EHF Rotman Lens Fed Linear Array Multibeam Planar Near-Field ...

EHF Rotman Lens Fed Linear Array Multibeam Planar Near-Field ... EHF Rotman Lens Fed Linear Array Multibeam Planar Near-Field ...

ww2.nearfield.com
from ww2.nearfield.com More from this publisher
15.03.2015 Views

EHF Rotman Lens Fed Linear Array Multibeam Planar Near-Field Range Measurements A07-0090 Tuesday, November 6, Session 8, 16:30-16:45 Mike Maybell Planet Earth Communications LLC 1983 San Luis Ave. #31 Mountain View, CA 94043-2900 650-965-7456 mjmaybell@mindspring.com John Demas Nearfield Systems Inc. 19730 Magellan Drive Torrance, CA 90502

<strong>EHF</strong> <strong>Rotman</strong> <strong>Lens</strong> <strong>Fed</strong> <strong>Linear</strong> <strong>Array</strong><br />

<strong>Multibeam</strong> <strong>Planar</strong> <strong>Near</strong>-<strong>Field</strong> Range<br />

Measurements<br />

A07-0090<br />

Tuesday, November 6, Session 8, 16:30-16:45<br />

Mike Maybell<br />

Planet Earth Communications LLC<br />

1983 San Luis Ave. #31<br />

Mountain View, CA<br />

94043-2900<br />

650-965-7456<br />

mjmaybell@mindspring.com<br />

John Demas<br />

<strong>Near</strong>field Systems Inc.<br />

19730 Magellan Drive<br />

Torrance, CA 90502


ABSTRACT<br />

Objective<br />

• Measure Realized gain for 44 beam 44 element linear array<br />

• 43.5 to 45.5 GHz<br />

• Single column of 50 column multibeam 2200 element planar active<br />

receive array for geostationary satellite communications payload<br />

• 1760 simultaneous 0.4 degree beams/1463 earth beams<br />

• <strong>Multibeam</strong> single prototype column realized gain tested at the <strong>Near</strong>field<br />

Systems Inc.'s (NSI) facility using a 12’ x 12’ <strong>Planar</strong> <strong>Near</strong>-<strong>Field</strong> Range<br />

• Two linear array configurations tested using same WR-19 waveguide fed<br />

44 beam 44 element <strong>Rotman</strong> lens and integrated RF distribution network<br />

(RFD).<br />

• Active receive array utilizing only the center 8 array elements of the <strong>Rotman</strong><br />

lens feed<br />

• Passive 44 element array demonstrating narrow 0.4 degree half power<br />

beamwidth<br />

• Summary & examples of the NFR test results presented<br />

• Compared with that predicted using the previously measured lens array<br />

factor gain (AFG) and CST computed embedded element realized gain<br />

2


Introduction<br />

• <strong>EHF</strong> uplink array for TSAT spiral applications<br />

• Beamformers for satellite payloads create<br />

simultaneous high gain pencil beams feeding<br />

2200 element rectangular planar arrays from<br />

geostationary orbit<br />

• Beamformers use column and row 2D<br />

<strong>Rotman</strong> lens stacks feeding elements in an<br />

equilateral triangular lattice<br />

• Equilateral triangular beam lattice covering<br />

the entire 17.4º earth disc with 1760 “pixel”<br />

beams<br />

• At each lens stack beam port, a 0.4° HPBW<br />

“pixel” beam is formed with frequency<br />

independent beam pointing angle due to<br />

<strong>Rotman</strong> lens true time delay<br />

• RF Beam switch/combiner results in 64<br />

simultaneous independent communication<br />

beams<br />

• 18 dB/K minimum G/Ts<br />

• Constant communication beam pointing<br />

angles over the full bands<br />

• Performance can be easily scaled, resulting<br />

in reduced size weight and prime power<br />

3


<strong>EHF</strong> Uplink 2200 Element Active <strong>Planar</strong><br />

<strong>Array</strong> Design Goals<br />

Receive Active <strong>Array</strong> Design Goals<br />

Parameter Value Units<br />

Receive <strong>Array</strong> Size<br />

Aperture Length<br />

35.5 inch<br />

Aperture Width<br />

34.9 inch<br />

Aperture Payload Depth<br />

60 inch<br />

Column Spacing<br />

2.6 λ<br />

Number <strong>Array</strong> Elements 2200<br />

<strong>Array</strong> Beam Performance<br />

Operating Frequency (min.)<br />

43.5 GHz<br />

Operating Frequency (max.)<br />

45.5 GHz<br />

Peak Gain<br />

52.2 dBi<br />

Half Power Beamwidth<br />

0.4 Degree<br />

Number Pixel Earth Beams 1463<br />

Number Simultaneous Comm. Beams 64<br />

FOV Radius (Geo)<br />

8.5 Degree<br />

Receive Active <strong>Array</strong> Design Goals<br />

Parameter Value Units<br />

Element Aperture Efficiency 85 %<br />

Element FOV Relative Gain (min.)<br />

-1.5 dBi<br />

<strong>Array</strong> G/T Performance<br />

LNA<br />

RF Loss before LNA<br />

0.5 dB<br />

LNA Noise Figure<br />

2 dB<br />

Peak G/T at 0.0 deg. Scan<br />

Peak G/T at max. Scan<br />

EOC beam box G/T at max. scan<br />

<strong>Array</strong> Power And Weight<br />

DC Power<br />

Dissipation<br />

Weight<br />

21 dB/K<br />

19.55 dB/K<br />

18 dB/K<br />

850 Watt<br />

850 Watt<br />

630 lbs<br />

4


Active 8 Element/44 Beam <strong>Array</strong> &<br />

Passive 44 Element/44 Beam <strong>Array</strong> Tested<br />

Pyramidal<br />

Horn<br />

HPFL/<br />

Extension<br />

LNA<br />

0.086” Semi-Rigid Coax<br />

WR-19/2.4mm<br />

End Launch<br />

Transition<br />

<strong>Rotman</strong> lens/RFD<br />

WR-19 Shim<br />

<strong>EHF</strong> Active Uplink <strong>Array</strong> 8 Element<br />

RF Chain and <strong>Lens</strong>/RFD<br />

44 Element Passive <strong>Array</strong> & lens/RFD at NSI<br />

NFR with Mounting Fixture & <strong>Near</strong> <strong>Field</strong> Probe<br />

5


Predicted Realized Gain Formulation<br />

Realized gain (G R<br />

) was predicted using the previously measured lens array<br />

factor gain (AFG) and computed embedded element realized gain (G E<br />

)<br />

G<br />

G<br />

R<br />

R<br />

( θ ) =<br />

( θ ) =<br />

A<br />

∑G<br />

n=<br />

1<br />

G<br />

E<br />

E<br />

( θ )<br />

( θ)<br />

S<br />

A<br />

∑S<br />

n=<br />

1<br />

nB<br />

nB<br />

e<br />

e<br />

n2πd<br />

j sin( θ )<br />

λ<br />

S nB : measured lens/RFD transmission S parameter from beam port B to array port n<br />

d/λ = 2.6 and low coupling therefore isolated and embedded element gain equal<br />

G<br />

G<br />

AFG<br />

n2πd<br />

j sin( θ )<br />

λ<br />

( θ ) ( θ ) ( θ )<br />

R<br />

=<br />

E<br />

G R<br />

(θ) dBi = G E<br />

(θ) dBi + AFG(θ) dB (4)<br />

IEEE Std 145-1983:….When ..radiation patterns of ..array elements are<br />

identical….product of the array factor and the element radiation pattern gives the<br />

radiation pattern of the entire array<br />

(1)<br />

(2)<br />

(3)<br />

6


Pyramidal Horn Element CST Computed<br />

and NFR Measured Realized Gain<br />

20<br />

15<br />

Pyramidal Horn Element CST MWS Computed<br />

Realized Gain E-Plane Radiation Pattern<br />

1.79”<br />

CST MWS<br />

Model<br />

10<br />

5<br />

Realized Gain (dBiL)<br />

0<br />

-5<br />

-10<br />

-15<br />

43.5 GHz E-Plane Realized Gain (dBiL)<br />

45.5 GHz E-Plane Realized Gain (dBiL)<br />

0.648”<br />

0.791”<br />

-20<br />

-25<br />

-30<br />

-70.00<br />

-60.00<br />

-50.00<br />

-40.00<br />

-30.00<br />

-20.00<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-70.00<br />

-60.00<br />

-50.00<br />

-40.00<br />

-30.00<br />

-20.00<br />

-10.00<br />

0.00<br />

10.00<br />

20.00<br />

30.00<br />

40.00<br />

50.00<br />

60.00<br />

70.00<br />

-10.00<br />

0.00<br />

10.00<br />

20.00<br />

30.00<br />

40.00<br />

50.00<br />

60.00<br />

70.00<br />

18.7<br />

Angle From Boresight (deg)<br />

CST H-Plane Radiation Pattern<br />

18.65<br />

18.6<br />

18.55<br />

18.5<br />

18.45<br />

Realized Gain (dBiL)<br />

43.5 GHz H-Plane Realized Gain (dBiL)<br />

45.5 GHz H-Plane Realized Gain (dBiL)<br />

Gain (dBiL)<br />

18.4<br />

18.35<br />

18.3<br />

18.25<br />

18.2<br />

18.15<br />

18.1<br />

CST MWS Computed Realized Gain (dBiL)<br />

NFR Measured horn 7 (dBiL)<br />

NFR Measured horn 8 (dBiL)<br />

18.05<br />

18<br />

43.5 43.7 43.9 44.1 44.3 44.5 44.7 44.9 45.1 45.3 45.5<br />

Frequency (GHz)<br />

Angle From Boresight (deg)<br />

7


CST MWS Computed E-Plane Realized<br />

Gain G E (θ) Used for Realized Gain<br />

Prediction<br />

To Compute Realized Gain of the 8 Element Active <strong>Array</strong> & 44 Element Passive<br />

<strong>Array</strong> Integrated with the <strong>Rotman</strong> lens/RFD<br />

•CST MWS computed E-Plane element realized gain G E (θ) dBi in (4)<br />

•Measured lens array factor AFG(θ) dB using HP8510C ANA<br />

•Required Data at 44 beam peak angles from -8º to +8º<br />

Pyramidal Horn Element NFR Measured –<br />

CST Computed Realized Gain Difference Statistics<br />

Two Horn S/N’s & 220 Data Points<br />

Pyramidal Horn Element NFR Measured - CST Computed Realized Gain<br />

44 Beam Port F (GHz) F (GHz) F (GHz) F (GHz) F (GHz)<br />

Angles 43.50 44.00 44.50 45.00 45.50 5 Frq<br />

Mean -0.150 -0.027 -0.130 0.170 0.059 -0.015<br />

MAX -0.097 0.172 0.074 0.299 0.151 0.299<br />

MIN -0.188 -0.116 -0.405 0.101 -0.082 -0.405<br />

P-P 0.091 0.287 0.480 0.198 0.233 0.480<br />

1 sigma 0.028 0.080 0.128 0.060 0.062 0.072<br />

8


Eight Element <strong>Lens</strong>/RFD Active <strong>Array</strong> NFR<br />

Test Results; AFG(θ) Used for Realized<br />

Gain Prediction<br />

8 element active array integrated with<br />

lens/RFD & S-parameters measured<br />

with HP8510C ANA<br />

•<strong>Array</strong> Factor computed<br />

•13 Beam Ports: B02, B06, B10,<br />

B14, B18, B22, B23, B27, B31,<br />

B32, B35, B39, and B43<br />

•8 element active <strong>Array</strong> Factor rosettes<br />

computed<br />

•HPBW for the 8 element active<br />

beams is about 2º<br />

•HPBW for the 44 element passive<br />

beams is 0.4º due to the 5.5 x passive<br />

array aperture<br />

<strong>Array</strong> Factor Calculated <strong>Lens</strong>/RFD 8 Element<br />

Active Rosette at 44.5 GHz 13 Beam Ports<br />

9


8 Element Active <strong>Array</strong> lens/RFD<br />

Calculated and NFR Measured Realized<br />

Gain<br />

• 8 Element Active <strong>Array</strong> lens/RFD<br />

Calculated and NFR Measured<br />

Realized Gain overlay for the same<br />

13 beam ports as those computed<br />

for AFG(θ) dB in previous slide.<br />

• G R<br />

(θ) dBi =G E<br />

(θ) + AFG(θ)<br />

(Slide 7) (Slide 9)<br />

Calc Bench(---), vs. Meas NFR( _ ) 44.5 GHz 13 BP<br />

Gain Statistics<br />

8 Elt Active <strong>Array</strong> ([NFR Measured Realized Gain]<br />

-[AF + CST MWS Computed Horn Gain])<br />

13 Beam Port F (GHz) F (GHz F (GHz) F (GHz) F (GHz)<br />

Angles 43.50 44.00 44.50 45.00 45.50 5 Frq<br />

Mean -0.548 -0.429 -0.141 0.952 0.404 0.048<br />

MAX -0.113 0.128 0.379 1.640 1.097 1.640<br />

MIN -0.860 -0.853 -0.492 0.371 0.072 -0.860<br />

P-P 0.747 0.980 0.871 1.269 1.025 1.269<br />

1 sigma 0.259 0.234 0.241 0.343 0.279 0.271<br />

10


Eight Element Active <strong>Array</strong> lens/RFD<br />

Measured Realized Gain at NSI NFR 44.5<br />

GHz for all 44 Beam Ports<br />

Pyramidal<br />

Horn<br />

HPFL/<br />

Extension<br />

LNA<br />

0.086” Semi-Rigid Coax<br />

WR-19/2.4mm<br />

End Launch<br />

Transition<br />

<strong>Rotman</strong> lens/RFD<br />

WR-19 Shim<br />

<strong>EHF</strong> Active Uplink <strong>Array</strong> 8 Element<br />

RF Chain and <strong>Lens</strong>/RFD<br />

11


44 Element <strong>Lens</strong>/RFD Passive <strong>Array</strong> NFR<br />

Test Results; AFG(θ) Used for Realized<br />

Gain Prediction<br />

44 element passive array<br />

integrated with lens/RFD & S-<br />

parameters measured with<br />

HP8510C ANA<br />

•<strong>Array</strong> Factor computed<br />

•All 44 Beam Ports<br />

•44 element passive <strong>Array</strong><br />

Factor rosettes computed<br />

•HPBW for the 44 element<br />

passive beams is 0.4º as<br />

expected<br />

<strong>Array</strong> Factor Calculated <strong>Lens</strong>/RFD 44 Element<br />

Passive Rosette at 44.5 GHz 44 Beam Ports<br />

12


44 Element Passive <strong>Array</strong> & <strong>Lens</strong>/RFD<br />

Tested for realized gain using a NSI <strong>Planar</strong><br />

12’x12’ NFR.<br />

Gain for All 44 Beam Ports was Measured<br />

13


44 Element Passive <strong>Array</strong> lens/RFD<br />

Calculated and NFR Measured Realized<br />

Gain<br />

• 44 Element Passive <strong>Array</strong><br />

lens/RFD Calculated and NFR<br />

Measured Realized Gain overlay<br />

for all 44 beam ports as for AFG(θ)<br />

dB in slide 12<br />

• G R<br />

(θ) dBi =G E<br />

(θ) + AFG(θ)<br />

(Slide 7) (Slide 12)<br />

Realized Gain (dBiL)<br />

Calc Bench(---), vs. Meas NFR( _ ) 44.5 GHz 44 BP<br />

Gain Statistics<br />

44 Elt Passive <strong>Array</strong> ([NFR Measured Realized Gain]<br />

-[AF + CST MWS Computed Horn Gain])<br />

44 Beam Port F (GHz) F (GHz) F (GHz) F (GHz) F (GHz)<br />

Angles 43.50 44.00 44.50 45.00 45.50 5 Frq<br />

Mean 0.214 0.103 0.299 0.454 0.573 0.329<br />

MAX 0.598 0.441 0.572 1.022 0.902 1.022<br />

MIN -0.144 -0.278 -0.274 0.142 0.229 -0.278<br />

P-P 0.742 0.719 0.847 0.879 0.673 0.879<br />

1 sigma 0.164 0.170 0.173 0.177 0.188 0.174<br />

14


44 Element Passive <strong>Array</strong> lens/RFD<br />

Calculated and NFR Measured Realized<br />

Gain<br />

44 Element Passive <strong>Array</strong> lens/RFD Calculated and Measured Realized Gain<br />

Overlay Bench (dashed lines), NFR (solid lines) 43.5 GHz & 45.5 GHz 44 Beam Ports<br />

Realized Gain (dBiL)<br />

Realized Gain (dBiL)<br />

15


NFR Measurement Accuracy<br />

The NFR testing was performed at<br />

<strong>Near</strong>field Systems Inc., Torrance,<br />

CA on 5/8/07 - 5/11/07, using their<br />

<strong>Planar</strong> 12’ x 12’ NFR<br />

• Considered Error Sources<br />

• Gain Standard Uncertainty<br />

‣ Considered Largest Source<br />

‣ Calibrated at PSNA<br />

• Impedance Mismatch Factor<br />

• Peak Far-<strong>Field</strong> Peak Amplitude<br />

for Gain Standard<br />

• Multiple Reflections between<br />

the horn and probe<br />

• Truncation of the near-field data<br />

for the standard gain horn<br />

• Bias error leakage within the<br />

receiver<br />

• Room scattering<br />

RF Source<br />

11.25 GHz<br />

LO Source<br />

15.00667 GHz<br />

Multiplier<br />

x4<br />

45.0 GHz<br />

LO<br />

LO to Ref<br />

Coupler<br />

LO to Test<br />

Mixers operate in<br />

3 rd harmonic mode<br />

-10 dB<br />

Ref<br />

Mixer<br />

Ref IF<br />

Probe<br />

Ref<br />

AUT<br />

Panther Receiver<br />

Sig<br />

Pad<br />

Test<br />

Mixer<br />

LO<br />

LO/IF Unit<br />

NFR RF Test Block Diagram<br />

Term dB<br />

Gain Standard 0.20<br />

Mismatch 0.05<br />

SGH FF Peak 0.15<br />

Total (RSS) 0.25<br />

Test IF<br />

Receiver displays Sig/Ref<br />

Probable Uncertainties in Peak Far-<strong>Field</strong> Gain<br />

16


Summary<br />

• Primary emphasis of this paper was to<br />

compare the accuracy of predicting the<br />

realized gain using fundamental array theory<br />

with NFR measurements<br />

• An 8 element active array and a 44 element<br />

passive array were both tested<br />

• The mean gain difference between model<br />

and measured data is 0.048 dB for the active<br />

array and 0.329 dB for the passive array<br />

• Overall NFR peak gain measurement<br />

accuracy is estimated as 0.25 dB<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!