16.03.2015 Views

Final report on link level and system level channel models - Winner

Final report on link level and system level channel models - Winner

Final report on link level and system level channel models - Winner

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WINNER D5.4 v. 1.4<br />

respectively, where F<br />

Gumbel( x,ν ,ς ) <strong>and</strong> Logistic ( x,ν,ς )<br />

distributi<strong>on</strong>s defined in Secti<strong>on</strong> 5.4.3, <strong>and</strong> Q −1<br />

( x)<br />

variables i.e.<br />

Q<br />

F are the CDF of the Gumbel <strong>and</strong> Logistic<br />

1<br />

x<br />

∫<br />

−∞<br />

( x) = exp⎜<br />

⎟dt<br />

2π<br />

is the inverse of the CDF for Gaussian r<strong>and</strong>om<br />

⎛ − t<br />

⎜<br />

⎝ 2<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

. (3.5)<br />

In Table 3.3, the so-called positi<strong>on</strong> ν <strong>and</strong> scale ς parameters for the distributi<strong>on</strong>s are listed, except for<br />

Scenario A1 (with 6 instead of 4 parameters) which is listed in Table 3.5. This means that if the largescale<br />

parameter c is log-Gumbel or log-Logistic, the transformed distributi<strong>on</strong> will have zero mean, <strong>and</strong><br />

unit variance, i.e., µ<br />

c<br />

= 0 <strong>and</strong> R c, c ( 0) = 1.<br />

This can be understood by noting that the mean <strong>and</strong> variance<br />

are taken into account already in the transformati<strong>on</strong>. For log-normal distributi<strong>on</strong>s, we use the<br />

transformati<strong>on</strong><br />

~<br />

= g( s) = log ( s)<br />

(3.6)<br />

s<br />

10<br />

s<br />

g<br />

=<br />

−1<br />

(<br />

~<br />

~ s<br />

s ) = 10<br />

with the excepti<strong>on</strong> of shadow-fading (or sometimes called log-normal shadowing, LNS) where we use<br />

~<br />

= g( s) = 10log ( s)<br />

(3.8)<br />

s<br />

10<br />

s =<br />

−<br />

g<br />

1<br />

(<br />

~ 0.1 s<br />

s ) = 10<br />

~<br />

in order to get the transformed shadow-fading in dB scale. For a log-normal distributed parameter c , the<br />

mean<br />

µ <strong>and</strong> st<strong>and</strong>ard deviati<strong>on</strong> ( 0)<br />

c<br />

R are the mean ν <strong>and</strong> st<strong>and</strong>ard deviati<strong>on</strong> ς listed in Table 3.3.<br />

c,c<br />

For normally distributed bulk parameters no transformati<strong>on</strong> is required (i.e. the transformed <strong>and</strong><br />

untransformed value are identical) <strong>and</strong> thus the mean <strong>and</strong><br />

in Table 3.3.<br />

µ <strong>and</strong> st<strong>and</strong>ard deviati<strong>on</strong> ( 0)<br />

c<br />

c,c<br />

(3.7)<br />

(3.9)<br />

R are listed<br />

In Table 3.5, the cross-correlati<strong>on</strong> between the transformed parameters are listed for scenario A1, <strong>and</strong> in<br />

Table 3.2 for the other scenarios. In teRMS of R ( 0)<br />

, the cross-correlati<strong>on</strong> between parameters r <strong>and</strong> c is<br />

given by<br />

c r , c<br />

r,<br />

r<br />

r,<br />

c<br />

( 0)<br />

( 0) R ( 0)<br />

R<br />

= . (3.10)<br />

R<br />

Thus by combining the cross-correlati<strong>on</strong> <strong>and</strong> variance informati<strong>on</strong>, the matrix R ( 0)<br />

can be derived. In<br />

Table 3.3, a correlati<strong>on</strong> distance ∆ is listed for each large-scale parameter. The correlati<strong>on</strong> distance is<br />

based <strong>on</strong> fitting of a single exp<strong>on</strong>ential exp( − ∆r / ∆)<br />

to the auto-correlati<strong>on</strong> functi<strong>on</strong> of the transformed<br />

large-scale parameter. This value is based <strong>on</strong> measurements or literature or a combinati<strong>on</strong> thereof.<br />

However, since the true auto-correlati<strong>on</strong> actually follows the equati<strong>on</strong> (*) of Secti<strong>on</strong> 4.1.4.1.4, i.e.<br />

2<br />

E { ( x , y ) s( x y )} = R( ∆r)<br />

, ( ) ( ) 2<br />

R<br />

s<br />

1 1 2,<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

c,<br />

c<br />

∆ r = x<br />

(3.11)<br />

2 − x1<br />

+ y2<br />

− y1<br />

∆r<br />

⎞ ⎛ ∆r<br />

⎞⎞<br />

⎟<br />

K<br />

⎜ ⎟⎟<br />

(*). (3.12)<br />

λ1<br />

⎠ ⎝ λm<br />

⎠⎠<br />

0.5<br />

0.5,T<br />

( ∆r) = R ( 0) diag⎜exp⎜−<br />

⎟,<br />

,exp⎜−<br />

⎟⎟R<br />

( 0)<br />

. This means<br />

c,<br />

c , will be a mixture of the m exp<strong>on</strong>entials of (*). However,<br />

they are selected in a way that the results are roughly the same as the single exp<strong>on</strong>ential. The values of the<br />

“eigenvalue auto-correlati<strong>on</strong> distances” λ<br />

1,<br />

K ,λm<br />

are listed in Table 3.4. Note that there is no <strong>on</strong>e-to-<strong>on</strong>e<br />

mapping between any of the lambda parameters <strong>and</strong> any of the large-scale parameters. The correlati<strong>on</strong><br />

distance ∆ is included to allow a more easy interpretati<strong>on</strong> of the auto-regressive characteristics of the<br />

model.<br />

0.5<br />

T 0.5<br />

5<br />

where R ( 0)<br />

is obtained from the eigendecompositi<strong>on</strong> R( 0) = EΛE<br />

as R ( 0) = EΛ<br />

0.<br />

that each autocorrelati<strong>on</strong> functi<strong>on</strong>, R ( ∆r)<br />

The justificati<strong>on</strong> for the expressi<strong>on</strong> (*) is that it produces a model from which it is computati<strong>on</strong>ally simple<br />

to generate data, <strong>and</strong> which at the same time gives a fit to experimental auto-correlati<strong>on</strong> functi<strong>on</strong>s which<br />

is typically equally good as the single exp<strong>on</strong>ential modelling.<br />

The derivati<strong>on</strong> of some of parameters λ<br />

1,<br />

K ,λm<br />

for each scenario, <strong>and</strong> in some case also other<br />

parameters, are given in Secti<strong>on</strong> 5.4.13 below.<br />

Page 19 (167)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!