10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.2. VECTORIZED-MATRIX INNER PRODUCT 53<br />

2.2.3 Symmetric hollow subspace<br />

2.2.3.0.1 Definition. Hollow subspaces. [305]<br />

Define a subspace of R M×M : the convex set of all (real) symmetric M ×M<br />

matrices having 0 main diagonal;<br />

R M×M<br />

h<br />

∆<br />

= { A∈ R M×M | A=A T , δ(A) = 0 } ⊂ R M×M (56)<br />

where the main diagonal of A∈ R M×M is denoted (A.1)<br />

δ(A) ∈ R M (1318)<br />

Operating on a vector, linear operator δ naturally returns a diagonal matrix;<br />

δ(δ(A)) is a diagonal matrix. Operating recursively on a vector Λ∈ R N or<br />

diagonal matrix Λ∈ S N , operator δ(δ(Λ)) returns Λ itself;<br />

δ 2 (Λ) ≡ δ(δ(Λ)) ∆ = Λ (1320)<br />

The subspace R M×M<br />

h<br />

(56) comprising (real) symmetric hollow matrices is<br />

isomorphic with subspace R M(M−1)/2 . The orthogonal complement of R M×M<br />

h<br />

is<br />

R M×M⊥<br />

h<br />

∆<br />

= { A∈ R M×M | A=−A T + 2δ 2 (A) } ⊆ R M×M (57)<br />

the subspace of antisymmetric antihollow matrices in R M×M ; id est,<br />

R M×M<br />

h<br />

⊕ R M×M⊥<br />

h<br />

= R M×M (58)<br />

Yet defined instead as a proper subspace of S M<br />

S M h<br />

∆<br />

= { A∈ S M | δ(A) = 0 } ⊂ S M (59)<br />

the orthogonal complement S M⊥<br />

h of S M h in ambient S M<br />

S M⊥<br />

h<br />

∆<br />

= { A∈ S M | A=δ 2 (A) } ⊆ S M (60)<br />

is simply the subspace of diagonal matrices; id est,<br />

S M h ⊕ S M⊥<br />

h = S M (61)<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!