v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

552 APPENDIX A. LINEAR ALGEBRA For A,B ∈ S n and A ≽ 0, B ≽ 0 (Example A.2.1.0.1) AB = BA ⇒ λ(AB) i =λ(A) i λ(B) i ≥ 0 ∀i ⇒ AB ≽ 0 (1381) AB = BA ⇒ λ(AB) i ≥ 0, λ(A) i λ(B) i ≥ 0 ∀i ⇔ AB ≽ 0 (1382) For A,B ∈ S n [177,4.2.13] A ≽ 0, B ≽ 0 ⇒ A ⊗ B ≽ 0 (1383) A ≻ 0, B ≻ 0 ⇒ A ⊗ B ≻ 0 (1384) and the Kronecker product is symmetric. For A,B ∈ S n [344,6.2] A ≽ 0 ⇒ trA ≥ 0 (1385) A ≽ 0, B ≽ 0 ⇒ trA trB ≥ tr(AB) ≥ 0 (1386) Because A ≽ 0, B ≽ 0 ⇒ λ(AB) = λ( √ AB √ A) ≽ 0 by (1367) and Corollary A.3.1.0.5, then we have tr(AB) ≥ 0. A ≽ 0 ⇔ tr(AB)≥ 0 ∀B ≽ 0 (335) For A,B,C ∈ S n (Löwner) A ≼ B , B ≼ C ⇒ A ≼ C A ≼ B ⇔ A + C ≼ B + C A ≼ B , A ≽ B ⇒ A = B A ≼ A (transitivity) (additivity) (antisymmetry) (reflexivity) (1387) For A,B ∈ R n×n x T Ax ≥ x T Bx ∀x ⇒ trA ≥ trB (1388) Proof. x T Ax≥x T Bx ∀x ⇔ λ((A −B) + (A −B) T )/2 ≽ 0 ⇒ tr(A+A T −(B+B T ))/2 = tr(A −B)≥0. There is no converse.

A.3. PROPER STATEMENTS 553 For A,B ∈ S n [344,6.2, prob.1] (Theorem A.3.1.0.4) A ≽ B ⇒ trA ≥ trB (1389) A ≽ B ⇒ δ(A) ≽ δ(B) (1390) There is no converse, and restriction to the positive semidefinite cone does not improve the situation. The all-strict versions hold. From [344,6.2] A ≽ B ≽ 0 ⇒ rankA ≥ rankB (1391) A ≽ B ≽ 0 ⇒ detA ≥ detB ≥ 0 (1392) A ≻ B ≽ 0 ⇒ detA > detB ≥ 0 (1393) For A,B ∈ int S n + [31,4.2] [176,7.7.4] For A,B ∈ S n [344,6.2] A ≽ B ⇔ A −1 ≼ B −1 (1394) A ≽ B ≽ 0 ⇒ √ A ≽ √ B (1395) For A,B ∈ S n and AB = BA [344,6.2, prob.3] A ≽ B ≽ 0 ⇒ A k ≽ B k , k=1, 2,... (1396) A.3.1.0.1 Theorem. Positive semidefinite ordering of eigenvalues. For A,B∈ R M×M , place the eigenvalues of each symmetrized matrix into the respective vectors λ ( 1 (A 2 +AT ) ) , λ ( 1 (B 2 +BT ) ) ∈ R M . Then, [287,6] x T Ax ≥ 0 ∀x ⇔ λ ( A +A T) ≽ 0 (1397) x T Ax > 0 ∀x ≠ 0 ⇔ λ ( A +A T) ≻ 0 (1398) because x T (A −A T )x=0. (1335) Now arrange the entries of λ ( 1 (A 2 +AT ) ) and λ ( 1 (B 2 +BT ) ) in nonincreasing order so λ ( 1 (A 2 +AT ) ) holds the 1 largest eigenvalue of symmetrized A while λ ( 1 (B 2 +BT ) ) holds the largest 1 eigenvalue of symmetrized B , and so on. Then [176,7.7, prob.1, prob.9] for κ ∈ R x T Ax ≥ x T Bx ∀x ⇒ λ ( A +A T) ≽ λ ( B +B T) x T Ax ≥ x T Ixκ ∀x ⇔ λ ( 1 2 (A +AT ) ) ≽ κ1 (1399)

A.3. PROPER STATEMENTS 553<br />

For A,B ∈ S n [344,6.2, prob.1] (Theorem A.3.1.0.4)<br />

A ≽ B ⇒ trA ≥ trB (1389)<br />

A ≽ B ⇒ δ(A) ≽ δ(B) (1390)<br />

There is no converse, and restriction to the positive semidefinite cone<br />

does not improve the situation. The all-strict versions hold. From<br />

[344,6.2]<br />

A ≽ B ≽ 0 ⇒ rankA ≥ rankB (1391)<br />

A ≽ B ≽ 0 ⇒ detA ≥ detB ≥ 0 (1392)<br />

A ≻ B ≽ 0 ⇒ detA > detB ≥ 0 (1393)<br />

For A,B ∈ int S n + [31,4.2] [176,7.7.4]<br />

For A,B ∈ S n [344,6.2]<br />

A ≽ B ⇔ A −1 ≼ B −1 (1394)<br />

A ≽ B ≽ 0 ⇒ √ A ≽ √ B (1395)<br />

For A,B ∈ S n and AB = BA [344,6.2, prob.3]<br />

A ≽ B ≽ 0 ⇒ A k ≽ B k , k=1, 2,... (1396)<br />

A.3.1.0.1 Theorem. Positive semidefinite ordering of eigenvalues.<br />

For A,B∈ R M×M , place the eigenvalues of each symmetrized matrix into<br />

the respective vectors λ ( 1<br />

(A 2 +AT ) ) , λ ( 1<br />

(B 2 +BT ) ) ∈ R M . Then, [287,6]<br />

x T Ax ≥ 0 ∀x ⇔ λ ( A +A T) ≽ 0 (1397)<br />

x T Ax > 0 ∀x ≠ 0 ⇔ λ ( A +A T) ≻ 0 (1398)<br />

because x T (A −A T )x=0. (1335) Now arrange the entries of λ ( 1<br />

(A 2 +AT ) )<br />

and λ ( 1<br />

(B 2 +BT ) ) in nonincreasing order so λ ( 1<br />

(A 2 +AT ) ) holds the<br />

1<br />

largest eigenvalue of symmetrized A while λ ( 1<br />

(B 2 +BT ) ) holds the largest<br />

1<br />

eigenvalue of symmetrized B , and so on. Then [176,7.7, prob.1, prob.9]<br />

for κ ∈ R<br />

x T Ax ≥ x T Bx ∀x ⇒ λ ( A +A T) ≽ λ ( B +B T)<br />

x T Ax ≥ x T Ixκ ∀x ⇔ λ ( 1<br />

2 (A +AT ) ) ≽ κ1<br />

(1399)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!