11.03.2015 Views

Lecture 4: Neuromuscular Junction: Pharmacology

Lecture 4: Neuromuscular Junction: Pharmacology

Lecture 4: Neuromuscular Junction: Pharmacology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Neuroscience with <strong>Pharmacology</strong> 2<br />

<strong>Neuromuscular</strong> <strong>Junction</strong> 2: <strong>Pharmacology</strong><br />

Sir Henry Dale<br />

Acetylcholine<br />

+ <br />

“Quaternary” nitrogen<br />

1


Terminal<br />

Schwann Cell<br />

Synaptic vesicles<br />

Motor nerve<br />

terminal<br />

Mitochondria<br />

Active<br />

Zone<br />

Kranocyte<br />

Motor<br />

endplate<br />

PSD<br />

Basal<br />

Lamina<br />

<strong>Junction</strong>al<br />

Folds<br />

Neurotransmitters are released by exocytosis from synaptic vesicles<br />

2


Excitation synchronises neurotransmitter release<br />

S<br />

End-Plate Current (EPC)<br />

End-Plate Potential (EPP)<br />

20 mV<br />

2 ms<br />

Quantal analysis of EPPs shows a “safety factor” of 2-5<br />

Actual m !<br />

Threshold m !<br />

3


Targets in neuromuscular pharmacology :<br />

® <br />

® <br />

® Synthesis<br />

® Storage<br />

® Release<br />

® <br />

® <br />

® <br />

® Action<br />

® Inactivation<br />

<strong>Neuromuscular</strong> <strong>Junction</strong> - <strong>Pharmacology</strong><br />

1. Principles and methods of studying ACh pharmacology at<br />

the NMJ<br />

2. Targets for drug action (synthesis, storage, release,<br />

action, inactivation)<br />

3. Drugs affecting postsynaptic (nicotinic) ACh Receptors<br />

Twitter: #NeuroMJ<br />

@RRibchester<br />

4


Drugs acting at the NMJ are useful as:<br />

w Experimental tools<br />

w Clinical treatments<br />

Several techniques can be used to assay the<br />

effects of drugs at NMJ’s<br />

1. Muscle contraction<br />

2. Intracellular EPP recording<br />

3. Iontophoresis/patch clamp<br />

4. Ligand binding<br />

5


Measuring muscle contractions in response to<br />

release of neurotransmitter by nerve<br />

stimulation….<br />

dTC dTC neo sux sux sux neo direct <br />

6


Measuring EPP’s….<br />

X <br />

Action potential<br />

…add µ-conotoxin<br />

…add d-tubocurarine<br />

…Reduce Ca 2+ and/or add Mg 2+<br />

EPP’s<br />

(muscle action potential blocked)<br />

EPP’s in low Ca/high Mg<br />

Mg 2+ <br />

Ca 2+ <br />

5 mV<br />

10.00 ms<br />

5 mV<br />

10.00 ms<br />

7


Transmitter release (EPP amplitude; Quantal content) depends on [Ca 2+ ] 4<br />

Mg 2+<br />

Slope=4<br />

Dodge & Rahamimoff (1967) JPhysiol<br />

Na + <br />

Ca 2+ <br />

K + <br />

8


Ch.2<br />

2 mV<br />

30.00 ms<br />

Inhibiting and Enhancing ACh Release: Ca/K-dependent<br />

0 Ca Direct +Ca +4AP +Mg +4AP Direct TTX <br />

Testing drugs on ACh receptors<br />

Iontophoresis<br />

I <br />

10 µM ACh<br />

2 mV<br />

60 s<br />

Bath application<br />

s<br />

V <br />

Patch clamp<br />

9


Drug assays at the NMJ are based on:<br />

w Biological response (->efficacy, EC50)<br />

w Ligand binding (->affinity, K D )<br />

EC 50<br />

10


Ligand binding visualised…<br />

Control <br />

α-bungarotoxin <br />

10µm α-BTX!<br />

But normally measured chemically (eg radioactively-labelled ligand)…<br />

11


General scheme for Agonist-Receptor Interaction<br />

(illustrated by ACh binding to its Receptors)<br />

ACh + R D ACh-R D ACh-R*<br />

bound activated<br />

D<br />

D<br />

ACh-R 0<br />

“desensitized”<br />

[ACh].[R]<br />

K D = = ~ 80 µM<br />

[ACh-R]<br />

2. Targets for drug action at the NMJ<br />

- Presynaptic<br />

- Intrasynaptic<br />

- Postsynaptic<br />

Twitter: #NeuroMJ<br />

@RRibchester<br />

12


Choline acetyltransferase Inhibitor<br />

X <br />

AF64A<br />

Drugs that inhibit transmitter synthesis/storage<br />

Choline uptake <br />

Hemicholinium-3<br />

x <br />

x <br />

Vesicle filling <br />

Vesamicol<br />

13


Drugs that inhibit transmitter release<br />

P/Q Ca 2+ channel blockers<br />

Botulinum toxins = ‘SNARE’ blockers<br />

ω-agatoxin/<br />

ω-conotoxin<br />

Ca 2+ <br />

x <br />

x <br />

Latrotoxin enhances transmitter release<br />

α-latrotoxin <br />

BEFORE <br />

During <br />

AFTER <br />

14


Drugs that block ACh esterase<br />

Acetylcholine<br />

Edrophonium<br />

Neostigmine<br />

Sarin<br />

x <br />

Antidote: Pradiloxime<br />

Anticholinesterases prolong EPPs<br />

Control<br />

C h . 0<br />

C h . 0<br />

C h . 0<br />

5 m V<br />

5 . 0 0 m s<br />

5 m V<br />

5 . 0 0 m s<br />

5 m V<br />

5 . 0 0 m s<br />

Neostigmine (5 µM)<br />

15<br />

Half Decay Time<br />

Hepes Buffered Ringer Solution<br />

Neostigmine (5µM)<br />

C h . 0<br />

Time (mS)<br />

10<br />

5<br />

0<br />

T1 T2 T3 T4<br />

EPP Train Number<br />

5 m V<br />

5 . 0 0 m s<br />

15


3. Drugs affecting postsynaptic (nicotinic) ACh Receptors<br />

Twitter: #NeuroMJ<br />

@RRibchester<br />

The nicotinic ACh Receptor at NMJ<br />

8 nm<br />

/ε <br />

16


nACh Receptor <strong>Pharmacology</strong> - <strong>Neuromuscular</strong> <strong>Junction</strong><br />

Agonist Antagonist/blocker<br />

nicotine<br />

d-tubocurarine (curare)<br />

acetylcholine α-bungarotoxin<br />

carbachol atracurium<br />

decamethonium<br />

pancuronium<br />

suxamethonium (I) suxamethonium(II)<br />

17


Atropine <br />

d-Tubocurarine <br />

Drugs that block ACh Receptors (antagonists)<br />

Reversible<br />

Example:<br />

d-tubocurarine<br />

Irreversible<br />

Example:<br />

α-bungarotoxin<br />

18


ACh<br />

Na + <br />

ACh<br />

dTC<br />

dTC ACh<br />

K + <br />

19


ACh<br />

ACh<br />

ACh<br />

ACh<br />

dTC ACh<br />

dTC<br />

Na + <br />

ACh<br />

K + <br />

20


ACh<br />

Na + <br />

ACh<br />

αBTX<br />

αBTX ACh<br />

K + <br />

21


ACh<br />

ACh<br />

ACh<br />

ACh<br />

ACh<br />

ACh<br />

ACh<br />

ACh<br />

αBTX<br />

ACh<br />

Suxamethonium<br />

Acetylcholine<br />

2 <br />

2 <br />

Not broken down by AChE (nmj)<br />

Broken down by BuChE (blood plasma)<br />

Short lasting<br />

Not counteracted by cholinesterase inhibitor<br />

Used clinically for brief muscle relaxation<br />

“Depolarising blocker”<br />

22


dTC dTC neo sux sux sux neo direct <br />

Sux <br />

Na + <br />

Sux <br />

K + <br />

23


Na + <br />

Na + <br />

Sux <br />

+ + <br />

K + <br />

Na + <br />

Na + <br />

Sux <br />

+ <br />

+ <br />

K + <br />

24


Na + <br />

Na + <br />

Sux <br />

+ <br />

K + <br />

Sux <br />

Na + <br />

Sux <br />

K + <br />

25


Targets of drug action at the neuromuscular junction<br />

vesamicol<br />

botulinium (A-D)<br />

hemicholinium<br />

α-bungarotoxin<br />

d-tubocurarine<br />

atracurium<br />

suxamethonium<br />

edrophonium<br />

neostigmine<br />

sarin<br />

Tweets from<br />

#NeuroMJ<br />

26


Summary<br />

1. Every step in the cycle of ACh synthesis, storage, release, activation and inactivation<br />

is a potential target for drug action at the NMJ.<br />

2. Drugs affecting storage and synthesis :<br />

• AF64A, hemicholinium, vesamicol<br />

3. Drugs affecting release<br />

• 4-AP, α-latrotoxin, botulinum toxin, ω-agatoxin,<br />

• Mg 2+ , botulinum toxin, ω-agatoxin, 4-AP, α-latrotoxin,<br />

4. Drugs that block ACh Esterase:<br />

• edrophonium, neostigmine, sarin<br />

5. Drugs affecting ACh Receptors:<br />

• carbachol, decamethonium, suxamethonium<br />

• tubocurarine, α-bungarotoxin, atracurium<br />

6. Clinical uses of drugs acting at the NMJ:<br />

• muscle relaxants as adjunct to anaesthesia in surgery<br />

• treatment of neuromuscular disease<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!