10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

680 APPENDIX E. PROJECTION<br />

E.9.2.2 Salient properties: Projection Px on closed convex cone K<br />

[173,A.3.2] [92,5.6] For x, x 1 , x 2 ∈ R n<br />

1. P K (αx) = α P K x ∀α≥0 (nonnegative homogeneity)<br />

2. ‖P K x‖ ≤ ‖x‖<br />

3. P K x = 0 ⇔ x ∈ −K ∗<br />

4. P K (−x) = −P −K x<br />

5. (Jean-Jacques Moreau (1962)) [232]<br />

x = x 1 + x 2 , x 1 ∈ K , x 2 ∈−K ∗ , x 1 ⊥ x 2<br />

⇔<br />

x 1 = P K x , x 2 = P −K<br />

∗x<br />

(1904)<br />

6. K = {x − P −K<br />

∗x | x∈ R n } = {x∈ R n | P −K<br />

∗x = 0}<br />

7. −K ∗ = {x − P K x | x∈ R n } = {x∈ R n | P K x = 0} (1901)<br />

E.9.2.2.1 Corollary. I −P for cones. (conferE.2)<br />

Denote by K ⊆ R n a closed convex cone, and call K ∗ its dual. Then<br />

x −P −K<br />

∗x is the unique minimum-distance projection of x∈ R n on K if and<br />

only if P −K<br />

∗x is the unique minimum-distance projection of x on −K ∗ the<br />

polar cone.<br />

⋄<br />

Proof. Assume x 1 = P K x . Then by Theorem E.9.2.0.1 we have<br />

x 1 ∈ K , x 1 − x ⊥ x 1 , x 1 − x ∈ K ∗ (1905)<br />

Now assume x − x 1 = P −K<br />

∗x . Then we have<br />

x − x 1 ∈ −K ∗ , −x 1 ⊥ x − x 1 , −x 1 ∈ −K (1906)<br />

But these two assumptions are apparently identical. We must therefore have<br />

x −P −K<br />

∗x = x 1 = P K x (1907)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!