10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 619<br />

in magnitude and direction to Y . D.3 Hence the directional derivative,<br />

⎡<br />

⎤<br />

dg 11 (X) dg 12 (X) · · · dg 1N (X)<br />

→Y<br />

dg(X) =<br />

∆ dg 21 (X) dg 22 (X) · · · dg 2N (X)<br />

⎢<br />

⎥<br />

∈ R M×N<br />

⎣ . . . ⎦<br />

∣<br />

dg M1 (X) dg M2 (X) · · · dg MN (X)<br />

⎡<br />

= ⎢<br />

⎣<br />

⎡<br />

∣<br />

dX→Y<br />

tr ( ∇g 11 (X) T Y ) tr ( ∇g 12 (X) T Y ) · · · tr ( ∇g 1N (X) T Y ) ⎤<br />

tr ( ∇g 21 (X) T Y ) tr ( ∇g 22 (X) T Y ) · · · tr ( ∇g 2N (X) T Y )<br />

⎥<br />

.<br />

.<br />

.<br />

tr ( ∇g M1 (X) T Y ) tr ( ∇g M2 (X) T Y ) · · · tr ( ∇g MN (X) T Y ) ⎦<br />

∑<br />

k,l<br />

∑<br />

=<br />

k,l<br />

⎢<br />

⎣ ∑<br />

k,l<br />

∂g 11 (X)<br />

∂X kl<br />

Y kl<br />

∑<br />

k,l<br />

∂g 21 (X)<br />

∂X kl<br />

Y kl<br />

∑<br />

k,l<br />

.<br />

∂g M1 (X)<br />

∑<br />

∂X kl<br />

Y kl<br />

k,l<br />

∂g 12 (X)<br />

∂X kl<br />

Y kl · · ·<br />

∂g 22 (X)<br />

∂X kl<br />

Y kl · · ·<br />

.<br />

∂g M2 (X)<br />

∂X kl<br />

Y kl · · ·<br />

∑<br />

k,l<br />

∑<br />

k,l<br />

∑<br />

k,l<br />

∂g 1N (X)<br />

∂X kl<br />

Y kl<br />

∂g 2N (X)<br />

∂X kl<br />

Y kl<br />

.<br />

∂g MN (X)<br />

∂X kl<br />

⎤<br />

⎥<br />

⎦<br />

Y kl<br />

(1683)<br />

from which it follows<br />

→Y<br />

dg(X) = ∑ k,l<br />

∂g(X)<br />

∂X kl<br />

Y kl (1684)<br />

Yet for all X ∈ domg , any Y ∈R K×L , and some open interval of t∈ R<br />

g(X+ t Y ) = g(X) + t →Y<br />

dg(X) + o(t 2 ) (1685)<br />

which is the first-order Taylor series expansion about X . [190,18.4]<br />

[128,2.3.4] Differentiation with respect to t and subsequent t-zeroing<br />

isolates the second term of expansion. Thus differentiating and zeroing<br />

g(X+ t Y ) in t is an operation equivalent to individually differentiating and<br />

zeroing every entry g mn (X+ t Y ) as in (1682). So the directional derivative<br />

of g(X) : R K×L →R M×N in any direction Y ∈ R K×L evaluated at X ∈ domg<br />

becomes<br />

→Y<br />

dg(X) = d dt∣ g(X+ t Y ) ∈ R M×N (1686)<br />

t=0<br />

D.3 Although Y is a matrix, we may regard it as a vector in R KL .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!