16.03.2015 Views

WINNER II pdf - Final Report - Cept

WINNER II pdf - Final Report - Cept

WINNER II pdf - Final Report - Cept

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>WINNER</strong> <strong>II</strong> D1.1.2 V1.2<br />

H<br />

u,<br />

s,<br />

n<br />

( t)<br />

M<br />

= Pn<br />

∑<br />

m=<br />

1<br />

⎡<br />

⎢<br />

⎣<br />

⋅exp<br />

T<br />

vv<br />

vh<br />

Ftx<br />

, s,<br />

V<br />

( ϕn,<br />

m<br />

) ⎤ ⎡ exp( jΦ<br />

n,<br />

m<br />

) κ<br />

n,<br />

m<br />

exp( jΦ<br />

) ⎤<br />

n,<br />

m ⎡Frx<br />

,<br />

F ( )<br />

hv<br />

hh<br />

tx,<br />

s,<br />

H<br />

ϕ<br />

⎥ ⎢<br />

⎥⎢<br />

n,<br />

m ⎦ ⎢ ( j ) ( j ) F<br />

n,<br />

m<br />

n,<br />

m<br />

n,<br />

m<br />

rx,<br />

⎣<br />

κ exp Φ exp Φ ⎥<br />

⎦⎣<br />

−1<br />

−1<br />

( jd 2πλ<br />

sin( φ )) exp( jd 2πλ<br />

sin( ϕ<br />

) exp( j2πυ<br />

t)<br />

s<br />

0<br />

n,<br />

m<br />

u<br />

0<br />

n,<br />

m<br />

n,<br />

m<br />

u,<br />

V<br />

u,<br />

H<br />

( φn,<br />

m<br />

)<br />

( φ )<br />

n,<br />

m<br />

⎤<br />

⎥<br />

⎦<br />

(4.14)<br />

where F rx,u,V and F rx,u,H are the antenna element u field patterns for vertical and horizontal polarisations<br />

respectively, d s and d u are the uniform distances [m] between transmitter elements and receiver<br />

elements respectively, and λ 0 is the wave length on carrier frequency. If polarisation is not<br />

exp Φ and only vertically<br />

considered, 2x2 polarisation matrix can be replaced by scalar ( )<br />

polarised field patterns applied.<br />

j<br />

n,<br />

m<br />

With the fixed feeder link models (B5 scenarios) the Doppler frequency component ν n,m is tabulated<br />

for the first ray of each cluster. For the other rays ν n,m = 0. With all other models the Doppler<br />

frequency component is calculated from angle of arrival (downlink), MS speed v and direction of<br />

travel θ v<br />

υ<br />

v<br />

cos<br />

( ϕ −θ<br />

)<br />

n , m v<br />

n,<br />

m<br />

= , (4.15)<br />

λ0<br />

For the two strongest clusters, say n = 1 and 2, rays are spread in delay to three sub-clusters (per<br />

cluster), with fixed delay offset {0,5,10 ns} (see Table 4-2). Delays of sub-clusters are<br />

τ<br />

τ<br />

τ<br />

n,1<br />

n,2<br />

n,3<br />

= τ + 0ns<br />

n<br />

= τ + 5ns<br />

n<br />

= τ + 10ns<br />

n<br />

(4.16)<br />

Twenty rays of a cluster are mapped to sub-clusters like presented in Table 4-2 below. Corresponding<br />

offset angles are taken from Table 4-1 with mapping of Table 4-2.<br />

Table 4-2 Sub-cluster information for intra cluster delay spread clusters.<br />

sub-cluster # mapping to rays power delay offset<br />

1 1,2,3,4,5,6,7,8,19,20 10/20 0 ns<br />

2 9,10,11,12,17,18 6/20 5 ns<br />

3 13,14,15,16 4/20 10 ns<br />

In the LOS case define<br />

u , s,<br />

n u,<br />

s,<br />

n<br />

H ' = H and determine the channel coefficients by adding single lineof-sight<br />

ray and scaling down the other channel coefficient generated by (4.14). The channel<br />

coefficients are given by:<br />

H<br />

u,<br />

s,<br />

n<br />

1<br />

K + 1<br />

( t) = H'<br />

( t)<br />

+ δ<br />

R<br />

⋅ exp<br />

T<br />

F ( )<br />

vv<br />

K R<br />

⎡ tx,<br />

s,<br />

V ϕ LOS ⎤ ⎡exp( jΦ<br />

LOS ) 0 ⎤⎡<br />

⎢<br />

K F ( )<br />

⎥ ⎢<br />

hh ⎥⎢<br />

R + 1 ⎣ tx,<br />

s,<br />

H ϕ LOS ⎦ ⎢⎣<br />

0 exp( jΦ<br />

LOS ) ⎥⎦<br />

⎣<br />

−1<br />

−1<br />

( jd 2πλ<br />

sin( φ )) exp( jd 2πλ<br />

sin( ϕ )) exp( j2πυ<br />

t)<br />

( n −1)<br />

s<br />

u,<br />

s,<br />

n<br />

0<br />

LOS<br />

u<br />

0<br />

LOS<br />

LOS<br />

F<br />

F<br />

rx,<br />

u,<br />

V<br />

rx,<br />

u,<br />

H<br />

( φLOS<br />

)<br />

( φ )<br />

LOS<br />

⎤<br />

⎥<br />

⎦<br />

(4.17)<br />

where δ( . ) is the Dirac’s delta function and K R is the Ricean K-factor defined in Table 4-5 converted to<br />

linear scale.<br />

If non-ULA arrays are used the equations must be modified. For arbitrary array configurations on<br />

horizontal plane, see Figure 4-2, the distance term d u in equations (4.14) and (4.17) is replaced by<br />

d<br />

( arctan( y x ) −ϕ )<br />

2 2<br />

'<br />

xu<br />

+ yu<br />

cos<br />

u u n,<br />

m<br />

u,<br />

n,<br />

m<br />

= , (4.18)<br />

sinϕn,<br />

m<br />

Page 41 (82)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!