10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

C.2. TRACE, SINGULAR AND EIGEN VALUES 599<br />

C.2.0.0.2 Exercise. Rank-1 approximation.<br />

Given symmetric matrix A∈ S N , prove:<br />

v 1 = arg minimize ‖xx T − A‖ 2 F<br />

x<br />

subject to ‖x‖ = 1<br />

(1580)<br />

where v 1 is a normalized eigenvector of A corresponding to its largest<br />

eigenvalue. What is the objective’s optimal value? <br />

(Ky Fan, 1949) For B ∈ S N whose eigenvalues λ(B)∈ R N are arranged<br />

in nonincreasing order, and for 1≤k ≤N [10,4.1] [186] [176,4.3.18]<br />

[312,2] [206,2.1] [207]<br />

N∑<br />

i=N−k+1<br />

λ(B) i = inf<br />

U∈ R N×k<br />

U T U=I<br />

k∑<br />

λ(B) i = sup<br />

i=1<br />

U∈ R N×k<br />

U T U=I<br />

tr(UU T B) = minimize<br />

X∈ S N +<br />

tr(XB)<br />

subject to X ≼ I<br />

trX = k<br />

= maximize (k − N)µ + tr(B − Z)<br />

µ∈R , Z∈S N +<br />

subject to µI + Z ≽ B<br />

tr(UU T B) = maximize<br />

X∈ S N +<br />

tr(XB)<br />

subject to X ≼ I<br />

trX = k<br />

(a)<br />

(b)<br />

(c)<br />

= minimize kµ + trZ<br />

µ∈R , Z∈S N +<br />

subject to µI + Z ≽ B<br />

(d)<br />

(1581)<br />

Given ordered diagonalization B = QΛQ T , (A.5.2) then an optimal<br />

U for the infimum is U ⋆ = Q(:, N − k+1:N)∈ R N×k whereas<br />

U ⋆ = Q(:, 1:k)∈ R N×k for the supremum. In both cases, X ⋆ = U ⋆ U ⋆T .<br />

<strong>Optimization</strong> (a) searches the convex hull of the outer product UU T<br />

of all N ×k orthonormal matrices. (2.3.2.0.1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!