10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6.5. EDM DEFINITION IN 11 T 461<br />

6.5.1 Range of EDM D<br />

FromB.1.1 pertaining to linear independence of dyad sums: If the transpose<br />

halves of all the dyads in the sum (1093) 6.6 make a linearly independent set,<br />

then the nontranspose halves constitute a basis for the range of EDM D .<br />

Saying this mathematically: For D ∈ EDM N<br />

R(D)= R([δ(V X V T X ) 1 V X ]) ⇐ rank([δ(V X V T X ) 1 V X ])= 2 + r<br />

R(D)= R([1 V X ]) ⇐ otherwise (1106)<br />

To prove this, we need that condition under which the rank equality is<br />

satisfied: We know R(V X )⊥1, but what is the relative geometric orientation<br />

of δ(V X VX T) ? δ(V X V X T)≽0 because V X V X T ≽0, and δ(V X V X T )∝1 remains<br />

possible (1103); this means δ(V X VX T) /∈ N(1T ) simply because it has no<br />

negative entries. (Figure 119) If the projection of δ(V X VX T) on N(1T ) does<br />

not belong to R(V X ), then that is a necessary and sufficient condition for<br />

linear independence (l.i.) of δ(V X VX T) with respect to R([1 V X ]) ; id est,<br />

V δ(V X V T X ) ≠ V X a for any a∈ R r<br />

(I − 1 N 11T )δ(V X V T X ) ≠ V X a<br />

δ(V X V T X ) − 1 N ‖V X ‖ 2 F 1 ≠ V X a<br />

δ(V X V T X ) − λ<br />

2N 1 = y ≠ V X a ⇔ {1, δ(V X V T X ), V X } is l.i.<br />

(1107)<br />

On the other hand when this condition is violated (when (1100) y=V X a p<br />

for some particular a∈ R r ), then from (1099) we have<br />

R ( ) ( )<br />

D = y1 T + 1y T + λ N 11T − 2V X VX<br />

T = R (VX a p + λ N 1)1T + (1a T p − 2V X )VX<br />

T<br />

= R([V X a p + λ N 1 1aT p − 2V X ])<br />

= R([1 V X ]) (1108)<br />

An example of such a violation is (1105) where, in particular, a p = 0. <br />

Then a statement parallel to (1106) is, for D ∈ EDM N (Theorem 5.7.3.0.1)<br />

rank(D) = r + 2 ⇔ y /∈ R(V X ) ( ⇔ 1 T D † 1 = 0 )<br />

rank(D) = r + 1 ⇔ y ∈ R(V X ) ( ⇔ 1 T D † 1 ≠ 0 ) (1109)<br />

6.6 Identifying columns V X<br />

∆<br />

= [v1 · · · v r ] , then V X V T X = ∑ i<br />

v i v T i<br />

is also a sum of dyads.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!