v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

508 CHAPTER 7. PROXIMITY PROBLEMS projection of an ordered vector of eigenvalues (in diagonal matrix Λ) on a subset of the monotone nonnegative cone (2.13.9.4.2) K M+ = {υ | υ 1 ≥ υ 2 ≥ · · · ≥ υ N−1 ≥ 0} ⊆ R N−1 + (383) Of interest, momentarily, is only the smallest convex subset of the monotone nonnegative cone K M+ containing every nonincreasingly ordered eigenspectrum corresponding to a rank ρ subset of the positive semidefinite cone S N−1 + ; id est, K ρ M+ ∆ = {υ ∈ R ρ | υ 1 ≥ υ 2 ≥ · · · ≥ υ ρ ≥ 0} ⊆ R ρ + (1231) a pointed polyhedral cone, a ρ-dimensional convex subset of the monotone nonnegative cone K M+ ⊆ R N−1 + having property, for λ denoting eigenspectra, [ ρ ] K M+ = π(λ(rank ρ subset)) ⊆ K N−1 ∆ 0 M+ = K M+ (1232) For each and every elemental eigenspectrum γ ∈ λ(rank ρ subset)⊆ R N−1 + (1233) of the rank ρ subset (ordered or unordered in λ), there is a nonlinear surjection π(γ) onto K ρ M+ . 7.1.3.0.2 Exercise. Smallest spectral cone. Prove that there is no convex subset of K M+ smaller than K ρ M+ containing every ordered eigenspectrum corresponding to the rank ρ subset of a positive semidefinite cone (2.9.2.1). 7.1.3.0.3 Proposition. (Hardy-Littlewood-Pólya) Inequalities. [153,X] [48,1.2] Any vectors σ and γ in R N−1 satisfy a tight inequality π(σ) T π(γ) ≥ σ T γ ≥ π(σ) T Ξπ(γ) (1234) where Ξ is the order-reversing permutation matrix defined in (1608), and permutator π(γ) is a nonlinear function that sorts vector γ into nonincreasing order thereby providing the greatest upper bound and least lower bound with respect to every possible sorting. ⋄

7.1. FIRST PREVALENT PROBLEM: 509 7.1.3.0.4 Corollary. Monotone nonnegative sort. Any given vectors σ,γ∈R N−1 satisfy a tight Euclidean distance inequality ‖π(σ) − π(γ)‖ ≤ ‖σ − γ‖ (1235) where nonlinear function π(γ) sorts vector γ into nonincreasing order thereby providing the least lower bound with respect to every possible sorting. ⋄ Given γ ∈ R N−1 inf σ∈R N−1 + ‖σ−γ‖ = inf σ∈R N−1 + ‖π(σ)−π(γ)‖ = inf σ∈R N−1 + ‖σ−π(γ)‖ = inf ‖σ−π(γ)‖ σ∈K M+ Yet for γ representing an arbitrary vector of eigenvalues, because (1236) inf [ R ρ σ∈ + 0 ]‖σ − γ‖ 2 ≥ inf [ R ρ σ∈ + 0 ]‖σ − π(γ)‖ 2 = inf [ ρ K σ∈ M+ 0 ]‖σ − π(γ)‖ 2 (1237) then projection of γ on the eigenspectra of a rank ρ subset can be tightened simply by presorting γ into nonincreasing order. Proof. Simply because π(γ) 1:ρ ≽ π(γ 1:ρ ) inf [ R ρ σ∈ + 0 inf [ R ρ σ∈ + 0 ]‖σ − γ‖ 2 = γ T ρ+1:N−1 γ ρ+1:N−1 + inf ]‖σ − γ‖ 2 ≥ inf = γ T γ + inf σ∈R N−1 + ≥ γ T γ + inf σ∈R N−1 + σ T 1:ρσ 1:ρ − 2σ T 1:ργ 1:ρ ‖σ 1:ρ − γ 1:ρ ‖ 2 σ1:ρσ T 1:ρ − 2σ T (1238) 1:ρπ(γ) 1:ρ σ∈R N−1 + [ R ρ ]‖σ − π(γ)‖ 2 σ∈ + 0

7.1. FIRST PREVALENT PROBLEM: 509<br />

7.1.3.0.4 Corollary. Monotone nonnegative sort.<br />

Any given vectors σ,γ∈R N−1 satisfy a tight Euclidean distance inequality<br />

‖π(σ) − π(γ)‖ ≤ ‖σ − γ‖ (1235)<br />

where nonlinear function π(γ) sorts vector γ into nonincreasing order<br />

thereby providing the least lower bound with respect to every possible<br />

sorting.<br />

⋄<br />

Given γ ∈ R N−1<br />

inf<br />

σ∈R N−1<br />

+<br />

‖σ−γ‖ = inf<br />

σ∈R N−1<br />

+<br />

‖π(σ)−π(γ)‖ = inf<br />

σ∈R N−1<br />

+<br />

‖σ−π(γ)‖ = inf ‖σ−π(γ)‖<br />

σ∈K M+<br />

Yet for γ representing an arbitrary vector of eigenvalues, because<br />

(1236)<br />

inf<br />

[<br />

R<br />

ρ<br />

σ∈ +<br />

0<br />

]‖σ − γ‖ 2 ≥ inf<br />

[<br />

R<br />

ρ<br />

σ∈ +<br />

0<br />

]‖σ − π(γ)‖ 2 =<br />

inf<br />

[ ρ K<br />

σ∈ M+<br />

0<br />

]‖σ − π(γ)‖ 2 (1237)<br />

then projection of γ on the eigenspectra of a rank ρ subset can be tightened<br />

simply by presorting γ into nonincreasing order.<br />

Proof. Simply because π(γ) 1:ρ ≽ π(γ 1:ρ )<br />

inf<br />

[<br />

R<br />

ρ<br />

σ∈ +<br />

0<br />

inf<br />

[<br />

R<br />

ρ<br />

σ∈ +<br />

0<br />

]‖σ − γ‖ 2 = γ T ρ+1:N−1 γ ρ+1:N−1 + inf<br />

]‖σ − γ‖ 2 ≥ inf<br />

= γ T γ + inf<br />

σ∈R N−1<br />

+<br />

≥ γ T γ + inf<br />

σ∈R N−1<br />

+<br />

σ T 1:ρσ 1:ρ − 2σ T 1:ργ 1:ρ<br />

‖σ 1:ρ − γ 1:ρ ‖ 2<br />

σ1:ρσ T 1:ρ − 2σ T (1238)<br />

1:ρπ(γ) 1:ρ<br />

σ∈R N−1<br />

+<br />

[<br />

R<br />

ρ<br />

]‖σ − π(γ)‖ 2<br />

σ∈ +<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!