yield (%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Disc mower +<br />

rake 1.<br />

Disc mower +<br />

rake 2.<br />

Conditioner mower<br />

+ rake 1.<br />

Swather + rake 1. *) Misadjusted disc<br />

mower + rake 1.<br />

Figure 2. Gained RCG yield in Spring mowing experiment. *) The green bar<br />

was measured in Baling experiment, which located in the next field.


Baling experiment in 2007, Photos: Lötjönen, Isolahti)<br />

Fixed chamber Welger-round baler<br />

New Holl<strong>and</strong>-square baler<br />

Variable chamber Vicon-round baler<br />

Claas-square baler (vm. 1997)


Conclusions:<br />

-the late autumn mowing of RCG can be done,<br />

but here it was not very effective<br />

-in the spring harvest the most important things are<br />

to avoid too long stubble <strong>and</strong> fall of losses<br />

-also disc mower with conditioner can achieve low harvest<br />

losses with correct adjustments<br />

-swather mower has low losses, but it is slow<br />

-level 80 % as gained yield is a good result in RCG harvest


Timo Lötjönen<br />

RCG harvest (Timo Lötjönen)<br />

Round baler<br />

• it is important to try to make<br />

so tight bales as possible<br />

• fixed chamber 120 kg/m3<br />

• variable chamber 160 kg/m3


Baling: Square baler<br />

•195 kg/m3, shape is better for transport<br />

•very heavy <strong>and</strong> expensive machines<br />

Photo: NewHoll<strong>and</strong>


Loose harvest:<br />

•density of the chaff<br />

can be only 70-100 kg/m3<br />

•chaff is transported to peat bog,<br />

where it is mixed to peat<br />

•distance to peat bog<br />

should be < 10 km<br />

Timo Lötjönen


Avoid this !!!<br />

Mika Isolahti<br />

Mika Isolahti


EFFICIENCY OF THE<br />

BALE TRANSPORTATION<br />

A) Round baler, fixed chamber (d=1,3 m) 15,4 tn<br />

B) Round baler, variable chamber<br />

(d=1,6 m) 16,6 tn => + 8 %<br />

C) Square baler (1,2 x 0,7 x 2,4 m)<br />

23,4 tn => + 52 %<br />

Timo Lötjönen 2008


Harvest chains <strong>and</strong> transport<br />

1) Mowing 2) Collecting 3) Field<br />

transport<br />

Disc<br />

mower<br />

Swather<br />

Round baler<br />

Square baler<br />

Forage<br />

harvester<br />

Pick-up<br />

wagon<br />

Bale<br />

spikes<br />

Forest<br />

trailer<br />

Bale<br />

trailer<br />

Silage<br />

trailer<br />

4) Field<br />

storage<br />

Plastic<br />

cover<br />

Plastic<br />

cover<br />

<strong>and</strong><br />

Mixing<br />

to peat<br />

5) Road<br />

transport<br />

Log<br />

truck<br />

Brushwood<br />

truck<br />

Peat<br />

truck<br />

6) Heat <strong>and</strong><br />

electricity<br />

production<br />

Bale<br />

crushing<br />

Combustion<br />

The most commonly used<br />

The second commonly used<br />

Timo Lötjönen 2006


Challenges of RCG<br />

harvesting<br />

<strong>and</strong> transportation (Lötjönen)<br />

• the harvest losses 40 – 60 %<br />

• too heavy machines -> problems in<br />

bearing capacity of the fields<br />

• low density in transportaton -> high costs<br />

• suitable for bricketing, but increases costs<br />

• also problems in combustion


For instance timber should<br />

be placed under the bales.<br />

The bales are<br />

stored in the<br />

farmers field next to<br />

the road.


Crushing RCG<br />

(Vapo Oy Olli Reinikainen)


Straw as a biofuel<br />

• The share of <strong>straw</strong> is about 30-50% of the total<br />

cereal biomass<br />

• By-product – low production costs<br />

• Rye <strong>and</strong> wheat <strong>straw</strong> are best fuels<br />

• The energy value 4,8 MWh/tn dry matter<br />

• Widely used as a fuel in Denmark, not in Finl<strong>and</strong><br />

• Problems:<br />

– High ash content (4-9%) <strong>and</strong> composition of silica <strong>and</strong><br />

alkali metals.<br />

– High moisture content at harvesting. Harvesting time<br />

in average is only 10-12 days in Finl<strong>and</strong>.


Straw as a biofuel<br />

• The quality of the grey <strong>straw</strong> is better than the yellow <strong>straw</strong><br />

– the rain rinses chlorine <strong>and</strong> alkali metals<br />

• Straw is also a possible raw material for bio ethanol<br />

Oil plant stem<br />

– energy value is ~ cereal <strong>straw</strong><br />

– contain less chlorine, but more sulphur than cereal <strong>straw</strong><br />

Fibre hemp<br />

- possible raw material when harvested in spring<br />

- yield 5-10 ton dry matter/ha<br />

- has to be seeded every year<br />

- needs a lot of water <strong>and</strong> nutrients<br />

Centaurea jacea


Grains<br />

Jyvät<br />

Cereals in industry use<br />

Starch industry<br />

Tärkkelysteollisuus<br />

Feeds (farms) Rehut<br />

Feed industry<br />

Rehuteollisuus<br />

Food stuffs Elintarvikkeet<br />

Textile Tekstiili<br />

Paper Paperi<br />

Degradable plastics<br />

Hajoavat muovit<br />

Alcohol Alkoholi<br />

Processed feeds<br />

Rehusekoitukset<br />

Straw chips<br />

Olkisilppu, olkijauho<br />

Power plants<br />

Energialaitokset<br />

Pulping industry<br />

Selluteollisuus<br />

Building industry<br />

Levyteollisuus<br />

Alcohol<br />

Alkoholi<br />

Heat <strong>and</strong> power<br />

Lämpö ja sähköenergia<br />

Paper <strong>and</strong> board<br />

Paperi ja pahvi<br />

Biocomposites<br />

Rakennuslevyt<br />

2nd generation biofuels<br />

2. sukupolven polttonesteet<br />

K. Pahkala 07


<strong>Energy</strong> Potential <strong>and</strong> Efficency of Agro<br />

Biomass in Direct Combustion K.Pahkala<br />

<strong>Energy</strong> in<br />

<strong>Energy</strong> out<br />

Reed CG Straw<br />

Whole Grain


Properties of different<br />

materials in combustion Alakangas, E. 2000<br />

Combustion property RCG<br />

<strong>Energy</strong> value in dry<br />

mater MWh/tn<br />

Wheat <strong>straw</strong><br />

wood<br />

4,9 4,8 5,3 6<br />

peat<br />

Moisture, % 14 15 50 40<br />

Ash content, %<br />

Ash melting point, o C<br />

5,5<br />

1404<br />

7<br />

930<br />

1,5<br />

1150<br />

4<br />

1100<br />

Sulphur, S % 0,1 0,15 0,05 0,25<br />

Chlorine, Cl % 0,09 0,5 0,02 0,05<br />

Potassium, K % 0,2 0,8 0,2 0,05<br />

Calcium, Ca % 0,2 0,4 0,3 0,5<br />

Magnesium, Mg % 0,05 0,1 0,05 0,05<br />

Natrium, Na % 0,01 0,1 0,01 0,01<br />

Silica, Si % 1,8 1,8 0,4 0,8


The influence of the moisture to<br />

the heat value of the RCG (Vapo Oy,<br />

Olli Reinikainen)<br />

Ruokohelpin saapumistilan tehollisen lämpöarvon MWh/t<br />

riippuvuus kosteudesta<br />

5,500<br />

5,250<br />

5,000<br />

Teholl. lämpöarvo, MWh/t<br />

4,750<br />

4,500<br />

4,250<br />

4,000<br />

3,750<br />

3,500<br />

3,250<br />

3,000<br />

0 5 10 15 20 25 30 35<br />

Kosteus, m-%<br />

18,00 M J/kg = 5,000 M Wh/t


Farming of reed canary grass RCG<br />

RCG is grown for energy production<br />

on bogs after peat production<br />

<strong>and</strong> on farms as contract cultivation<br />

Reed canary grass area (hectares)<br />

High expectations in production<br />

increase. Vapo <strong>and</strong> Pohjolan Voima<br />

biggest producers.<br />

Area ha<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Growing of reed canary grass<br />

1600<br />

4500<br />

300 500 900<br />

100 000?<br />

20400<br />

17200<br />

10500<br />

2000 2001 2002 2003 2004 2005 2006 2007 2015<br />

MMM/Tike 2006<br />

Source: Tike/Matilda 2000-2007, 2015 Scenario of Ministry<br />

of Agr&For


Foto: Pohjolan Voima Oy<br />

Use of reed canary grass (RCG) for<br />

energy in Finl<strong>and</strong> (Katri Pahkala)<br />

Oy Alholmens Kraft Ab, Pietarsaari<br />

Foto: K. Pahkala<br />

www.alholmenskraft.com<br />

• 590 MWth biofuel fired CFB<br />

• started production year 2001<br />

• In Finl<strong>and</strong>, more than 20 plants<br />

have experience of RCG use in<br />

combustion. Use in 2006: 21 GWh<br />

(Vapo Oy)<br />

• More than 100 power plants with a<br />

rated thermal input of more than 20<br />

MW are able to use grass <strong>and</strong> <strong>straw</strong><br />

biomass in fluidized bed<br />

combustion<br />

• The highest share of RCG used is<br />

15% of the total energy value of the<br />

fuel<br />

• RCG differs from other bio fuels: it<br />

is dry (moisture 10 – 20 %) <strong>and</strong> very<br />

light.<br />

• The energy value for RCG is 5<br />

MWh/tn dm <strong>and</strong> 4.2 MWh/tn at 14%<br />

moisture content (Vapo).<br />

• Enterprises are interested in<br />

increasing activities in using RCG:<br />

the use will be 1.5 TWh in 2016<br />

(source Vapo Oy)


Delivery <strong>and</strong> the price of RCG<br />

(Katri Pahkala)<br />

• Vapo Oy <strong>and</strong> Pohjolan Voima Oy are the largest<br />

concerns that buy RCG.<br />

• Delivery of RCG is based on contracts between farmers<br />

<strong>and</strong> the power plant<br />

• The price for the RCG biomass energy value is<br />

calculated on the dry matter yield, moisture content <strong>and</strong><br />

the distance to the power plant. Highest when moisture<br />

content is less than 14%, DM yield more than 6 t/ha <strong>and</strong><br />

the field situated close to the plant.<br />

• Optimum distance less than 60 km to the power plant<br />

• Subsidies for RCG growing as an energy crop are 530 –<br />

600 euros per hectare.<br />

– Whereof 45 eur/ha specific energy subsidy, the rest same<br />

subsidy as for food production


The Danish technology of <strong>straw</strong><br />

combustion suits also for RCG<br />

combustion in smaller plants.<br />

Figure: Reka AS


Future challenges for RCG production<br />

(Katri Pahkala)<br />

• Contract growing <strong>and</strong> use of RCG as solid fuel is increasing<br />

(higher oil price, emission trade) especially in regions with more<br />

fields than forest:<br />

– if the price of the product is reasonable, or subsidies stay high<br />

– if the logistic chains will be improved, <strong>and</strong> problems at power plants are<br />

solved (light, dry fuel, crushing of bales, attitudes against a ”new” fuel)<br />

• Owners of one-family houses are interested to exchange their<br />

heating systems from oil or electricity to bio fuel:<br />

– logistic chains should be improved also for private users<br />

• Use of RCG as biogas raw material is possible at green stage<br />

– If the biogas plants become common<br />

• Use as ethanol raw material possible<br />

– materials can be easily hydrolysed to monosaccharides <strong>and</strong> fermented to<br />

ethanol<br />

– energy intensive processing system should be improved<br />

• Environmental impacts:<br />

– results promising, positive impacts to the climate change


Fibre <strong>and</strong> energy<br />

projects in MTT (K.Pahkala)<br />

• Agrofibre production <strong>and</strong> utilization for pulp <strong>and</strong> papermaking in Finl<strong>and</strong> 1990<br />

– 1997<br />

• Methods developed in the project were applied in September 1995, when bleached<br />

reed canary grass pulp was produced on a pilot scale <strong>and</strong> made into paper on pilot<br />

paper machine of KCL. Offset printing.<br />

• Design, development <strong>and</strong> up-scaling of a sustainable production system for hemp<br />

textiles: an integrated quality systems approach 2003 – 2005 (EU project)<br />

• Biomass production for energy 1994 – 2002<br />

• Options for Achieving the target of 45 MTOE from energy cropping in the EU<br />

in 2010 (Altener II) 2001-2003 (EU project)<br />

• Greenhouse gas emissions <strong>and</strong> new business concepts for liquid biofuels<br />

2005 - 2006.<br />

• Fuel ethanol production from agricultural wastes <strong>and</strong> reed canary grass 2005<br />

– 2007


Some results<br />

of the projects<br />

• The concept of large-scale cultivation of reed canary grass, was<br />

described as a result of crop management research (Saijonkari-<br />

Pahkala 2001)<br />

• Breeding reed canary grass for non-food purposes started in Finl<strong>and</strong><br />

(Sahramaa 2003)<br />

• Methods developed in the project were applied in September 1995,<br />

when bleached reed canary grass pulp was produced on a pilot<br />

scale <strong>and</strong> made into paper on pilot paper machine of KCL. Offset<br />

printing.<br />

• Calculations <strong>and</strong> economical analysis for the pulp <strong>and</strong> paper mill<br />

using reed canary grass were made by Jaakko Pöyry Oy<br />

• Tests in full scale paper mill (EU project)<br />

(Paavilainen et al. 1999)


<strong>Energy</strong> grass farming for<br />

power plants in<br />

Ostrobothnia 2002 – 2005<br />

• Reed canary grass area is 1800 ha (170 farms<br />

in 2005) <strong>and</strong> will be increased to 4000 ha<br />

• 1500 farmers have been trained by MTT to grow<br />

RCG<br />

• The area has served as “full scale pilot” for the<br />

Governement<br />

• Example of good co-operation between farmers,<br />

research <strong>and</strong> power plants<br />

• Problems in the full scale production have been<br />

stated<br />

• ”Profile” of reed canary grass grower


Field energy in Kainuu –project<br />

2004-2007<br />

• The aims:<br />

– To activate the field energy production in Kainuu<br />

– To transfer neutral research knowledge to farmers (education, field<br />

trips, farm advising, journal articles)<br />

– To find new production alternatives to farmers, local harvesting<br />

contractors <strong>and</strong> engineering works.<br />

• The achievements:<br />

– The farmers were very interested in this new crop. 10 % of the<br />

farmers in the region took part in the events. (118 farmers)<br />

– First farmers sowed RCG in spring 2005. The current cultivation area<br />

is 268 ha (25 farmers) + 300 ha ab<strong>and</strong>oned peat production areas by<br />

Vapo Oy<br />

– The advancement work of a bale shredder.<br />

– According to the research “Agroenergy Programme for Eastern<br />

Finl<strong>and</strong> until 2020”, the potential energy plant cultivation in Kainuu is<br />

26 600 ha. Most of it are peat fields, that are not used for farming now


Elina Virkkunen<br />

Learning in the field..<br />

Elina Virkkunen<br />

…<strong>and</strong> in the class room


Field energy is good material in<br />

biogas production<br />

Methane yields of fresh matter (Lehtomäki 2006)<br />

Material<br />

Methane yield m 3 /tFM<br />

Animal manure 7-20<br />

Biowaste 100-150<br />

Timothy-clover grass 72-85<br />

RCG 97-167<br />

Red clover 41-68<br />

Jerusalem artichoke 110<br />

Nettle 25-60<br />

Oats <strong>straw</strong> 260


Dry matter, methane <strong>and</strong> energy<br />

yields of crops (A. Lehtomäki 2006)<br />

substrate<br />

Yield<br />

t TS<br />

/ha<br />

Methane yield<br />

m 3 CH4/ha<br />

Gross energy<br />

yield<br />

MWh/ha<br />

RCG 9-10 3800-4200 28-50<br />

Red clover 5-7 1400-1900 13-18<br />

Jerusalem<br />

artichoke<br />

Straw of<br />

oats<br />

9-16 3100-5400 30-53<br />

2 600 6


References<br />

- ALAKANGAS, E.2000. Properties of fuels used in Finl<strong>and</strong> VTT Tiedotteita 2045.<br />

http://www.vtt.fi/inf/pdf/tiedotteet/2000/T2045.pdf<br />

- ISOLAHTI, M. Ruokohelven korjuu vaatii taitoa. Koetoiminta ja käytäntö 62 (2005):3(17.10.2005), 7<br />

http://www.mtt.fi/koetoiminta/pdf/mtt-kjak-v62n03s07b.pdf<br />

- LEHTOMÄKI, A. 2006. Biogas Production from <strong>Energy</strong> Crops <strong>and</strong> Crop Residues. Jyväskylä<br />

studies in biological <strong>and</strong> environmental science 163. 218 p.<br />

• LÖTJÖNEN, T., ISOLAHTI, M. 2006. Ruokohelven korjuuhävikkiä mahdollista vähentää.<br />

Ruokohelven korjuukoe Haapavedellä. Käytännön Maamies 10/2006: 34-39.<br />

• REGIONAL ENERGY AGENCY OF EASTERN FINLAND 2005. Agroenergy programme for<br />

Eastern Finl<strong>and</strong> until 2020”. Publication 2/05.<br />

• PAHKALA, K. et al. 2006. <strong>Energy</strong> grass farming for power plants, a case study on novel areas in<br />

Finl<strong>and</strong>. In: Proceedings of the 14th European biomass conference: Paris, France, 17-21 October<br />

2005. p. 186-189.<br />

- Pahkala et al. 2008. Large-scale energy-grass farming for power plants - a case study from<br />

Ostrobothnia, Finl<strong>and</strong>. Biomass <strong>and</strong> Bioenergy, in printPAHKALA, K., ISOLAHTI, M., PARTALA, A.,<br />

SUOKANNAS, A., KIRKKARI, A.-M., PELTONEN, M., SAHRAMAA, M., LINDH, T., PAAPPANEN,<br />

T., KALLIO, E., FLYKTMAN, M. 2005. Ruokohelven viljely ja korjuu energian tuotantoa varten. 2.<br />

korjattu painos. Maa- ja elintarviketalous 1. 31 p. http://www.mtt.fi/met/pdf/met1b.pdf<br />

• PAHKALA, K. et al. 2007. Production of bio-ethanol from barley <strong>straw</strong> <strong>and</strong> reed canary grass: A raw<br />

material study. Proceed-ings of 15th Biomass Conference, ICC Berlin, Germany 7.-11.5. 2007, 154-<br />

157.<br />

• PAHKALA, K., PENTTI, S., AALTO, M., SAHRAMAA, M., POIKOLA, J., ENROTH, A. 2006.<br />

Ruokohelpi. In: toim. Hanna Luoma, Sari Peltonen, Jukka Helin ja Hanne Teräväinen.<br />

Maatilayrityksen bioenergian tuotanto. ProAgria Maaseutukeskusten Liiton julkaisuja 1027: Tieto<br />

tuottamaan 115: p. 35-47.


Thank you for your attention<br />

TÄNAN ☺

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!