10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C.2. TRACE, SINGULAR AND EIGEN VALUES 597<br />

For X ∈ S m , Y ∈ S n , A∈ C ⊆ R m×n for set C convex, and σ(A)<br />

denoting the singular values of A [113,3]<br />

minimize<br />

A<br />

∑<br />

σ(A) i<br />

subject to A ∈ C<br />

i<br />

≡<br />

1<br />

minimize 2<br />

A , X , Y<br />

subject to<br />

tr X + trY<br />

[ ] X A<br />

A T ≽ 0<br />

Y<br />

A ∈ C<br />

(1569)<br />

For A∈ S N + and β ∈ R<br />

β trA = maximize tr(XA)<br />

X∈ S N<br />

subject to X ≼ βI<br />

(1570)<br />

But the following statement is numerically stable, preventing an<br />

unbounded solution in direction of a 0 eigenvalue:<br />

maximize sgn(β) tr(XA)<br />

X∈ S N<br />

subject to X ≼ |β|I<br />

X ≽ −|β|I<br />

(1571)<br />

where β trA = tr(X ⋆ A). If β ≥ 0 , then X ≽−|β|I ← X ≽ 0.<br />

For A∈ S N having eigenvalues λ(A)∈ R N , its smallest and largest<br />

eigenvalue is respectively [10,4.1] [38,I.6.15] [176,4.2] [206,2.1]<br />

[207]<br />

min{λ(A) i } = inf<br />

i<br />

‖x‖=1 xT Ax = minimize<br />

X∈ S N +<br />

subject to trX = 1<br />

max{λ(A) i } = sup x T Ax = maximize<br />

i<br />

‖x‖=1<br />

X∈ S N +<br />

subject to trX = 1<br />

tr(XA) = maximize t<br />

t∈R<br />

subject to A ≽ tI<br />

(1572)<br />

tr(XA) = minimize t<br />

t∈R<br />

subject to A ≼ tI<br />

(1573)<br />

The smallest eigenvalue of any symmetric matrix is always a concave<br />

function of its entries, while the largest eigenvalue is always convex.<br />

[53, exmp.3.10] For v 1 a normalized eigenvector of A corresponding to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!