v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

640 APPENDIX E. PROJECTION R n p = AA † b R m {x} x R(A T ) 0 N(A) x = A † p x = A † b 0 = A † (b − p) Ax = p R(A) p 0 b b − p N(A T ) {b} Figure 137: Action of pseudoinverse A † ∈ R n×m : [287, p.449] Component of vector b in N(A T ) maps to origin, while component of b in R(A) maps to rowspace R(A T ). For any A∈ R m×n , inversion is bijective ∀p ∈ R(A). The following relations reliably hold without qualification: a. A T† = A †T b. A †† = A c. (AA T ) † = A †T A † d. (A T A) † = A † A †T e. (AA † ) † = AA † f. (A † A) † = A † A Yet for arbitrary A,B it is generally true that (AB) † ≠ B † A † : E.0.0.0.1 Theorem. Pseudoinverse of product. [143] [49] [208, exer.7.23] For A∈ R m×n and B ∈ R n×k (AB) † = B † A † (1749) if and only if R(A T AB) ⊆ R(B) and R(BB T A T ) ⊆ R(A T ) (1750) ⋄

641 U T = U † for orthonormal (including the orthogonal) matrices U . So, for orthonormal matrices U,Q and arbitrary A (UAQ T ) † = QA † U T (1751) E.0.0.0.2 Prove: Exercise. Kronecker inverse. (A ⊗ B) † = A † ⊗ B † (1752) E.0.1 Logical deductions When A is invertible, A † = A −1 ; so A † A = AA † = I . Otherwise, for A∈ R m×n [127,5.3.3.1] [208,7] [256] g. A † A = I , A † = (A T A) −1 A T , rankA = n h. AA † = I , A † = A T (AA T ) −1 , rankA = m i. A † Aω = ω , ω ∈ R(A T ) j. AA † υ = υ , υ ∈ R(A) k. A † A = AA † , A normal l. A k† = A †k , A normal, k an integer Equivalent to the corresponding Moore-Penrose condition: 1. A T = A T AA † or A T = A † AA T 2. A †T = A †T A † A or A †T = AA † A †T When A is symmetric, A † is symmetric and (A.6) A ≽ 0 ⇔ A † ≽ 0 (1753) E.0.1.0.1 Example. Solution to classical linear equation Ax = b . In2.5.1.1, the solution set to matrix equation Ax = b was represented as an intersection of hyperplanes. Regardless of rank of A or its shape (fat or skinny), interpretation as a hyperplane intersection describing a possibly empty affine set generally holds. If matrix A is rank deficient or fat, there is an infinity of solutions x when b∈R(A). A unique solution occurs when the hyperplanes intersect at a single point.

640 APPENDIX E. PROJECTION<br />

R n<br />

p = AA † b<br />

R m<br />

{x}<br />

x<br />

R(A T )<br />

0<br />

N(A)<br />

x = A † p<br />

x = A † b<br />

0 = A † (b − p)<br />

Ax = p<br />

R(A)<br />

p<br />

0<br />

b<br />

b − p<br />

N(A T )<br />

{b}<br />

Figure 137: Action of pseudoinverse A † ∈ R n×m : [287, p.449] Component of<br />

vector b in N(A T ) maps to origin, while component of b in R(A) maps to<br />

rowspace R(A T ). For any A∈ R m×n , inversion is bijective ∀p ∈ R(A).<br />

The following relations reliably hold without qualification:<br />

a. A T† = A †T<br />

b. A †† = A<br />

c. (AA T ) † = A †T A †<br />

d. (A T A) † = A † A †T<br />

e. (AA † ) † = AA †<br />

f. (A † A) † = A † A<br />

Yet for arbitrary A,B it is generally true that (AB) † ≠ B † A † :<br />

E.0.0.0.1 Theorem. Pseudoinverse of product. [143] [49] [208, exer.7.23]<br />

For A∈ R m×n and B ∈ R n×k (AB) † = B † A † (1749)<br />

if and only if<br />

R(A T AB) ⊆ R(B) and R(BB T A T ) ⊆ R(A T ) (1750)<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!