10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

662 APPENDIX E. PROJECTION<br />

E.6.2<br />

Nonorthogonal projection on vectorized matrix<br />

Formula (1837) is extensible. Given X,Y,Z ∈ R m×n , we have the<br />

one-dimensional nonorthogonal projection of X in isomorphic R mn on the<br />

range of vectorized Y : (2.2)<br />

〈Z , X〉<br />

Y , 〈Z , Y 〉 ≠ 0 (1839)<br />

〈Z , Y 〉<br />

where 〈Z , X〉/〈Z , Y 〉 is the coefficient of projection. The inequality<br />

accounts for the fact: projection on R(vec Y ) is in a direction orthogonal to<br />

vec Z .<br />

E.6.2.1<br />

Nonorthogonal projection on dyad<br />

Now suppose we have nonorthogonal projector dyad<br />

Analogous to (1837), for X ∈ R m×m<br />

P 0 = yzT<br />

z T y ∈ Rm×m (1840)<br />

P 0 XP 0 =<br />

yzT<br />

z T y X yzT<br />

z T y = zT Xy<br />

(z T y) 2 yzT = 〈zyT , X〉<br />

〈zy T , yz T 〉 yzT (1841)<br />

is a nonorthogonal projection of matrix X on the range of vectorized<br />

dyad P 0 ; from which it follows:<br />

P 0 XP 0 = zT Xy<br />

z T y<br />

〈 〉<br />

yz T zy<br />

T yz<br />

T<br />

z T y = z T y , X z T y = 〈P 0 T , X〉 P 0 = 〈P 0 T , X〉<br />

〈P0 T , P 0 〉 P 0<br />

(1842)<br />

Yet this relationship between matrix product and vector inner-product only<br />

holds for a dyad projector. When nonsymmetric projector P 0 is rank-one as<br />

in (1840), therefore,<br />

R(vecP 0 XP 0 ) = R(vec P 0 ) in R m2 (1843)<br />

and<br />

P 0 XP 0 − X ⊥ P T 0 in R m2 (1844)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!