v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

624 APPENDIX D. MATRIX CALCULUS which can be proved by substitution of variables in (1698). second-order total differential due to any Y ∈R K×L is The mn th d 2 g mn (X)| dX→Y = ∑ i,j ∑ k,l ∂ 2 g mn (X) Y kl Y ij = tr (∇ X tr ( ∇g mn (X) T Y ) ) T Y ∂X kl ∂X ij (1700) = ∑ ∂g mn (X + ∆t Y ) − ∂g mn (X) lim Y ij ∆t→0 ∂X i,j ij ∆t (1701) g mn (X + 2∆t Y ) − 2g mn (X + ∆t Y ) + g mn (X) = lim ∆t→0 ∆t 2 (1702) = d2 dt 2 ∣ ∣∣∣t=0 g mn (X+ t Y ) (1703) Hence the second directional derivative, →Y dg 2 (X) ∆ = ⎡ ⎢ ⎣ ⎡ tr (∇tr ( ∇g 11 (X) T Y ) ) T Y = tr (∇tr ( ∇g 21 (X) T Y ) ) T Y ⎢ ⎣ . tr (∇tr ( ∇g M1 (X) T Y ) ) T Y d 2 g 11 (X) d 2 g 12 (X) · · · d 2 g 1N (X) d 2 g 21 (X) d 2 g 22 (X) · · · d 2 g 2N (X) . . d 2 g M1 (X) d 2 g M2 (X) · · · . d 2 g MN (X) ⎤ ⎥ ∈ R M×N ⎦ ∣ ∣ dX→Y tr (∇tr ( ∇g 12 (X) T Y ) ) T Y · · · tr (∇tr ( ∇g 1N (X) T Y ) ) ⎤ T Y tr (∇tr ( ∇g 22 (X) T Y ) ) T Y · · · tr (∇tr ( ∇g 2N (X) T Y ) ) T Y . . tr (∇tr ( ∇g M2 (X) T Y ) ) T Y · · · tr (∇tr ( ∇g MN (X) T Y ) ⎥ ) ⎦ T Y ⎡ = ⎢ ⎣ ∑ ∑ i,j k,l ∑ ∑ i,j k,l ∂ 2 g 11 (X) ∂X kl ∂X ij Y kl Y ij ∂ 2 g 21 (X) ∂X kl ∂X ij Y kl Y ij . ∑ ∑ ∂ 2 g M1 (X) ∂X kl ∂X ij Y kl Y ij i,j k,l ∑ ∑ ∂ 2 g 12 (X) ∂X kl ∂X ij Y kl Y ij · · · i,j i,j k,l ∑ ∑ ∂ 2 g 22 (X) ∂X kl ∂X ij Y kl Y ij · · · k,l . ∑ ∑ ∂ 2 g M2 (X) ∂X kl ∂X ij Y kl Y ij · · · i,j k,l ∑ ∑ ⎤ ∂ 2 g 1N (X) ∂X kl ∂X ij Y kl Y ij i,j k,l ∑ ∑ ∂ 2 g 2N (X) ∂X kl ∂X ij Y kl Y ij i,j k,l . ⎥ ∑ ∑ ∂ 2 g MN (X) ⎦ ∂X kl ∂X ij Y kl Y ij i,j k,l (1704)

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 625 from which it follows →Y dg 2 (X) = ∑ i,j ∑ k,l ∂ 2 g(X) ∂X kl ∂X ij Y kl Y ij = ∑ i,j ∂ ∂X ij →Y dg(X)Y ij (1705) Yet for all X ∈ domg , any Y ∈R K×L , and some open interval of t∈R g(X+ t Y ) = g(X) + t dg(X) →Y + 1 →Y t2dg 2 (X) + o(t 3 ) (1706) 2! which is the second-order Taylor series expansion about X . [190,18.4] [128,2.3.4] Differentiating twice with respect to t and subsequent t-zeroing isolates the third term of the expansion. Thus differentiating and zeroing g(X+ t Y ) in t is an operation equivalent to individually differentiating and zeroing every entry g mn (X+ t Y ) as in (1703). So the second directional derivative of g(X) : R K×L →R M×N becomes [239,2.1,5.4.5] [31,6.3.1] →Y dg 2 (X) = d2 dt 2 ∣ ∣∣∣t=0 g(X+ t Y ) ∈ R M×N (1707) which is again simplest. (confer (1686)) Directional derivative retains the dimensions of g . D.1.6 directional derivative expressions In the case of a real function g(X) : R K×L →R , all its directional derivatives are in R : →Y dg(X) = tr ( ∇g(X) T Y ) (1708) →Y dg 2 (X) = tr (∇ X tr ( ∇g(X) T Y ) ) ( ) T →Y Y = tr ∇ X dg(X) T Y ( →Y dg 3 (X) = tr ∇ X tr (∇ X tr ( ∇g(X) T Y ) ) ) ( ) T TY →Y Y = tr ∇ X dg 2 (X) T Y (1709) (1710)

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 625<br />

from which it follows<br />

→Y<br />

dg 2 (X) = ∑ i,j<br />

∑<br />

k,l<br />

∂ 2 g(X)<br />

∂X kl ∂X ij<br />

Y kl Y ij = ∑ i,j<br />

∂<br />

∂X ij<br />

→Y<br />

dg(X)Y ij (1705)<br />

Yet for all X ∈ domg , any Y ∈R K×L , and some open interval of t∈R<br />

g(X+ t Y ) = g(X) + t dg(X) →Y<br />

+ 1 →Y<br />

t2dg 2 (X) + o(t 3 ) (1706)<br />

2!<br />

which is the second-order Taylor series expansion about X . [190,18.4]<br />

[128,2.3.4] Differentiating twice with respect to t and subsequent t-zeroing<br />

isolates the third term of the expansion. Thus differentiating and zeroing<br />

g(X+ t Y ) in t is an operation equivalent to individually differentiating and<br />

zeroing every entry g mn (X+ t Y ) as in (1703). So the second directional<br />

derivative of g(X) : R K×L →R M×N becomes [239,2.1,5.4.5] [31,6.3.1]<br />

→Y<br />

dg 2 (X) = d2<br />

dt 2 ∣<br />

∣∣∣t=0<br />

g(X+ t Y ) ∈ R M×N (1707)<br />

which is again simplest. (confer (1686)) Directional derivative retains the<br />

dimensions of g .<br />

D.1.6<br />

directional derivative expressions<br />

In the case of a real function g(X) : R K×L →R , all its directional derivatives<br />

are in R :<br />

→Y<br />

dg(X) = tr ( ∇g(X) T Y ) (1708)<br />

→Y<br />

dg 2 (X) = tr<br />

(∇ X tr ( ∇g(X) T Y ) ) ( )<br />

T<br />

→Y<br />

Y = tr ∇ X dg(X) T Y<br />

(<br />

→Y<br />

dg 3 (X) = tr ∇ X tr<br />

(∇ X tr ( ∇g(X) T Y ) ) ) ( )<br />

T TY →Y<br />

Y = tr ∇ X dg 2 (X) T Y<br />

(1709)<br />

(1710)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!