v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

588 APPENDIX B. SIMPLE MATRICES B.4.2 Schoenberg auxiliary matrix V N 1. V N = 1 √ 2 [ −1 T I 2. V T N 1 = 0 3. I − e 1 1 T = [ 0 √ 2V N ] 4. [ 0 √ 2V N ] VN = V N 5. [ 0 √ 2V N ] V = V ] ∈ R N×N−1 6. V [ 0 √ 2V N ] = [ 0 √ 2VN ] 7. [ 0 √ 2V N ] [ 0 √ 2VN ] = [ 0 √ 2VN ] 8. [ 0 √ 2V N ] † = [ 0 0 T 0 I ] V 9. [ 0 √ 2V N ] † V = [ 0 √ 2VN ] † 10. [ 0 √ ] [ √ ] † 2V N 0 2VN = V 11. [ 0 √ [ ] ] † [ √ ] 0 0 T 2V N 0 2VN = 0 I 12. [ 0 √ ] [ ] 0 0 2V T N = [ 0 √ ] 2V 0 I N [ ] [ ] 0 0 T [0 √ ] 0 0 T 13. 2VN = 0 I 0 I 14. [V N 1 √ 2 1 ] −1 = [ ] V † N √ 2 N 1T 15. V † N = √ 2 [ − 1 N 1 I − 1 N 11T] ∈ R N−1×N , ( I − 1 N 11T ∈ S N−1) 16. V † N 1 = 0 17. V † N V N = I

B.4. AUXILIARY V -MATRICES 589 18. V T = V = V N V † N = I − 1 N 11T ∈ S N ( 19. −V † N (11T − I)V N = I , 11 T − I ∈ EDM N) 20. D = [d ij ] ∈ S N h (823) tr(−V DV ) = tr(−V D) = tr(−V † N DV N) = 1 N 1T D 1 = 1 N tr(11T D) = 1 N Any elementary matrix E ∈ S N of the particular form ∑ d ij i,j E = k 1 I − k 2 11 T (1539) where k 1 , k 2 ∈ R , B.7 will make tr(−ED) proportional to ∑ d ij . 21. D = [d ij ] ∈ S N tr(−V DV ) = 1 N 22. D = [d ij ] ∈ S N h ∑ i,j i≠j d ij − N−1 N ∑ d ii = 1 T D1 1 − trD N i tr(−V T N DV N) = ∑ j d 1j 23. For Y ∈ S N B.4.3 V (Y − δ(Y 1))V = Y − δ(Y 1) The skinny matrix ⎡ V ∆ W = ⎢ ⎣ Orthonormal auxiliary matrix V W −1 √ N 1 + −1 N+ √ N −1 N+ √ N . −1 N+ √ N √−1 −1 N · · · √ N −1 N+ √ N ... ... −1 N+ √ N · · · −1 N+ √ N ... −1 N+ √ N ... · · · 1 + −1 N+ √ N . ⎤ ∈ R N×N−1 (1540) ⎥ ⎦ B.7 If k 1 is 1−ρ while k 2 equals −ρ∈R , then all eigenvalues of E for −1/(N −1) < ρ < 1 are guaranteed positive and therefore E is guaranteed positive definite. [261]

B.4. AUXILIARY V -MATRICES 589<br />

18. V T = V = V N V † N = I − 1 N 11T ∈ S N<br />

(<br />

19. −V † N (11T − I)V N = I , 11 T − I ∈ EDM N)<br />

20. D = [d ij ] ∈ S N h (823)<br />

tr(−V DV ) = tr(−V D) = tr(−V † N DV N) = 1 N 1T D 1 = 1 N tr(11T D) = 1 N<br />

Any elementary matrix E ∈ S N of the particular form<br />

∑<br />

d ij<br />

i,j<br />

E = k 1 I − k 2 11 T (1539)<br />

where k 1 , k 2 ∈ R , B.7 will make tr(−ED) proportional to ∑ d ij .<br />

21. D = [d ij ] ∈ S N<br />

tr(−V DV ) = 1 N<br />

22. D = [d ij ] ∈ S N h<br />

∑<br />

i,j<br />

i≠j<br />

d ij − N−1<br />

N<br />

∑<br />

d ii = 1 T D1 1 − trD N<br />

i<br />

tr(−V T N DV N) = ∑ j<br />

d 1j<br />

23. For Y ∈ S N<br />

B.4.3<br />

V (Y − δ(Y 1))V = Y − δ(Y 1)<br />

The skinny matrix<br />

⎡<br />

V ∆ W =<br />

⎢<br />

⎣<br />

Orthonormal auxiliary matrix V W<br />

−1 √<br />

N<br />

1 + −1<br />

N+ √ N<br />

−1<br />

N+ √ N<br />

.<br />

−1<br />

N+ √ N<br />

√−1<br />

−1<br />

N<br />

· · · √<br />

N<br />

−1<br />

N+ √ N<br />

...<br />

...<br />

−1<br />

N+ √ N<br />

· · ·<br />

−1<br />

N+ √ N<br />

...<br />

−1<br />

N+ √ N<br />

...<br />

· · · 1 + −1<br />

N+ √ N<br />

.<br />

⎤<br />

∈ R N×N−1 (1540)<br />

⎥<br />

⎦<br />

B.7 If k 1 is 1−ρ while k 2 equals −ρ∈R , then all eigenvalues of E for −1/(N −1) < ρ < 1<br />

are guaranteed positive and therefore E is guaranteed positive definite. [261]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!