11.03.2015 Views

Physiology and Pathophysiology of Neuromuscular Transmission

Physiology and Pathophysiology of Neuromuscular Transmission

Physiology and Pathophysiology of Neuromuscular Transmission

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

“The neuromuscular<br />

junction... [is] an<br />

experimentally favourable<br />

object whose study could<br />

throw considerable light<br />

on synaptic mechanisms<br />

elsewhere”<br />

Sir Bernard Katz, Fenn<br />

Lecture, IUPS Glasgow,<br />

1993<br />

http://www.ricercaitaliana.it/prin/dettaglio_completo_prin_en-2004053317.htm<br />

1


Proteins <strong>of</strong> the Active Zone<br />

http://en.wikipedia.org/wiki/Active_zone<br />

Tools for studying synaptic form <strong>and</strong> function<br />

2


‘Bassoon’ immunostaining localises to active zones<br />

Nishimune et al. (2004) Nature 432:580-587.<br />

Ca imaging during high frequency stimulation<br />

Pseudocoloured<br />

Surface Plot<br />

Greg Lnenicka<br />

Measuring exocytosis with “synaptopHluorin”<br />

O<br />

OH<br />

N N λ abs = 397 nm<br />

OH<br />

O HN<br />

- H + + H +<br />

O<br />

O -<br />

N N λ abs = 475 nm<br />

OH<br />

O HN<br />

chromophore<br />

3


Recycling vesicles take up fluorescent styryl (“FM”) dyes<br />

Hydrophobic<br />

hν<br />

Hydrophilic<br />

Bewick<br />

Desaki & Uehara, 1981<br />

4


Typically-measured characteristics <strong>of</strong> the EPP (or MEPP)<br />

Rise Time<br />

(1-2 ms) Half-decay Time<br />

(2-3 ms)<br />

Amplitude<br />

(1-40 mV)<br />

Ch.2<br />

Latency<br />

(1-2 ms)<br />

10 mV<br />

5.00 ms<br />

Action potentials are “all-or-nothing” signals...<br />

… but EPPs are variable responses<br />

4<br />

3<br />

2<br />

Ch0<br />

1<br />

0<br />

-5 mV<br />

5.00 ms<br />

Quantal size<br />

= Effect <strong>of</strong> one vesicle released<br />

Quantal content = Number <strong>of</strong> vesicles released<br />

5


EPP’s show short-term plasticity<br />

Facilitation<br />

5 ms<br />

Short-term Depression<br />

10 mV<br />

Gillingwater<br />

300 ms<br />

D. Thomson<br />

<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

1. Botulism <strong>and</strong> Myasthenias<br />

2. Characteristics <strong>of</strong> MEPPS <strong>and</strong> EPPS<br />

3. Quantal analysis<br />

4. Safety factor <strong>and</strong> size-strength relationships<br />

<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

1. Botulism <strong>and</strong> Myasthenias<br />

2. Characteristics <strong>of</strong> MEPPS <strong>and</strong> EPPS<br />

3. Quantal analysis<br />

4. Safety factor <strong>and</strong> size-strength relationships<br />

6


Botulinum toxins cleave SNARE proteins<br />

Myasthenia gravis <strong>and</strong> LEMS are autoimmune diseases<br />

LEMS: Ca channel<br />

antibodies<br />

X<br />

X<br />

X<br />

X<br />

MG: AChR<br />

antibodies<br />

EPP’s teeter on the brink <strong>of</strong> the muscle fibre<br />

action potential firing threshold in myasthenias<br />

7


Lambert-Eaton Myasthenic Syndrome<br />

• Weight loss<br />

• Slurred speech<br />

• Weak shoulder abduction <strong>and</strong> hip flexion<br />

• Reflexes absent, but re-appear after exercise<br />

• Sensation normal<br />

Complete recording from one LEMS patient demonstrating an initial small resting<br />

compound muscle action potential(CMAP), followed by a 10-second period <strong>of</strong> maximal<br />

voluntary contraction <strong>and</strong> subsequently 30 CMAPs illustrating augmentation <strong>and</strong><br />

exponential decay.<br />

Maddison P et al. Neurology 1998;50:1083-1087<br />

0 Ca Direct +Ca +4AP +Mg +4AP Direct TTX<br />

8


Myasthenia Gravis<br />

Before<br />

• Bilateral ptosis<br />

• Double vision in all directions<br />

• Fatiguable weakness<br />

• Reflexes disappear after exercise<br />

• Sensation normal<br />

After edrophonium<br />

(Tensilon Test)<br />

dTC dTC neo sux sux sux neo direct<br />

Pre- <strong>and</strong> post-synaptic abnormalities have distinctive effects on EPPs<br />

Synaptic Facilitation<br />

- Impaired presynaptic function<br />

Low quantal content<br />

(normal postsynaptic function)<br />

Synaptic Depression<br />

- Normal presynaptic function<br />

Normal quantal content<br />

(impaired postsynaptic function)<br />

9


Lambert-Eaton Myasthenic Syndrome<br />

EMG<br />

EPP<br />

Normal<br />

LEMS<br />

EPPs have low quantal content<br />

<strong>and</strong> show facilitation<br />

Myasthenia gravis<br />

EMG<br />

Intracellular recording - NMJ<br />

Summary <strong>of</strong> electrophysiological changes in<br />

Myasthenia Gravis <strong>and</strong> Myasthenic Syndrome<br />

50<br />

(NI=Normal Individual)<br />

10


C h.0<br />

5 m V<br />

C h .0<br />

5 m V<br />

5 .0 0 m s<br />

5 .0 0 m s<br />

C h .0<br />

C h .0<br />

5 m V<br />

5 m V<br />

5 .0 0 m s<br />

5 .0 0 m s<br />

Anticholinesterases increase EPP amplitude <strong>and</strong> prolong EPP decay time<br />

Control<br />

Neostigmine (5 µM)<br />

Kosala Dissanayake<br />

<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

1. Botulism <strong>and</strong> Myasthenias<br />

2. Characteristics <strong>of</strong> MEPPS <strong>and</strong> EPPS<br />

3. Quantal analysis<br />

4. Synaptic strength <strong>and</strong> safety factor<br />

Desaki & Uehara, 1981, J Neurocytol 10,101<br />

11


MEPPs (aka ‘minis’) are independent events<br />

that occur with low release probability. This<br />

generates <strong>and</strong> exponential, Poisson distribution<br />

<strong>of</strong> intervals between events.<br />

If the mean frequency is m (s -1 ), then the<br />

frequency <strong>of</strong> a given number <strong>of</strong> MEPPs, x, in<br />

each one second raster sweep is given by:<br />

P(x) = exp(!m). m x<br />

x!<br />

Mini analysis<br />

Amplitude<br />

y = exp(!(x ! µ) 2 / 2" 2 ) / (" 2# )<br />

Interval<br />

Fatt & Katz, 1952, JPhysiol<br />

MEPP<br />

EPP<br />

12


<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

1. Botulism <strong>and</strong> Myasthenias<br />

2. Characteristics <strong>of</strong> MEPPS <strong>and</strong> EPPS<br />

3. Quantal analysis<br />

4. Synaptic strength <strong>and</strong> safety factor<br />

Measuring EPP’s….<br />

X<br />

Action potential<br />

…add µ-conotoxin<br />

…add d-tubocurarine<br />

13


EPP’s<br />

(muscle action potential blocked)<br />

EPP’s in low Ca/high Mg<br />

Mg 2+<br />

Ca 2+<br />

5 mV<br />

10.00 ms<br />

5 mV<br />

10.00 ms<br />

Binomial model:<br />

Let:<br />

n=3<br />

p= 0.17<br />

(q=1-p)<br />

m=n.p<br />

P(0) = ?<br />

P(1) = ?<br />

P(2) = ?<br />

P(3) = ?<br />

14


Binomial model:<br />

Let:<br />

n=3<br />

p= 0.17<br />

(q=1-p)<br />

m=n.p<br />

P(0) = q 3<br />

P(1) = 3pq 2<br />

P(2) = 3p 2 q<br />

P(3) = p 3<br />

P(x) =<br />

n!<br />

x!(n ! x)! p x (n ! x)<br />

.q<br />

Let :<br />

x


P(x) = exp(!m). m x<br />

Poisson Distribution<br />

x!<br />

P(0) = exp(-m)<br />

P(1) = m.exp(-m)<br />

P(2) = m 2 .exp(-m)/2<br />

P(3) = m 3 .exp(-m)/6<br />

“God does not play dice ”<br />

Simulation:Excel<br />

16


Poisson distribution <strong>of</strong> Quantal<br />

Contents <strong>of</strong> EPPs (n=100 trials)<br />

40<br />

Frequency<br />

30<br />

20<br />

10<br />

m=1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Quantal content<br />

Poisson distribution <strong>of</strong> Quantal<br />

Contents <strong>of</strong> EPPs (n=100 trials)<br />

40<br />

m=2<br />

Frequency<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Quantal content<br />

Poisson distribution <strong>of</strong> Quantal<br />

Contents <strong>of</strong> EPPs (n=100 trials)<br />

40<br />

m=3<br />

Frequency<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Quantal content<br />

17


Poisson distribution <strong>of</strong> Quantal<br />

Contents <strong>of</strong> EPPs (n=100 trials)<br />

40<br />

m=4<br />

Frequency<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Quantal content<br />

Poisson distribution <strong>of</strong> Quantal<br />

Contents <strong>of</strong> EPPs (n=100 trials)<br />

40<br />

m=5<br />

Frequency<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Quantal content<br />

Methods <strong>of</strong> quantal analysis:<br />

1. Direct method : m=EPP/MEPP (better, EPC/MEPPC)<br />

2. Failures method: P(0)=exp(-m); m=Ln(Tests/Failures)<br />

( for binomial: P(0)=(1-p) n )<br />

3. Variance method: m = 1/(C.V.) 2 i.e. m=EPP 2 /var(EPP)<br />

(for binomial: var(m)=npq)<br />

18


Problems<br />

- Non-Poisson conditions<br />

- MEPP variance<br />

- Non-linear summation<br />

Problems<br />

- Non-Poisson conditions<br />

- MEPP variance<br />

- Non-linear summation<br />

19


Binomial statistics are a better predictor or<br />

response variability when p>0.1<br />

p=0.044<br />

p=0.49<br />

Problems<br />

- Non-Poisson conditions<br />

- MEPP variance<br />

- Non-linear summation<br />

20


The Normal (Gaussian) Distribution<br />

y = exp(!(x ! µ) 2 / 2" 2 ) / (" 2# )<br />

y<br />

(!x 2 )<br />

# % exp $<br />

&<br />

2"<br />

0.25<br />

y = 5<br />

0.5 2'<br />

(µ = 0; σ =0.5)<br />

x<br />

n<br />

+<br />

P(x) = " exp(!m) mx<br />

.-<br />

k =1 x! ,-<br />

1 % !( x ! kx ) 2 (.<br />

2#k$ 2 '<br />

0<br />

& 2k$ 2 *<br />

)/<br />

0<br />

10 ' exp (! 3)<br />

" 3 x<br />

y 15 % ' &<br />

( 1 '!<br />

( x ! 1.1k) 2 (<br />

% ' exp<br />

# x! $<br />

0.2 2)k # %<br />

2k0.2 2 $ & &<br />

( (<br />

= * % &<br />

# # $ $<br />

k = 1<br />

m=3 quanta<br />

σ= 0.2 mv<br />

x =1.1mv<br />

21


MEPP<br />

EPP<br />

Quantal analysis<br />

P x<br />

= e!m m x<br />

x!<br />

MEPPs<br />

EPPs<br />

Stim.<br />

Quantal Size:<br />

Quantal Content:<br />

q = MEPP<br />

m = EPP<br />

q<br />

Problems<br />

- Non-Poisson conditions<br />

- MEPP variance<br />

- Non-linear summation<br />

The ACh null-potential (reversal potential) is about -10 mV<br />

22


V<br />

~<br />

I<br />

Desaki & Uehara, 1981, J Neurocytol 10,101<br />

R<br />

R m<br />

C m<br />

E ACh<br />

R i<br />

2 ms<br />

200,000 channels<br />

End-Plate Current (EPC)<br />

End-Plate Potential (EPP)<br />

20 mV<br />

23


EPC’s sum linearly : EPP’s sum non-linearly<br />

McLachlan EM, Martin AR. Non-linear summation <strong>of</strong> end-plate potentials in the frog<br />

<strong>and</strong> mouse. J Physiol. 1981 Feb;311:307-24.PMID: 6267255<br />

Correction Factors<br />

Martin (1955):<br />

v' = v /(1! v /(E m<br />

! E r<br />

)<br />

m =<br />

q(1 ! v ! (E m<br />

! E r<br />

)<br />

v= EPP amplitude<br />

q= MEPP amplitude<br />

m = quantal content<br />

v' = v /(1! fv(E m<br />

! E r<br />

)<br />

v !<br />

McLachlan & Martin (1981)<br />

Where f = an empirically determined ('fudge’) factor<br />

For mouse muscle, long fibres: f=0.8<br />

For frog muscle, long fibres: f=0.55<br />

For short muscle fibres (e.g. FDB) the correction is unknown, but<br />

f=0.3 gives a good fit to our data.<br />

<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

1. Botulism <strong>and</strong> Myasthenias<br />

2. Characteristics <strong>of</strong> MEPPS <strong>and</strong> EPPS<br />

3. Quantal analysis<br />

4. Synaptic strength <strong>and</strong> safety factor<br />

24


NMJ have a high ‘safety factor’<br />

<strong>Physiology</strong> <strong>and</strong> <strong>Pathophysiology</strong> <strong>of</strong><br />

<strong>Neuromuscular</strong> <strong>Transmission</strong><br />

1. Botulism <strong>and</strong> Myasthenias<br />

2. Characteristics <strong>of</strong> MEPPS <strong>and</strong> EPPS<br />

3. Quantal analysis<br />

4. Synaptic strength <strong>and</strong> safety factor<br />

- Nerve terminal size<br />

- Quantal content per unit area<br />

- MEPP amplitude<br />

- “Input resistance”<br />

EPP amplitude is proportional to nerve terminal area<br />

RH414/FM1-43<br />

20 µm<br />

10 ms<br />

Costanzo et al.(1999) J Physiol 521:365-74<br />

25


NMJ size <strong>and</strong> muscle mibre diameter are correlated<br />

Specific quantal content (m/µm 2 ) is constant<br />

A<br />

B<br />

100<br />

80<br />

1<br />

60<br />

40<br />

-2<br />

) mµ<br />

m/a<br />

(µm -2 ) 0.1<br />

%Occupancy<br />

% Occupancy<br />

20<br />

0<br />

sub super<br />

m/a (<br />

0.01<br />

sub-sub sub-super super-super<br />

Costanzo et al.(1999) J Physiol 521:365-74<br />

Species<br />

Quantal content<br />

Frog<br />

Rat<br />

Frog 200<br />

Rat, mouse 50-75<br />

Man 20-30<br />

Man<br />

26


Vm<br />

2.5 mV<br />

Vm<br />

Ch.2<br />

2.5 mV<br />

1 mV<br />

Ch.2<br />

31 Keyboard<br />

AC<br />

mV<br />

1<br />

6<br />

1 mV<br />

5<br />

4<br />

3<br />

2<br />

Ch.2<br />

10 mV<br />

10.00 ms<br />

10.00 ms<br />

85 90 95 100 105 110 115 120 125 130 135 140 145<br />

5.00 ms<br />

s<br />

Vm<br />

2.5 mV<br />

Ch.2<br />

1 mV<br />

10.00 ms<br />

AC<br />

mV<br />

1<br />

0<br />

-2<br />

-4<br />

-6<br />

-10<br />

-8<br />

Ch.2<br />

10 mV<br />

5.00 ms<br />

190 200 210 220 230 240 250 260 270 280 290<br />

s<br />

Evoked release <strong>and</strong> NMJ area are correlated<br />

200<br />

Frog<br />

150<br />

100<br />

50<br />

0<br />

0 250 500 750 1000 1250 1500<br />

Synaptic area<br />

Rat<br />

Man<br />

The size <strong>of</strong> NMJ <strong>and</strong> the extent <strong>of</strong> junctional folding vary between species<br />

Frog<br />

Frog<br />

Rat<br />

Rat<br />

Man<br />

Man<br />

Synaptic size-strength regulation compensates for diameter-input resistance<br />

nt<br />

mf<br />

R in<br />

= 1 R m<br />

R i<br />

A ! d 3<br />

t<br />

! d m<br />

V<br />

10 mV<br />

2 nA<br />

I<br />

=<br />

R in<br />

20 ms<br />

q ! R in<br />

MEPPs<br />

m ! A t<br />

EPPs<br />

27


R in<br />

Harris & Ribchester (1979) J Physiol 296, 245-265<br />

Endplate area, fibre diameter <strong>and</strong> MEPP amplitude, frequency are correlated<br />

Quantal size (q) = response to a single vesicular release<br />

(i.e. the amplitude <strong>of</strong> the spontaneous MEPP)<br />

Abnormalities in quantal size indicate a postsynaptic problem<br />

Quantal content (m) = amount <strong>of</strong> transmitter released<br />

(i.e. the number <strong>of</strong> synaptic vesicles producing an EPP)<br />

Abnormalities in quantal content indicate a presynaptic problem<br />

<strong>Neuromuscular</strong> Junction: postsynaptic<br />

http://neuromuscular.wustl.edu/musdist/dag2.htm<br />

28


Congenital Myasthenic Syndromes<br />

Palace & Beeson (2008) J Neuroimmunol<br />

SUMMARY<br />

1. Variation in MEPP interval <strong>and</strong> EPP amplitude<br />

conforms to a Poisson Distribution<br />

2. Quantal content <strong>of</strong> EPP’s can be estimated by<br />

Direct, ‘Failures’, <strong>and</strong> Variance Methods.<br />

Remember to make allowance, if necessary, for<br />

non-linear summation <strong>of</strong> synaptic potentials<br />

3. Quantal content at rodent NMJ’s is about 50 <strong>and</strong><br />

the ‘safety factor’ is about 3.<br />

4. Determinants <strong>of</strong> synaptic strength <strong>and</strong> safetyfactor<br />

at the NMJ include Ca sensitivity (LEMS),<br />

ACh receptor density (MG), endplate size<br />

(CMS), <strong>and</strong> muscle fibre size (input resistance),<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!